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A unified analytic model for effective mass density, effective bulk modulus, and effective shear modulus is
presented for elastic metamaterials composed of coated spheres embedded in a host matrix. The effective
material properties are derived directly from the averages of local momentum, stress, and strain defined in a
single doubly coated sphere. It is shown that the effective material parameters predicted by the proposed model
are in excellent agreements with the coherent-potential approximation results at low filling fractions where the
anisotropy of periodic structures can be neglected for elastic waves. The advantage of the proposed method is
that it can reveal clearly the physical mechanism for negative effective material parameters induced by the
resonant effect. It is found that negative effective mass density is induced by negative total momentum of the
composite for a positive momentum excitation. Negative effective bulk modulus appears for composites with an
increasing �decreasing� total volume under a compressive �tensile� stress. Negative effective shear modulus
describes composites with axisymmetric deformation under an opposite axisymmetric loading. Numerical
examples are also given to illustrate these mechanisms. These findings may be useful in design of elastic
metamaterials.
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I. INTRODUCTION

Recently, there has been a growing interest in analyzing
the property of elastic metamaterials,1–8 which are the
elastic wave counterparts of electromagnetic �EM�
metamaterials.9–11 Generally speaking, metamaterials are
composites whose building block can exhibit a resonance
under wave excitation. When the building units are much
smaller than the operating wavelength, the metamaterial can
be homogenized as a material with negative effective mate-
rial parameters, which are not readily realized in nature. For
EM metamaterials, the physical mechanisms of achieving
negative permittivity and negative permeability have been
explained clearly by the fact that the building resonators will
produce out-of-phase electric and magnetic polarizations.9

However the physical pictures on negative effective material
parameters for elastic metamaterials are not very clearly
demonstrated.

An isotropic elastic material is completely described
through its mass density, bulk modulus, and shear modulus.
In 2000, Liu et al.1 fabricated a phononic crystal by putting
the rubber-coated lead spheres in an epoxy matrix. Two
phononic band gaps were observed in the long-wavelength
regime and later found to be induced by negative effective
mass density of the phononic crystal slab.12 This phenom-
enon has been found in other elastic periodic mediums.13–15

The physical mechanism of negative effective mass density
can be well understood with help of a simple mass-spring
structure.16,17 The negative effective mass density arises from
the negative total momentum of the unit cell with positive
velocity fields due to local resonance, which has been con-
firmed by a recent experiment.18 Many works19–21 have been
conducted to establish the equivalence between the actual
composite and corresponding discrete mass-spring structure.
The concept of negative-mass band gap has been utilized to
control flexural vibrations of Timoshenko22 or
Euler-Bernoulli23 beams and near-total reflections of acoustic
waves by a membrane-type composite.4

Negative effective modulus of elastic metamaterials is
distinct from the negative static stiffness observed in the
buckling state of compressed structures.24 The former is in-
duced by the local resonant effect, as demonstrated in a hol-
low waveguide attached by an array of subwavelength Helm-
holtz resonators.2,25 The effective compliance of Helmholtz
resonators, the inverse of effective modulus, is found to have
the Lorentz form, showing an interesting correlation with
effective permeability of magnetic resonators.26 This analogy
enables one to understand the negative modulus from a
simple inductor-capacitor circuit. By inducing the monopolar
resonance of bubble-contained-water spheres in an epoxy
host, Ding et al.3 also proposed a composite with a negative
effective bulk modulus, which facilitates the fabrication of
acoustic left-handed metamaterials.27 Wu et al.28 designed a
fiber composite with a negative effective shear modulus by
introducing the quadrapolar resonance.

