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We study the field dependence of the antiferromagnetic spin- 1
2 Heisenberg model on the square lattice by

means of exact diagonalizations. In the first part, we calculate the spin-wave velocity c, the spin stiffness +s,
and the magnetic susceptibility 7!, and thus determine the microscopic parameters of the low-energy long-
wavelength description. In the second part, we present a comprehensive study of dynamical spin-correlation
functions for magnetic fields ranging from zero up to saturation. We find that, at low fields, magnons are well
defined in the whole Brillouin zone but the dispersion is substantially modified by quantum fluctuations
compared to the classical spectrum. At higher fields, decay channels open and magnons become unstable with
respect to multimagnon scattering. Our results directly apply to inelastic neutron-scattering experiments.
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I. INTRODUCTION

The antiferromagnetic spin-1
2 Heisenberg model on the

square lattice has been investigated in great detail over the
past two decades, primarily because the parent compounds of
superconducting copper-oxide materials are well described
by this model.1,2 On the square lattice, and more generally on
any sufficiently connected bipartite lattice, the model is mag-
netically ordered at zero temperature and the long-
wavelength properties such as the magnetic order,3 the low-
energy excitations,4 or the temperature dependence of the
magnetic correlations5–7 are well described within a semi-
classical setting.8–10 At zero field, the staggered moment ms
is however reduced by around 40% compared to its classical
value, indicating the presence of sizable quantum fluctua-
tions. One prominent effect of fluctuations, the renormaliza-
tion of the spin-wave dispersion along the magnetic zone
boundary between momenta %* ,00 and %* /2,* /20, was ana-
lyzed in Refs. 11–15. Their numerical and experimental find-
ings showed that, while the classical theory predicts a flat-
band along the boundary, the energy and the quasiparticle
weight at %* ,00 are substantially lower than at %* /2,* /20.

In the presence of a magnetic field, fluctuations are ex-
pected to be even more important because of the additional
interaction between spin waves and the field. Since the ma-
jority of studies of the Heisenberg model are devoted to the
zero or small field situation, these effects are not yet well
understood. The negligence of the strong-field regime is not
surprising—until recently, the prospects of experimentally
probing the intermediate or even high-field physics were
dire, given the huge exchange coupling of layered cuprate
materials. This situation has changed with the synthesis of
CuBr4 and CuCl4 compounds16–18 that have experimentally
accessible saturation fields of less than 25 T. In contrast, the
high-Tc parent compounds have enormous saturation fields
of several thousand teslas. At low fields, spin-wave theory
predicts only a weak renormalization of the magnon disper-
sion due to hybridization between single- and two-magnon
states.19 Zhitomirsky and Chernyshev20 showed that the ef-
fects of this hybridization are more drastic at higher fields,

leading to the instability of spin waves with respect to spon-
taneous decay.

The aim of the present work is to provide a comprehen-
sive numerical study of the Heisenberg antiferromagnet in
magnetic fields ranging from zero up to saturation. Rather
than focusing on a particular feature, we aim to give an over-
view of the various properties induced by the coupling to the
magnetic field. Since our results for the dynamical spin
structure factors are directly comparable to the inelastic
neutron-scattering cross section, we believe that this study is
of interest to both theorists and experimentalists.

The paper is organized as follows: in the first part, we
discuss static properties of the Heisenberg model in a mag-
netic field, presenting results for the field dependence of the
transverse susceptibility 7! %Sec. III B0, the spin stiffness +s
%Sec. III C0, the spin-wave velocity c %Sec. III D0, the static
spin structure factors %Sec. III E0, and the staggered moment
ms %Sec. III F0. In Sec. IV, the main part of this work, we
present our results for the dynamical spin-correlation func-
tions obtained by exact diagonalizations of clusters with up
to 64 sites. Our conclusion can be found in Sec. V. The
reader primarily interested in the dynamical spin structure
factors can skip the static part and focus on Sec. IV.

II. MODEL

The isotropic spin-1
2 Heisenberg model on the square lat-

tice with nearest-neighbor interactions is described by the
Hamiltonian

H = J1
!i,j/

Si · S j − g9Bh1
i

Si
z, %10

where Si is a spin-1
2 operator on site i, the summation !i , j/

extends over nearest-neighbor pairs, and h is a constant mag-
netic field applied along the quantization axis. In what fol-
lows, we set g9B→1, g being the gyromagnetic ratio and 9B
the Bohr magneton. If not stated explicitly, energies are mea-
sured in units of the antiferromagnetic exchange coupling J
60. For a system with N spins, the magnetization of a given
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state is defined as m=1i!Si
z/ /N. The fully polarized limit is

thus reached at m=1 /2.
In the absence of a magnetic field, the ground state of the

classical model is the Néel state, in which all spins are
aligned antiparallel with respect to one another, spontane-
ously breaking the O%30 symmetry of the Hamiltonian +Eq.
%10&. As the magnetic field is turned on, the symmetry of the
model is reduced to O%20, describing rotations around the
direction of the applied field. For small fields, the spins pref-
erably align antiferromagnetically in the plane perpendicular
to the magnetic field, with a small uniform out-of-plane com-
ponent, as depicted in Fig. 1. This uniform component be-
comes stronger with increasing field until at the saturation
field hs=8JS all spins are aligned ferromagnetically. In the
canted regime, the orientation of the spins can be decom-
posed into a staggered part perpendicular to the magnetic
field and a uniform component directed along the field.

The low-energy long-wavelength properties of the
Heisenberg model are well described by a nonlinear .
model10,21 whose Lagrangian density is defined as,

L = −
+s

2
%"n02 +

7!

2
%ṅ − n 4 h02. %20

Here n is a three-dimensional vector representing the orien-
tation of the staggered spin component subject to the con-
straint n2=1, h is a constant magnetic field, and a dot de-
notes the time derivate. This model has three physical
parameters: the spin stiffness +s, the staggered moment ms,
and the uniform magnetic susceptibility 7! in the direction
perpendicular to n. The spin-wave velocity c is obtained
from the hydrodynamic relation22

c2 = +s/7!. %30

The . model description is valid at small fields, where the
staggered moment ms is large. In addition to being renormal-
ized by quantum fluctuations, see, e.g., Refs. 23 and 24,
these microscopic parameters also depend significantly on
the strength of the magnetic field. The spin-wave velocity for
instance decreases with h and vanishes at the saturation field
hs. We discuss the field dependence of these three parameters
in Sec. III.

Finite-size effects in an O%n0 . model have been dis-
cussed in Refs. 25–27. For a quadratic sample with N sites,
the ground-state energy density scales as

e0%N0 = e0 − 1.437 745)n − 1

2
' c

N3/2 +
%n − 10%n − 20

8

c2

+sN
2

+ O) 1

N5/2' , %40

allowing one to extract the spin-wave velocity c. Note that,
for n=2, there is no 1 /N2 contribution. The staggered mag-
netization behaves as24,25

ms
2%N0 = ms

2-1 + 0.62075)n − 1

2 ' c

+s
,N

+ O) 1

N
'$ . %50

We will use these extrapolation formulas in Sec. III to esti-
mate the spin-wave velocity and the staggered magnetization
in the thermodynamic limit, taking into account the reduction
in the symmetry from n=3 to 2 in the presence of a magnetic
field.

III. STATIC PROPERTIES

In this section, we discuss static properties of the Heisen-
berg model. Readers more interested in the dynamical spin
structure factors can directly proceed to Sec. IV. Our results
are obtained by means of exact diagonalizations and quan-
tum Monte Carlo simulations using the SSE application28,29

of the ALPS library %algorithms and libraries for physics
simulations0.30 The reciprocal lattices of the different clusters
used in this work are shown in Fig. 2, together with the
accessible magnetizations. Throughout this paper, we use the
same color code for all finite-size data. Taking into account
translation symmetries, the Hilbert space for a cluster of N
sites at magnetization m encompasses roughly % N

N/2−mN 0 /N
states. Computations at low fields are most demanding be-
cause of the huge Hilbert spaces requiring a significant
amount of main memory. At zero field, exact diagonaliza-
tions in the present study are limited to 32 or 36 sites while
in the high-field regime, we can include data from systems
with up to 64 sites. The largest Hilbert spaces involved en-
compass up to several 14108 states. Because the magneti-
zation m is a conserved quantum number, it is computation-
ally advantageous to work with fixed m rather than at a given
magnetic field h, as it is the case in experiments or in spin-
wave calculations. To avoid inexact transformations between
these two conjugate variables, we have chosen to present all
our numerical results as a function of the magnetization.
Comparisons with spin-wave calculations are established by
mapping the magnetic field h onto m via the inverse magne-
tization curve h%m0 obtained within linear spin-wave theory.
This choice is motivated by the fact that we prefer to focus
on exact numerical results, keeping spin-wave approxima-
tions at the simplest level that qualitatively captures the
physical properties.

A. Uniform magnetization

On finite-size samples, the magnetization process occurs
in finite steps. To obtain a continuous magnetization curve,

z
y

x

z y x
z

y
x

(a) (b)

h
h

θ

θ

FIG. 1. %Color online0 Classical Heisenberg model in a magnetic
field h directed along the z axis. %a0 For small fields, the spins are
aligned antiferromagnetically in the xy plane. The O%30 symmetry
of the model without magnetic field is reduced to O%20 rotations
within this plane. %b0 For stronger fields, the spins develop a uni-
form component along the field and are thus canted out of plane. At
the saturation field hs=8JS, the spins are aligned ferromagnetically.
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one can either interpolate these steps along h and m or invert
the derivative of the extrapolated finite-size ground-state en-
ergy +Eq. %40& with respect to the magnetization !e0 /!m. Us-
ing the finite-size scaling has the disadvantage that the ener-
gies obtained from exact diagonalizations first have to be
interpolated with respect to the magnetization m before they
can be extrapolated to the thermodynamic limit because the
magnetization steps of different samples only coincide for a
few particular values of m. The interpolation is unproblem-
atic because the energy is a smooth function of the magneti-
zation. Subsequently, the extrapolation is performed for all
values of m that are realized in at least one sample. The
magnetization curve of the Heisenberg model has been cal-
culated before by exact diagonalizations of clusters contain-
ing at least 40 sites31 and also by quantum Monte Carlo
simulations.31,32 We have reproduced these results in Fig. 3,
together with our values obtained from the derivation of the
energy. The actual magnetization curve is presented in the
inset while the main panel shows the difference to the linear
classical behavior. The overall agreement between linear
spin-wave approximation33 and numerical results is quite re-
markable, the difference being everywhere smaller than 5%.
Our approach of using this magnetization curve to compare
spin-wave results with numerical simulations is thus justi-
fied. The magnetization curve obtained from the extrapolated
ground-state energy is in excellent agreement with Monte
Carlo simulations, especially at higher fields, where larger
samples can be used for the extrapolation. Close to satura-
tion, the magnetization is expected to behave linearly with
logarithmic corrections,33–36 in contrast to the root singulari-
ties encountered in one-dimensional systems.36,37