The effective-medium theory based on the coherent-
potential approximation �CPA� �Refs. 3 and 28–30� has usu-
ally been utilized to predict effective material parameters of
specific periodic structures and can successfully predict the
band structure of composite materials in a low filling frac-
tion. However, the underlying physical mechanisms for
negative-mass density, negative bulk modulus and negative
shear modulus are not well demonstrated by this model. Tak-
ing a phononic crystal of rubber-coated lead spheres in an
epoxy as a prototype, Liu et al.12 made an important step in
correlating the macroscopic averaging fields with the local-
ized resonant mechanisms. In their model, the negative
effective mass density is clearly shown to come from the
out-of-phase effect between the momentum and velocity for
the rubber-coated lead sphere cell. However their analytic
method is not able to describe the physical mechanism of the
second band gap induced by the out-of-phase movement of
the rubber coating with respect to the epoxy host. Inspired by
the analytic model proposed by Liu et al.,12 we will further
examine the physical mechanisms of the negative bulk and
shear modulus for a composite consisting of coated spheres
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embedded in a solid matrix. We present in Sec. II a unified
analytic model for effective mass density, effective bulk
modulus, and effective shear modulus of the composite. In
Sec. III, comparisons will be provided between the proposed
model and the CPA method for low filling fraction, where the
anisotropy of periodic structures can be neglected. The
physical mechanisms for the negative bulk and shear moduli
of the composite will be demonstrated. Finally, the conclu-
sion is given in Sec. IV.

II. ANALYTIC MODELS

The examined model consists of a three-phase composite
with coated spheres embedded in a host material. The build-
ing unit is a doubly-coated sphere, as shown in Fig. 1, whose
outer radius is defined by r3=r2 /�3�, where � is the filling
fraction of the coated spheres. Each region of the doubly-
coated sphere is assumed to be elastic material characterized
by mass density �i, Lamé coefficients �i and �i, and volume
fractions �i with the subscript i=1,2 ,3 representing sepa-
rately the sphere, the coating, and the host. Notice that �
=�1+�2. Let r1 denote the radius of the uncoated sphere and
r2 the radius of the coated sphere. A plane harmonic com-
pressional wave �P wave� propagates along the positive di-
rection of the z axis, as shown in Fig. 1. The analytical so-
lutions for the scattering displacement and stress fields of a
coated sphere are given in the Appendix for later use.

A. Effective mass density

For a plane harmonic wave, the equation of motion for an
elastic material is written as

�� · �̃ = − i�p� . �1�

Integrating Eq. �1� in a sphere with the volume V, the outer
surface S, and the radius r, we can define the macroscopic
equation of motion

�
S

ds� · �̃ = − i�V�p�� , �2�

where we have used the Green formula and the averaging
momentum �p�� is defined as �p��= 1

V�Vp�dv. The integration in

the left-hand side of Eq. �2� stands for the total force F�

=�Sds� · �̃ acting on the spherical surface S. Consider general
expression �A7� of scattering stress fields of a spherical ob-
ject, the total force is not zero only in the incident direction
and given by

Fz = 4��
n

��rr,n� ln + �r	,n� mn� , �3�

where

ln = �
−1

1

Pn�z�P1�z�dz , �4a�

mn = �
−1

1

Pn
1�z�P1

1�z�dz , �4b�

�rr,n� = ��En
31an + En

32bn + En
33cn + En

34dn� , �5a�

�r	,n� = ��En
41an + En

42bn + En
43cn + En

44dn� . �5b�

It is known that the Legendre polynomials Pn
m�z� are or-

thogonal functions. Thus in Eq. �4� only l1 and m1 have
nonvanishing values l1=2 /3 and m1=4 /3. It is noted that the

total moment exerted by the surface stress is M� =�Sds�
�̃. It

is readily shown that M� 	0, thus, the acoustic radiation will
not rotate a sphere, i.e., the sphere has no angular momen-
tum.

Based on Eq. �2�, the macroscopic equations of motion
for each region of a doubly coated sphere are written as

�
S1

ds� · �̃ = − i�V1�p��1, �6a�

�
S2

ds� · �̃ − �
S1

ds� · �̃ = − i�V2�p��2, �6b�

�
S3

ds� · �̃ − �
S2

ds� · �̃ = − i�V3�p��3, �6c�

where S1, S2, and S3 represent separately the sphere-coating
interface r=r1, the coating-matrix interface r=r2, and the
external surface r=r3. Vi denotes the volume occupied by the
ith region. With the total force Fz, we get the averaging mo-
mentum of each region as

111 ,, ���

333 ,, ���

222 ,, ���

x

z

1r

2r

3/3 2r r ��

1S
2S

3S

P-wave incidence

FIG. 1. A coated sphere radiated by a plane P wave. �The outer
boundary of radius r3=r2 /�3� for the host material is defined ac-
cording to the volume fraction � occupied by the coated spheres in
the composite�
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�p��1 =
Fz�r1�
− i�V1

, �7a�

�p��2 =
Fz�r2� − Fz�r1�

− i�V2
, �7b�

�p��3 =
Fz�r3� − Fz�r2�

− i�V3
. �7c�

Since the velocity of the composite sphere that we observe is
the velocity of the host material, we define the velocity of the
composite as �u̇��total=�3�u̇��3. The total momentum of the
composite is the sum of momentums of each region. Then
according to the homogenization method, the dynamic effec-
tive mass density of the composite is defined as

�eff =
1

4�r3
3/3

�p��total

�u̇��total

= �3
�1�p��1 + �2�p��2 + �3�p��3

�p��3

. �8�

Substituting Eq. �7� into Eq. �8�, we finally get

�eff = �3�3
�E1
31�h,r3� + 2E1

41�h,r3��a1
�3� + �E1

32�h,r3�

+ 2E1
42�h,r3��b1

�3� + 3i�E1
33�h,r3�

+ 2E1
43�h,r3��
/
�E1

31�h,r3� + 2E1
41�h,r3� − E1

31�h,r2�

− 2E1
41�h,r2��a1

�3� + �E1
32�h,r3� + 2E1

42�h,r3� − E1
32�h,r2�

− 2E1
42�h,r2��b1

�3� + 3i�E1
33�h,r3� + 2E1

43�h,r3�

− E1
33�h,r2� − 2E1

43�h,r2��
 , �9�

where E1
31, E1

32, E1
41, and E1

42 are given by Eqs. �A10� and
�A11� in the Appendix. an

�i�, bn
�i�, cn

�i�, and dn
�i� �i=1,2 ,3� are

scattering coefficients in each region. The symbols “s,” “c,”
and “h” represent the sphere, coating, and host, respectively,
hereafter. In the long-wavelength limit, Eq. �9� reduces to the
mixing law for solid materials

�eff
s = �1�1 + �2�2 + �3�3. �10�

B. Effective bulk modulus

The constitutive relation for the ith region of the doubly-
coated sphere is given by

��̃�i = 3�i��b�iĨ + 2�i��̃�i, �11�

where the averaging field ��̃�i is defined as ��̃�i=
1
Vi

�Vi
�̃dv,

�b= 1
3 tr �̃ is the bulk strain, and Ĩ is the second-order unit

tensor. The strain tensor �̃ is related to the displacement field
u� by

�b =
1

3
�� · u� , �12�

�̃ =
1

2
��� u� + u��� � . �13�

With help of the Green’s formula and general expressions
�A6� of the scattering displacement field, the averaging bulk
strain ��b�i is derived as

��b�1 =
2�

3V1
r1

2�
n

ur,n� �r1�sn, �14a�

��b�2 =
2�

3V2
�

n

�r2
2ur,n� �r2� − r1

2ur,n� �r1��sn, �14b�

��b�3 =
2�

3V3
�

n

�r3
2ur,n� �r3� − r2

2ur,n� �r2��sn, �14c�

with

sn = �
−1

1

Pn�z�P0�z�dz , �15�

ur,n� �ri� =
1

ri
�En

11an
�i� + En

12bn
�i� + En

13cn
�i� + En

14dn
�i�� . �16�

In Eq. �15�, only the nonzero value s0=2 is obtained due to
the orthogonal properties of Legendre polynomials Pn�z�.
The averaging bulk strain ��b�i describes the volume varia-
tions of the ith constituent. The volume will increase if
��b�i
0 and decrease if ��b�i�0.

The averaging bulk stress for the ith region ��b�i

= 1
3 �tr �̃�i can be calculated by

��b�i = 3�i��b�i, �17�

where �i=�i+
2
3�i is the bulk modulus. According to the ho-

mogenization method, the effective bulk modulus of the
composite can be defined as

�eff =
��b�total

3��b�total
=

�1�1��b�1 + �2�2��b�2 + �3�3��b�3

�1��b�1 + �2��b�2 + �3��b�3
.