B. Transverse susceptibility

The magnetic susceptibility measures the variation in the
magnetization with respect to a small external field h! ap-
plied in addition to the arbitrarily large field h introduced in
Eq. %10. We can thus construct a susceptibility tensor as

780 = # !!0"S8"0/
!h!0 #

h!0→0
.

Defining the terms parallel and perpendicular with respect to
the direction of the staggered moment, the transverse suscep-
tibility 7! measures the variation in the uniform magnetiza-
tion with respect to the applied field

7! =
!m

!h
.

In Fig. 4, we plot the transverse susceptibility as a func-
tion of the magnetization and the magnetic field. The upper x
axes shown in Figs. 4–6 and 9 represent the linear spin-wave

Γ

π

0
π0

M

S

X
N=40, m≥1/4N=36, m≥1/6N=32, m≥0

N=50, m≥9/25 N=52, m≥20/52 N=58, m≥23/58 N=64, m≥3/8

N=26, m≥0N=20, m≥0

FIG. 2. %Color online0 Reciprocal lattices of the different finite-size clusters used in this work. Zero-field results are obtained from the
32-site sample while for the polarized regime, exact diagonalizations of clusters with up to N=64 sites can be performed. The achievable
magnetizations m are indicated for every cluster. Saturation is reached at m=1 /2.
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FIG. 3. %Color online0 Inset: Uniform magnetization m as a
function of the applied magnetic field h. The dashed line is the
classical result. Main panel: Difference to the classical curve
&m%h0=m%h0−h /8. The solid black line represents the linear spin-
wave approximation. Small red dots are obtained from the deriva-
tive of the extrapolated ground-state energy, open squares represent
exact diagonalization results from clusters with at least 40 sites, and
open triangles indicate quantum Monte Carlo results at tempera-
tures T!0.02J.
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mapping between the magnetization m and the magnetic field
h, as a function of which spin-wave results are unambiguous.
Note that the classical results are plotted using the classical
magnetization curve. The zero-field quantum Monte Carlo
result is taken from Ref. 24, which we have arbitrarily cho-
sen as the representative of a large body of works encom-
passing many different methods. The spin-wave result has
been derived in Ref. 38. Exact diagonalization and quantum
Monte Carlo data31 at finite field are obtained by numerically
differentiating the magnetization curves shown in Fig. 3. In
the classical limit, the susceptibility is constant, 7!

0 =1 /8,

and the hydrodynamic relation +Eq. %30& is exactly satisfied
for all magnetizations. Quantum fluctuations modify the
shape of 7! considerably and lead to the divergence in the
limit m→1 /2, stemming from the logarithmic singularity in
the magnetization curve. We note that the linear spin-wave
approximation captures these effects extremely well and is in
perfect agreement with Monte Carlo data.

C. Spin stiffness

The elastic energy required to twist a spin arrangement is
proportional to the spin stiffness +s, see Eq. %20. For a planar
order parameter of the form

n%r0 = +cos 2%r0,sin 2%r0,0& ,

which slowly rotates with a constant twist 32=2%ri0−2%r j0
between adjacent sites ri and r j, the difference between the
energy density of the twisted and the collinear spin arrange-
ments is given by

3e = e0%320 − e0%32 = 00 . J+s%3202,

where the twist is applied along both space directions. In
principle, it is possible to calculate +s in exact
diagonalizations39 but it is far easier and more accurate to
obtain the spin stiffness from quantum Monte Carlo simula-
tions as the global winding number fluctuations.40 In Fig. 5,
we plot +s as a function of the magnetization and the mag-
netic field. Previous results at zero field are taken from Ref.
24. Given the simplicity of the linear spin-wave approxima-
tion, the excellent agreement with Monte Carlo results is
remarkable. Because the spin stiffness is proportional to the
elastic energy required to deform the collinear Néel order, it
provides a measure of the ordering tendencies, or inversely,
the quantum fluctuations present in the antiferromagnet. The
initial increase in +s with the magnetization can be attributed
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FIG. 4. %Color online0 Transverse susceptibility 7! as a function
of the magnetization m and the applied magnetic field h. The clas-
sical result %dashed line0 is constant while the linear spin-wave
curve %solid line0 obtained as the numerical derivative of the uni-
form magnetization diverges in the limit m→1 /2 because of the
logarithmic singularity in m%h0.
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FIG. 5. %Color online0 Spin stiffness +s as a function of the
magnetization m and the applied magnetic field h. The results have
been obtained by quantum Monte Carlo simulations %Refs. 28 and
290 using the ALPS %Ref. 300 application and spin-wave calculations.
The initial increase in the spin stiffness can be attributed to a re-
duction in quantum fluctuations while the linear decrease at high
fields is due to the canting of the spins toward the direction of the
applied field.
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FIG. 6. %Color online0 Spin-wave velocity c as a function of the
magnetization m and the applied field h. Symbols correspond to the
slope of the dispersion extracted from finite-size clusters of size N.
Small gray dots represent the thermodynamic values obtained by
extrapolations according to Eq. %40. The dashed and the solid lines
are spin-wave results.
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to a reduction in quantum fluctuations. The almost linear
decrease at high fields however is due to the canting of the
spins and has nothing to do with fluctuations because the
exact result is almost identical to the classical curve. The
reduction in quantum fluctuations at low fields can also be
seen in the staggered magnetization discussed in Sec. III F.

D. Spin-wave velocity

There are two ways to extract the spin-wave velocity c
from exact diagonalization results: one can either determine
the slope of the dispersion in the vicinity of the ground-state
momentum, or one can fit the finite-size scaling of the
ground-state energy to Eq. %40 and determine c from the fit-
ting parameters. This latter method has the disadvantage that
the energies first have to be interpolated with respect to the
magnetization m before the extrapolation can be performed,
as discussed in Sec. III A. In Fig. 6, we show the results
from both approaches and compare them to spin-wave
calculations.38

While the three methods give qualitatively similar results,
the quantitative differences are non-negligible, especially in
the low-field regime. Surprisingly, the zero-field spin-wave
velocity extracted from the sample with 32 sites is in perfect
agreement with quantum Monte Carlo data.24 The results
from the 20- and 26-site clusters are somewhat lower, sug-
gesting a thermodynamic value slightly above the one ob-
tained from the 32-site system. The abrupt drop of the veloc-
ity upon turning on the magnetic field is unphysical and the
pronounced finite-size effects observed in this regime indi-
cate that the actual value of c is substantially larger than the
32-site cluster result. For increasing field, these effects be-
come smaller and one could conclude that, at m=0.2, the
thermodynamic value should be very close to the 36-site
result. This is however not quite correct because, for any
system size, the distance to the gapless mode is at least * /4,
see Fig. 2 for the location of the momenta in different clus-
ters, and thus still far from the cone center. For small and
intermediate fields, one therefore systematically underesti-
mates the spin-wave velocity. At very high fields, the direc-
tion of the finite-size effects is reversed because the disper-
sion starts to resemble the ferromagnetic #k1k2 form and the
finite-size momenta are too far away from the gapless mode
to capture this behavior. This is best seen in the longitudinal
structure factors shown in Fig. 11.

Given the pronounced finite-size effects at small fields,
one can argue that an extrapolation of the ground-state ener-
gies according to Eq. %40 would give a more accurate value
of c. On the contrary, at zero field, this method clearly un-
derestimates the spin-wave velocity, as already noted in Ref.
41, while for small m, it largely overestimates c. We think
that the huge initial increase is due to the change in symme-
try: while the extrapolation formula is modified when turning
on the magnetic field, from n=3 to 2, see Eq. %40, the finite-
size clusters are too small to reflect this change. This inter-
pretation is consistent with the observed overestimation of
almost a factor of 3/2. A reason for the underestimation of
the zero-field spin-wave velocity might be the influence of
higher order terms in the fitting formula +Eq. %40&, which for

n=3 also has a contribution 1 /N2. Including higher order
corrections leads to an increase in the velocity c but also to
inconclusively large error bars. We believe that the bump
observed between m=0.2 and 0.3 is an artifact of the finite-
size extrapolations, as it seems driven by the 36- and 40-site
clusters. To give an idea of the variability of the extrapola-
tions, the fits for m=0, 1/8, and 1/4 are shown in Fig. 7%a0.
The 95% confidence intervals are shown as thin solid lines.
They are also indicated in Fig. 6. Concerning more advanced
spin-wave calculations of the dispersion, we would like to
refer the reader to a recent work by Kreisel et al.,42 discuss-
ing a nonanalytic behavior of the spin-wave velocity induced
by the magnetic field. The validity of the hydrodynamic re-
lation in a magnetic field has been confirmed very recently in
Ref. 38 within a spin-wave approach. At zero field, Hamer
et al.43 verified this property using series expansions and
spin-wave approximations.