�18�

Substituting Eq. �14� into Eq. �18�, we have

�eff = �3 +
r1��1 − �2�E0

13�s,r1�c0
�1� + r2��2 − �3��E0

11�h,r2�a0
�3� + E0

13�h,r2��
r3�E0

11�h,r3�a0
�3� + E0

13�h,r3��
, �19�
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where E0
11 and E0

13 are computed from Eq. �A8� in the Ap-
pendix. In the long-wavelength limit, Eq. �19� reduces to the
static effective bulk modulus31 for a doubly-coated sphere
assemblage

�eff
s = �3 +

��1 + �2���eff� − �3�
1 + 3�3��eff� − �3�/�3�3 + 4�3�

, �20�

with

�eff� = �2 +
�1��1 − �2�

�1 + �2 + 3�2��1 − �2�/�3�2 + 4�2�
. �21�

C. Effective shear modulus

Now going back to Eq. �11� and considering the devia-
toric part ��̃��i of the averaging strain ��̃�i, it can be ex-
pressed as

��̃��i = �i��− 1 0 0

0 − 1 0

0 0 2
� , �22�

where

�1� =
�

3V1
r1

2�
n

�2ur,n� �r1�pn + u	,n� �r1�qn� , �23a�

�2� =
�

3V2
�

n


r2
2�2ur,n� �r2�pn + u	,n� �r2�qn� − r1

2�2ur,n� �r1�pn

+ u	,n� �r1�qn�
 , �23b�

�3� =
�

3V3
�

n


r3
2�2ur,n� �r3�pn + u	,n� �r3�qn� − r2

2�2ur,n� �r2�pn

+ u	,n� �r2�qn�
 , �23c�

with

pn = �
−1

1

Pn�z�P2�z�dz , �24a�

qn = �
−1

1

Pn
1�z�P2

1�z�dz . �24b�

u	,n� �ri� =
1

ri
�En

21an
�i� + En

22bn
�i� + En

23cn
�i� + En

24dn
�i�� . �25�

Due to the orthogonal properties of Legendre polynomials
Pn

m�z�, the nonvanishing values in Eq. �24� are p2=2 /5 and
q2=12 /5, respectively. The angular distribution of forces act-
ing on a sphere is determined by the second-order Legendre
polynomials P2�cos 	�. It is found from the total force that
the sphere is under on average an axisymmetric loading, i.e.,
pulled in z direction and compressed equally in x-y plane, or
vice versa. From the constitutive equation, the averaging de-

viatoric stress ���̃� is related to the deviatoric strain through
the shear modulus of the ith region

���̃�i = 2�i��̃��i, �26�

or equivalently,

���i = 2�i�e�i, �27�

where the averaging shear strain �e�i is defined as

�e�i =
1

2
�2�i� − �− �i��� =

3

2
�i�, �28�

and ���i is the corresponding averaging shear stress in the ith
region.

According to the homogenization method, the effective
shear modulus of the composite can be defined as

�eff =
���total

2�e�total
=

�1�1�e�1 + �2�2�e�2 + �3�3�e�3

�1�e�1 + �2�e�2 + �3�e�3
. �29�

Substituting Eqs. �23� and �28� into Eq. �29�, we obtain

�eff = �3 +
��1 − �2�r1

2�ur,2� �r1� + 3u	,2� �r1�� + ��2 − �3�r2
2�ur,2� �r2� + 3u	,2� �r2��

r3
2�ur,2� �r3� + 3u	,2� �r3��

, �30�

with

ur,2� �r1� =
1

r1
�E2

13�s,r1�c2
�1� + E2

14�s,r1�d2
�1�� , �31a�

u	,2� �r1� =
1

r1
�E2

23�s,r1�c2
�1� + E2

24�s,r1�d2
�1�� , �31b�

ur,2� �r2� =
1

r2
�E2

11�h,r2�a2
�3� + E2

12�h,r2�b2
�3� − 5E2

13�h,r2�� ,

�31c�

u	,2� �r2� =
1

r2
�E2

21�h,r2�a2
�3� + E2

22�h,r2�b2
�3� − 5E2

23�h,r2�� ,

�31d�
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ur,2� �r3� =
1

r3
�E2

11�h,r3�a2
�3� + E2

12�h,r3�b2
�3� − 5E2

13�h,r3�� ,

�31e�

u	,2� �r3� =
1

r3
�E2

21�h,r3�a2
�3� + E2

22�h,r3�b2
�3� − 5E2

23�h,r3�� ,

�31f�

where E2
ij can be computed from Eqs. �A8� and �A9� in the

Appendix. In the long-wavelength limit, Eq. �30� reduces to
the static effective shear modulus31 of a doubly-coated
sphere assemblage

�eff
s = �3 +

5��1 + �2��3��eff� − �3�
5�3 + 6�3��eff� − �3���3 + 2�3�/�3�3 + 4�3�

,

�32�

with

�eff� = �2

+
5�1�2��1 − �2�

5��1 + �2��2 + 6�2��1 − �2���2 + 2�2�/�3�2 + 4�2�
.