E. Static spin structure factor

The static spin structure factor

S80%k0 =
1

N
1
i,j

eik·%ri−rj0!Si
8S j

0/ ,

with 8 ,0=x ,y ,z , + ,−, is the Fourier transformation of
the equal-time spin-spin correlators and can be directly
measured in elastic neutron scattering. Figure 8 shows the
longitudinal and transverse structure factors obtained from
exact diagonalizations, see also Ref. 44, and spin-wave
calculations20 for several magnetizations along highly sym-
metric points in the Brillouin zone. Because there is no spon-
taneous symmetry breaking in finite systems, the exact di-
agonalization results for Sxx%q0 and Syy%q0 are identical.
Hence, it is useful to define a transverse component Sxy as
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FIG. 7. %Color online0 %a0 Finite-size extrapolations %dashed
lines0 of the energy e0 according to Eq. %40 for magnetizations m
=0, 1/8, and 1/4. The spin-wave velocity c is equal to the slope of
the extrapolations. The error bars shown in Fig. 6 correspond to the
95% confidence intervals of the above fits, indicated by the thin
solid lines. %b0 Finite-size extrapolations of the staggered moment
ms

2 according to Eq. %50. The error bars represent the 95% confi-
dence levels of the linear regressions, also shown in Fig. 9. Zero-
field data from clusters with more than 32 sites are taken from
Ref. 31.
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Sxy%k0 =
1

4
+S+−%k0 + S−+%k0& .

In contrast, the spin-wave results are derived in the symme-
try broken phase where the staggered spin component is di-
rected along the x axis. The transverse correlations shown in
Fig. 8%b0 represent the average 2Sxy%k0=Sxx%k0+Syy%k0. At
zero field, the structure factors reflect the antiferromagnetic
order with a pronounced peak at X= %* ,*0. As the magnetic
field is turned on, this contribution rapidly decreases in the
longitudinal channel but remains dominant in the transverse
structure factor, indicating staggered order in the plane per-
pendicular to the magnetic field. With increasing field, the
spins are gradually canted out of the xy plane and develop a
uniform component that manifests itself at momentum $
= %0,00 in the longitudinal structure factor. At high fields,
both curves are almost flat except at the aforementioned two
points. We note that linear spin-wave results capture the es-
sential features qualitatively correctly, apart from the uni-
form contribution to the longitudinal structure factor. Our
results are in good agreement with recent quantum Monte
Carlo data.45

F. Staggered magnetization

Similar to the uniform magnetization, the staggered mo-
ment ms can be obtained as the derivative of the ground-state
energy density with respect to the staggered field. The linear
spin-wave result has been derived in Ref. 46. Alternatively,
ms can be obtained from the transverse structure factor as

ms
2 =

1

N!
Sxy%k = Q0, N! = 3N + 2 %h = 00

N − 1 %h 6 00( ,

where N! is a normalization factor. On finite systems of size
N, the static structure factors satisfy the relation

S+−%k0 = S−+%k0 + 2m ,

contributing a term 1 /N! to ms
2. This additional term makes

the extrapolation according to Eq. %50 more difficult because
one needs to take into account an additional parameter. To

circumvent this problem, we only consider the S−+%k0 contri-
bution to the transverse structure factor. In the thermody-
namic limit, both choices of the normalization N! are identi-
cal but on the small samples we study, there are sizable
differences. The zero-field choice was introduced in Ref. 47
and successfully applied to the J1-J2 model on the square
lattice.41 In the presence of a magnetic field, using only the
S−+%k0 contribution which vanishes at k=$ naturally leads to
a normalization N!=N−1. In Fig. 9, we show the staggered
magnetization obtained from extrapolations based on Eq. %50,
quantum Monte Carlo simulations, and spin-wave calcula-
tions. At zero field, quantum fluctuations are strong, leading
to a considerable reduction in the ordered moment. In this
case, all methods give a similar value slightly above ms
.0.3. As the field is turned on, ms increases and the fluctua-
tions thus become less important, giving rise to an almost
classical regime, in which the dispersion is well described by
linear spin-wave theory. This aspect will be discussed in
more detail in Sec. IV. After the maximum at m.0.15, the
staggered moment is again reduced because of the canting of
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FIG. 8. %Color online0 %a0 Static longitudinal and %b0 transverse spin structure factors S80%q0 for various magnetizations m along a path
connecting highly symmetric points in the Brillouin zone. Symbols represent exact diagonalization results, with numbers indicating the
system sizes. Larger symbols stand for bigger clusters. Solid lines show the spin-wave results derived in Ref. 20.
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FIG. 9. %Color online0 Staggered magnetization ms obtained
from finite-size extrapolation according to Eq. %50, quantum Monte
Carlo simulations, and spin-wave calculations.
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the spins and eventually vanishes in the saturation limit.
While the extrapolation of exact diagonalization data accord-
ing to Eq. %50 gives a very good result at zero field,31,41 it
considerably underestimates the staggered moment at small
fields. To get an idea of the variability of the extrapolations,
fits at magnetizations m=0, 1/8, and 1/4 are shown in Fig. 7.
The 95%-confidence intervals are shown as thin solid lines.
They are also indicated in Fig. 9. These confidence intervals
should not be interpreted in a strict statistical sense but are
rather intended to remind the reader of the fact that the ex-
trapolations to the thermodynamic limit are based on only a
handful of small clusters. The inaccuracy at small fields is
related to the smallness of the clusters used for the extrapo-
lations as well as the lack of analytical predictions for higher
order finite-size corrections. Similar to the extraction of the
spin-wave velocity, the method is much more accurate at
higher fields, where bigger samples can be taken into ac-
count. In contrast to finite-size extrapolations, spin-wave re-
sults are in excellent agreement with quantum Monte Carlo
data obtained on a cluster with N=32432 sites.

IV. DYNAMICAL PROPERTIES

In the main part of this paper, we study the dynamical
spin-correlation functions

S80%),q0 =
1

N
1
i,j

eiq·%ri−rj0*
−/

/

dtei)t!Si
8%t0S j

0%00/ , %60

where, as before, N is the number of sites on the lattice. This
quantity is directly measurable in inelastic neutron-scattering
experiments. In what follows, we consider 80=zz, which we
refer to as longitudinal correlations because they are parallel
to the applied field, and 80= +−,−+, allowing us to con-
struct the transverse correlation functions defined as

Sxy%),q0 =
1

4
+S+−%),q0 + S−+%),q0& .

In exact diagonalization one can rather easily calculate
spectral functions directly in real frequency, using the so-
called continued-fraction technique.48,49 Combined with the
Lehmann representation

S80%),q0 = 1
i

"!,i"S0%q0",m/"23%) − +Ei − Em&0 , %70

where ,m is the ground state at a given magnetization m
with energy Em and ,i are excited states with energies Ei;
this approach allows one to obtain unbiased exact results,
including residues, although only on finite-size samples.

The Zeeman term −h1iSi
z=−hStot

z is usually not included
in exact diagonalization calculations because it is constant
within a given Stot

z sector. While this omission does not affect
the longitudinal structure factors, extracting the frequency
dependence of the transverse spin correlations is more subtle
because the two contributions act between different Stot

z sec-
tors. This is best understood by tracing back the origin of the
poles in the dynamical structure factors to the eigenlevels in
the tower of states. In Fig. 10%a0, we present part of the tower
of states for the 32-site cluster for 6!Sz!10. The top panel
shows the spectrum of the Hamiltonian without magnetic
field while in the bottom panel, we have subtracted the con-
tribution hSz, for a magnetic field h corresponding to m
=1 /4, i.e., Sz=8 on this cluster. Realigning the tower in the
presence of a magnetic field is thus equivalent to shifting the
spin lowering and raising contributions to the transverse
structure factors in such a way that the lowest-lying poles of
the k=Q modes coincide. The most important properties of
the tower of states are the alternation of the ground-state
momenta between %0,00 and %* ,*0 in adjacent Sz sectors, and
the proportionality of the ground-state energies to Sz%Sz+10.

Figures 10%b0 and 10%d0 show the longitudinal and trans-
verse structure factors obtained from this spectrum. In Fig.
10%c0, we have zoomed in on a part of the tower of states to
facilitate identification of eigenlevels and poles. As expected,
at a magnetization m=Sz /N, the main magnon branch of the
longitudinal correlations is made of spin S=Sz states. Simi-

(b) Szz(",k), m=1/4 (c) Shifted tower of states(a) Tower of states (d) S(+-,-+)(",k), m=1/4

6 7 8 9 10

SzS- S+

6 7 8 9 10
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0

5
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0

5

Sz Sz

(c)

H=S!S

H=S!S-hSz

"

3

2.5

2

1.5

1

0.5

0
M X S ! M S

"
"

M X S ! M S

FIG. 10. %Color online0 +%a0 and %c0& Tower of states, and %b0 longitudinal and %d0 transverse structure factors obtained from the 32-site
cluster at magnetization m=1 /4, corresponding to Sz=8. The ground-state energy of the Sz=8 levels is set to zero. The location of the poles
in the structure factors can be traced backed to the energy levels in the tower of states. To facilitate identification, the strongest signatures
are indicated by the symbols of the corresponding eigenlevels. In the presence of a magnetic field, constructing the transverse structure factor
is not straightforward because the relevant towers for S+− and S−+ start at different energies. The alignment procedure is illustrated in the
bottom panel of %a0.
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FIG. 11. %Color online0 Synthetic superposition of the longitudinal dynamical structure factors along a path of highly symmetric points
in the Brillouin zone. Different colors represent data from different clusters and the area of the symbols is proportional to Szz%) ,q0. Dashed
lines show the dispersions obtained within linear %harmonic0 spin-wave theory and the solid line represents spin-wave results with first-order
corrections %only shown for m=00. For magnetizations around m.0.15, quantum fluctuations are almost negligible and the spin-wave
dispersion is in good agreement with numerical results. At higher fields, m%0.3, fluctuations are again important and lead to the spontaneous
decay of magnons. This instability is reflected in a reduction in weight in the main peak accompanied by the appearance of small poles at
lower energies. In the last row, the lowest lying poles of the 64-site cluster are connected by solid lines. Decay starts around q=X and spreads
over almost the whole Brillouin zone.
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larly, in the transverse channel, the magnon dispersion origi-
nates from spin S=Sz51 states. As an exception to this rule,
the pole at X= %* ,*0 in the longitudinal structure factor
originates from the lowest-lying spin S=Sz+1 level, as can
be seen in Fig. 10%a0. Its energy is equal to the magnetic
field. In this sequence of pictures, it is easy to see that, while
the lowest-lying poles of the spin raising and lowering con-
tributions to the transverse structure factor coincide, higher
lying levels are slightly shifted with respect to one another.