�33�

So far, we have derived the effective mass density, bulk, and
shear moduli of a composite with coated particles embedded
in a host material. In the following, we will demonstrate by
numerical examples the physical mechanisms for the nega-
tive effective material parameters induced by the local reso-
nance.

III. NUMERICAL RESULTS AND DISCUSSIONS

It has long been pointed out32 that the propagation of
elastic waves in a three-dimensional �3D� periodic structure
is not isotropic. Thus effective methods should be carefully
verified for specific periodicity of a 3D structure. However in
the work given by Ni and Cheng,33 it is found that the an-
isotropy factor can be very small for low filling fraction.
Although the system that they examined is different from
that in this work, we take the volume fraction of coated
spheres as �=5% in all of the following examples and as-
sume the anisotropy effect can be neglected. It is also impor-
tant to note that we can further lower the filling fraction to
make sure the assumption valid. The resonant effect that
gives rise to negative effective material parameters still ex-
ists; however, the corresponding frequency band will become
very narrow. But the conclusions, i.e., physical pictures of
negative effective material parameters, made in this paper
are not influenced. In the following, we will compare our
results with the CPA methods, which can give a good pre-
diction in the case of low filling fraction. According to the
CPA method, the effective material parameters can be deter-
mined by imposing the total scatterings of a doubly-coated
sphere embedded in the effective material to be vanishing.
Let an

�3� denote the external scattering coefficient of longitu-
dinal waves for a coated sphere embedded in the matrix ma-
terial. The CPA method leads to the following equations for
computing the effective material parameters:

�eff − �3

3�eff + 4�3
=

a0
�3�

i��3r3�3 , �34a�

�eff − �3

�3
=

3a1
�3�

��3r3�3 , �34b�

�eff − �3

6�eff��3 + 2�3� + �3�9�3 + 8�3�
=

3ia2
�3�

20�3��3r3�3 ,

�34c�

where �3=���3 / ��3+2�3� is the longitudinal wave number
in the host material.

We first examine a phononic crystal consisting of rubber-
coated lead spheres embedded in an epoxy host.1 The com-
posite has been shown to exhibit a negative effective mass
due to the dipolar resonance of the coated spheres. The ma-
terial parameters used are �1=11.6
103 kg /m3, �1=4.23

1010 N /m2, and �1=1.49
1010 N /m2 for lead, �2=1.3

103 kg /m3, �2=6
105 N /m2, and �2=4
104 N /m2

for silicone rubber, and �3=1.18
103 kg /m3, �3=4.43

109 N /m2, and �3=1.59
109 N /m2 for epoxy. The ra-
dius of the sphere is 5.0 mm, and the coating thickness is
2.5 mm. Figure 2�a� shows the real part of the effective mass
density normalized to the static one �eff /�eff

s predicted by the
CPA method and presented model, respectively. Excellent
agreement between two methods can be observed from the
figure. The two negative-mass bands take place around the
resonant frequencies 374 Hz and 1333 Hz. Since the averag-
ing momentum Pi=�i�p�i can describe the macroscopic
movement of each constituent, we plot the ratios P1 / P3 and
P2 / P3 in Fig. 2�b� to examine the resonant mechanisms of
the constituents. It is seen from Fig. 2�b� that the first and
second negative-mass bands are induced, respectively, by the
negative momentums of the lead sphere and rubber coating
with respect to the epoxy host. Notice that the negative mo-
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FIG. 2. �Color online� �a� The real parts of �a� effective mass
density predicted by the CPA method and the analytic model and �b�
the ratio of the averaging momentums P1 / P3 and P2 / P3, where
Pi=�i�p�i.
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mentum means the material will move in the opposite direc-
tion with the composite sphere. For better understanding,
Figs. 3�a� and 3�b� show the schematic view for the move-
ment of each region of a doubly-coated sphere at the fre-
quencies associated with the first and second negative-mass
bands, respectively. For simplicity, we further assume the
rubber cover and lead sphere are at rest, respectively, in Figs.
3�a� and 3�b�. Each constituent will oscillate along the inci-
dent direction since the total force is nonzero only in that
direction. Figure 3�a� shows the out-of-phase movement of
the inner sphere with respect to the composite sphere that is
moving upwards or downwards. Due to the higher mass den-
sity and larger oscillation amplitude of the lead sphere than
the epoxy matrix, the total momentum is opposite to the
macroscopic velocity, then leading to the negative effective
mass density. In Fig. 3�b�, there is a similar phenomenon for
the rubber coating moving in the opposite direction with re-
spect to the composite sphere. Since its displacement ampli-
tude is much larger than that of the composite sphere, the
negative total momentum is again achieved, giving rise to
the second negative-mass band. Based on the schematic plot
shown in Fig. 3, equivalent mass-spring models can be easily
constructed.17,18