A. Synthetic view of the dynamical structure factors

In exact diagonalizations, the restriction to relatively
small systems makes it difficult to extract wave-vector de-
pendent quantities to the thermodynamic limit. Only highly
symmetric points such as M = %0,*0 or S= %* /2,* /20 are
common among several system sizes up to 64 sites. By con-
struction, $= %0,00 and X= %* ,*0 are present in any cluster
but the physics at these points is usually quite simple. In the
presence of a magnetic field, bigger clusters can be used for
the calculations but the main difficulty lies in the fact that the
magnetization steps are in general not compatible because
they also depend on the system size. It is therefore basically
impossible to present an exact superposition of all dynamical
correlation functions obtained from different system sizes at
a given magnetization. However, since the shape of the dy-
namical structure factors does not change substantially from
one magnetization step to another, it is nevertheless possible
to construct quite accurate interpolations. For a given mag-
netization m and a cluster of size N, we chose to either take
the exact data if available or instead shift the whole structure
factor obtained for m! closest to m to the position determined
by linear interpolation between the lowest-lying poles at
m!51 /N. While this interpolation procedure does not yield
exact results, it allows one to visualize data from different
clusters in a single plot, thus providing a nice overview of
the observed features. In Fig. 11, we show such a synthetic
superposition of the longitudinal structure factors obtained
for various magnetizations along a path through the Brillouin
zone. The zero-energy mode of the longitudinal structure fac-
tor at momentum %0,00 is proportional to the magnetization
squared, i.e., Szz%)=0, q=$0= %Sz02. In what follows, we
omit this contribution. Note that the magnetization steps in
the first row are not equidistant. At low fields, m-1 /6, we
exclusively use the 32-site cluster for all calculations.

At zero field, the ground state of the infinite systems
spontaneously breaks the O%30 rotational symmetry of the
Hamiltonian +Eq. %10&, leading to the existence of two Gold-
stone modes. The distinct pole at k=X collapses to the
ground-state energy as 1 /N because it originates from a
spin-1 level that is part of the Anderson tower, see Refs. 8
and 47. The strong intensity reflects the dominantly antifer-
romagnetic character of the spin alignment. An interesting
zero-field property discussed in detail in the literature,11–15

and mentioned in Sec. I, is the dispersive feature observed
along the magnetic zone boundary between M and S. In Fig.
12, we present a finite-size scaling %solid lines0 of the spin-
wave energies and the quasiparticle residues at momenta
%* /2,* /20 +N=16,32& and %* ,00 +N=16,20,32,36&. The

extrapolation to the thermodynamic limit is in surprisingly
good agreement with quantum Monte Carlo simulations12

and series-expansion calculations.50

Let us now return to the discussion of Fig. 11. A finite
magnetic field reduces the symmetry to O%20, which is again
spontaneously broken in the ground state, leading to only
one gapless mode. The second mode now has a gap propor-
tional to the magnetic field. The location of the distinct pole
at k=X thus no longer scales to zero in the thermodynamic
limit but is simply equal the magnetic field. As mentioned in
Sec. III F, discussing the transverse moment ms, quantum
fluctuations initially decrease with increasing magnetic field
and reach a minimum at around m.0.15. It is therefore not
surprising that the classical dispersion is almost identical to
our exact results in the vicinity of these polarizations. Com-
paring the zone-boundary dispersions %from M to S0 for dif-
ferent magnetizations shown in the first row of Fig. 11, one
finds that the zero-field effect is inverted and that, for m
%1 /8, the spin-wave energy at %* ,00 is higher than at
%* /2,* /20. At m=1 /8, for instance, the energy differs by
25%, with a slope opposite to the one at zero field.

With increasing magnetization, the weights of the magnon
poles decrease while at the same time, poles at higher ener-
gies become more important. This modification is first ob-
served at momenta close to X= %* ,*0 but spreads quickly
along almost the whole path shown in Fig. 11. Only mo-
menta around the gapless point $= %0,00 have well defined
spin-wave poles for all meaningful magnetizations. This is
the finite-size manifestation of the magnon instability pre-
dicted in Ref. 20. In the decaying regime, the lowest-lying
poles have very small weight and are thus difficult to iden-
tify. As a guide to the eye, we have connected them in the
case of the 64-site cluster, see last row of Fig. 11, showing
the presence of multiple spin-wave continua below the pri-
mary spin-wave branch. The possibility to resolve poles with
very little weight in the spectral functions is a conceptual
advantage of exact diagonalization compared to other meth-
ods such as quantum Monte Carlo simulations. Using this
information, it is possible to detect the availability of phase
space for the decay of single spin waves, even in the case
where the lifetimes are large.