In the next example, we study the composite of bubble-
contained-water spheres embedded in an epoxy matrix. The
composite has been demonstrated to possess negative effec-
tive bulk modulus arising from the monopolar resonances of
the inclusions.3 The material parameters are �1=1.23

103 kg /m3 and �1=1.42
105 N /m2 for air and �2=1.0

103 kg /m3 and �2=2.22
109 N /m2 for water. The ra-
dius of the sphere is 7.0 mm and the coating thickness is 73.0
mm. In Fig. 4�a�, the real part of the effective bulk modulus
calculated by the proposed model is shown in excellent
agreements with the CPA results. Moreover, both methods
predict a negative effective bulk modulus around the reso-
nant frequency 1270 Hz. As we have indicated in Sec. II B,
the averaging bulk strain is very important in describing a

composite with unique effective bulk modulus. To explore
the reason for the negative bulk modulus, the averaging bulk
strains �i=�i��b�i for the ith region normalized to the total
bulk strain �total=�i=1

3 �i��b�i are presented in Fig. 4�b�. If we
examine the frequency at which �1 /�total
0, �2 /�total�0,
and �3 /�total=0, the physical picture of negative effective
bulk modulus can be well depicted in Fig. 5, which shows
the schematic view of bulk deformations for the doubly-
coated sphere in the expanding state �Fig. 5�b�� and the com-
pressing state �Fig. 5�c��. The doubly-coated sphere in the
initial state without any deformation is shown in Fig. 5�a� for
comparison. In the expanding state shown in Fig. 5�b�, the
inner core is greatly expanded due to the resonant effect so
that the cover material is largely compressed and exhibiting a
compressive stress. Since the bulk modulus of water is much
larger than that of air, the loading state of the composite

No moving
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Moving downwards

(a) z z

xx

(b) z z

xx

FIG. 3. �Color online� Schematic view of the displacement for a
doubly-coated sphere at frequencies associated with �a� the first and
�b� the second negative-mass bands.
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FIG. 4. �Color online� The real parts of �a� effective bulk modu-
lus predicted by the CPA method and the analytic model and �b� the
averaging bulk strains of each region versus the total bulk strain
�1 /�total, �2 /�total, and �3 /�total, where �i=�i��b�i and �total

=�i=1
3 �i��b�i.
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FIG. 5. �Color online� Schematic view of the deformation for a
doubly-coated sphere when the composite sphere is �a� without de-
formation, �b� in the expanding state, and �c� in the compressing
state. �The arrows indicate the directions of forces loading on the
outermost surface of the composite sphere.�

XIAOMING ZHOU AND GENGKAI HU PHYSICAL REVIEW B 79, 195109 �2009�

195109-6



sphere is completely governed by the water coating. Thus the
composite sphere undergoes an expanding deformation under
an external compressive stress. This effect needs to be de-
scribed by a negative effective bulk modulus. In a similar
sense, the composite sphere is under a tensile triaxial stress,
but the total volume is decreasing, as shown in Fig. 5�c�. So
the negative effective bulk modulus arises from the out-of-
phase volume deformation of local constituents compared to
the external triaxial loading.

In the last example, we put rubber-coated epoxy spheres
in the Polyethylene foam HD115. The material parameters of
the Polyethylene foam are taken as �3=115 kg /m3, �3
=6.0
106 N /m2, and �3=3.0
106 N /m2.34 The radius of
the epoxy sphere is 4.2 mm and the coating thickness is 5.4
mm. The real parts of effective shear modulus of the com-
posite predicted by the CPA method and proposed model are
shown in Fig. 6�a�. It is seen that two methods predict nega-
tive effective shear modulus in two narrow frequency bands
around 1082 Hz and 1428 Hz, respectively. In Sec. II C, we
have indicated that the shear modulus results in an axisym-
metric deformation for a doubly-coated sphere, which can be
described by the averaging shear strain. To understand the
mechanism of negative effective shear modulus, we plot in
Fig. 6�b� the ratio of the averaging shear strains ei=�i�e�i of
the ith region to the total shear strain etotal=�i=1

3 �i�e�i as a
function of frequency. It is found from Fig. 6�b� that the
averaging shear strain of the matrix can become negative, in
correspondence with the negative effective shear modulus
shown in Fig. 6�a�. For further illustration, we assume a
sphere will deform into a prolate or oblate spheroid of the
constant volume under the axisymmetric loading. Figure 7
gives a schematic view for the deformation of a doubly-
coated sphere when the negative effective shear modulus oc-
curs. Figure 7�a� shows the doubly-coated sphere without
any deformation for comparison. When the composite sphere
�the outermost surface� deforms into a prolate shape, the

cover material will also have a prolate shape but with a
larger aspect ratio according to Fig. 6�b�. The inner core has
no shear deformation at any frequency. So the matrix cover
is actually compressed in z direction and pulled in x-y plane,
macroscopically behaving as the oblate-shape deformation.
Since the Polyethylene foam is stiffer than the soft rubber,
the composite sphere will be under the same loadings as the
Polyethylene foam, as shown by the arrows in Fig. 7�b�. The
out-of-phase phenomenon between the deformation and the
applied stress is the origin of negative effective shear modu-
lus. A similar understanding can be given to the case in Fig.
7�c�, where the composite sphere is compressed in z direc-
tion under a tensile stress and pulled out in x-y plane under a
compressive stress.

Above numerical examples clearly demonstrate that the
out-of-phase phenomenon induced by resonance is the origin
of negative effective material parameters. The presented ana-
lytic model can give a unified explanation for this unusual
phenomenon with help of the averaging physical fields. In
addition, previous findings35,36 have revealed that the mass
density, bulk modulus, and shear modulus dominate, respec-
tively, the first three scattering channels in the long-
wavelength limit. Here it is further found that the first three
scattering channels correspond, respectively, to the rigid-
body movement �n=1�, the volume deformation �n=0�, and
the axisymmetric deformation of the constant volume �n
=2�. In this sense, the presented analytic method provides a
useful tool in designing the microstructural resonance to get
the unique macroscopic response. Additionally, the analytic
model is likely to stimulate interesting applications of elastic
metamaterials in the fields of ultrasonic subwavelength
imaging,37 elastic cloaking,36,38–40 and transformation
acoustics.41

IV. CONCLUSIONS

Based on the Mie scattering solution, we present a unified
analytic model to predict the dynamic effective material pa-
rameters for composites with coated particles by averaging
physical fields from local constituents. For the low filling
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FIG. 6. �Color online� The real parts of �a� effective shear
modulus predicted by the CPA method and the analytic model and
�b� the averaging shear strains of each region versus the total shear
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FIG. 7. �Color online� Schematic view of the deformation for a
doubly-coated sphere when the composite sphere is �a� without de-
formation, �b� in the oblate-shape deformation, and �c� in the
prolate-shape deformation. �The arrows indicate the directions of
forces loading on the outermost surface of the composite sphere.�
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fraction that the anisotropy of periodic structures can be ne-
glected, the numerical results reveal that effective material
parameters predicted by the proposed model agree well with
those by the CPA method, even around the resonant frequen-
cies at which effective material parameters may become
negative. In addition, the analytic model can provide clear
physical pictures for negative effective material parameters.
Negative effective mass density arises from negative total
momentums exhibited by the composite with positive veloc-
ity fields. Negative effective bulk modulus describes the
composite with an increasing �decreasing� volume under a
compressive �tensile� triaxial stress. Negative effective shear
modulus describes the composite with axisymmetric defor-
mation of the constant volume under the opposite axisym-
metric loading. These findings may be helpful in designing
elastic metamaterials and new band-gap phononic crystals.
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APPENDIX: SCATTERING SOLUTIONS OF AN ELASTIC
COATED SPHERE

When a plane longitudinal wave is incident on a coated
sphere along the positive z direction, as shown in Fig. 1, the
potentials of longitudinal and shear waves in the lth region
can be defined as42

��l� = �
n=0

�

�cn
�l�jn��lr� − an

�l�hn��lr��Pn�cos 	� , �A1a�

��l� = �
n=0

�

�dn
�l�jn��lr� − bn

�l�hn��lr��Pn�cos 	� , �A1b�

where �l=���l / ��l+2�l� and �l=���l /�l, jn�x� is the
spherical Bessel function of the first kind, hn�x� is the spheri-
cal Hankel function of first kind, and Pn�x� is the Legendre
polynomial.

The displacement vector can be expressed in terms of two
potentials � and � as

u� = �� � + �� 
 �e��

��

�	
� , �A2�

which gives

ur =
�Ö

�r
− r�2� − 2

��

�r
− r

�2�

�r2 , �A3a�

u	 =
�

�	
�1

r
Ö −

1

r
� −

��

�r
� , �A3b�

u� = 0. �A3c�

The stress components are related to the displacements as

�̃ = ���� · u��Ĩ + ���� u� + u��� � . �A4�

From Eq. �A4�, we have

�rr = − ��2� + 2�� �2�

�r2 − �2� − r�2��

�r
− 3

�2�

�r2 − r
�3�

�r3 � ,

�A5a�

�r	 = 2�
�

�	
�−

1

r2� +
1

r

��

�r
+

1

r2�1 −
�2r2

2
�� −

1

r

��

�r

−
�2�

�r2 � , �A5b�

�r� = 0. �A5c�

By the substitution of Eq. �A1� into Eqs. �A3� and �A5�,
the stress and displacement fields in each region are

ur
l =

1

r
�

n

�En
11an

�l� + En
12bn

�l� + En
13cn

�l� + En
14dn

�l��Pn�cos 	� ,

�A6a�

u	
l =

1

r
�

n

�En
21an

�l� + En
22bn

�l� + En
23cn

�l� + En
24dn

�l��
dPn�cos 	�

d	
,

�A6b�

�rr
l =

2�l

r2 �
n

�En
31an

�l� + En
32bn

�l� + En
33cn

�l� + En
34dn

�l��Pn�cos 	� ,

�A7a�

�r	
l =

2�l

r2 �
n

�En
41an

�l� + En
42bn

�l� + En
43cn

�l� + En
44dn

�l��
dPn�cos 	�

d	
,

�A7b�

where cn
�3�= �2n+1�in, an

�1�=bn
�1�=dn

�3�=0, and

En
11 = − nhn��r� + �rhn+1��r� , �A8a�

En
12 = n�n + 1�hn��r� , �A8b�

En
13 = njn��r� − �rjn+1��r� , �A8c�

En
14 = − n�n + 1�jn��r� , �A8d�

En
21 = − hn��r� , �A9a�

En
22 = �n + 1�hn��r� − �rhn+1��r� , �A9b�

En
23 = jn��r� , �A9c�

En
24 = − �n + 1�jn��r� + �rjn+1��r� . �A9d�
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En
31 = − �n2 − n − �2r2/2�hn��r� − 2�rhn+1��r� ,

�A10a�

En
32 = n�n + 1���n − 1�hn��r� − �rhn+1��r�� , �A10b�

En
33 = �n2 − n − �2r2/2�jn��r� + 2�rjn+1��r� , �A10c�

En
34 = − n�n + 1���n − 1�jn��r� − �rjn+1��r�� ,

�A10d�

En
41 = − �n − 1�hn��r� + �rhn+1��r� , �A11a�

En
42 = �n2 − 1 − �2r2/2�hn��r� + �rhn+1��r� , �A11b�

En
43 = �n − 1�jn��r� − �rjn+1��r� , �A11c�

En
44 = − �n2 − 1 − �2r2/2�jn��r� − �rjn+1��r� .

�A11d�

At the sphere-coating interface r=r1 and the external sur-
face r=r2, the normal and tangential components of the dis-
placements and stresses should be continuous. Eight equa-
tions can be constructed to solve uniquely all unknown
scattering coefficients.
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