Since our calculations were done on finite clusters, one
must be careful in interpreting results at fields very close to
saturation, which might be obtained from small Hilbert
spaces with only one or two flipped spins. These situations
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FIG. 12. %Color online0 %a0 Finite-size scaling of the spin-wave
energies and %b0 the quasiparticle residues at momenta %* /2,* /20
and %* ,00.
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FIG. 13. %Color online0 %a0 Longitudinal and %b0 transverse dynamical structure factors at selected momenta. Different colors correspond
to different clusters and the area of the symbols is proportional to the correlation functions. Dashed lines represent the dispersion obtained
within linear %harmonic0 spin-wave theory while solid lines are spin-wave results with perturbative 1 /S corrections. The upper x axes
indicate the magnetic field obtained within linear spin-wave theory. Crosses represent zero-field series-expansion results %Ref. 500. A
false-color density plot of the longitudinal spin correlations is shown in Fig. 14.
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are clearly not representative for the infinite system and we
thus only consider data from sectors with magnetizations m
!mmax=1 /2−4 /N.

The magnon dispersion at h=3.5 is in very good agree-
ment with recent quantum Monte Carlo simulations com-
bined with stochastic analytical continuation,45 compare sec-
ond plot in the last row of Fig. 11 with Fig. 4 of Ref. 45.
Concerning the magnon decay, our exact diagonalizations
indicate that spin waves close to %* ,*0 have a very long but
finite lifetime. In contrast, the density plot presented in Ref.
45 suggests that spin waves are stable in this region. Around
%* ,00, the situation is much clearer, and both methods pre-
dict a region of instability, despite the fact that the two-
magnon decay kinematics of the spin-wave theory do not
allow for an instability at this momentum. It would be inter-
esting to investigate these subtle differences in more detail
and compare the predications of these two numerical ap-
proaches to more advanced spin-wave calculations.20

B. Quantum fluctuations and finite-size effects

After this overview, let us now look at some of the dis-
covered features in more detail, using the exact dynamical
structure factors without any interpolation presented in Fig.
13. A false-color density plot of the longitudinal structure

factor is shown in Fig. 14 after artificial broadening by an
imaginary part (=0.05. Because data from all available clus-
ters is superimposed, some of the features abruptly appear as
more Hilbert spaces become accessible for computations. In
general, we expect the longitudinal spin correlations at mo-
mentum k to resemble the transverse ones at momentum k
+Q, i.e.,

Szz%),q0/Szz%q0 . Sxy%),q + Q0/Sxy%q + Q0 .

This follows from the tower of states shown in Fig. 10.
Given the similar structure of levels in neighboring sectors, it
is reasonable to expect the dynamical structure factors to
reflect these similarities. The results displayed in Fig. 13
nicely support this hypothesis.

At zero field, it is well known that the dispersion obtained
within lowest-order spin-wave theory is renormalized by
quantum fluctuations, leading to energies roughly 16%
higher than this simplest prediction. As explained in Sec.
III F, discussing the ordered transverse moment ms, quantum
fluctuations are minimal at magnetizations around m.0.15.
This is exactly the regime in which the lowest-order spin-
wave dispersion is in good agreement with exact numerical
calculations. However, away from this point, there are siz-
able deviations. Similar to the zero-field situation, the most

FIG. 14. %Color online0 Density plots of the longitudinal dynamical structure factors Szz%k ,)0 for various momenta k. These plots are
obtained from the raw data presented in Fig. 13%a0 after artificial broadening by an imaginary part (=0.05. Structure factors from all
available clusters are superimposed. Dashed lines represent the dispersion obtained within linear spin-wave theory and the upper x axes
indicate the mapping of the magnetization onto the magnetic field.
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pronounced effect is observed at the magnetic zone boundary
along %* ,00 and %* /2,* /20, for which spin-wave calcula-
tions predict a flat energy )=2J, independent of the magne-
tization. In contrast, our field dependent results at %* /2,* /20
+and to a lesser extent also %* ,00& reveal a large negative
slope, not at all compatible with the flat linear spin-wave
results. Away from the magnetic zone boundary, the qualita-
tive features of the field dependence are nevertheless nicely
captured by the harmonic spin-wave spectrum. Going be-

yond linear spin-wave theory, one can include the first 1 /S
corrections in perturbation theory, see Eq. 9 in Ref. 20. In
Fig. 13, these perturbative calculations are shown as solid
lines. As explained in Ref. 20, such a perturbative approach
breaks down at larger fields, at which one should take into
account the renormalized magnon energies and solve the
Dyson equation self-consistently. For this reason, the solid
lines do not extend over the whole field range. Given the
rather good agreement between our exact numerical results

FIG. 15. %Color online0 Interpolated weights of the first poles in the %a0 longitudinal and %b0 transverse dynamical structure factors for
various magnetizations m. Poles with a sizable weight represent stable magnons with a long lifetime whereas small weights indicate that
spin-wave energies lie within a continuum. Magnons thus have a short lifetime and are susceptible to spontaneous decay.
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and these perturbative energies, we conclude that the domi-
nant dispersive features are well captured including 1 /S cor-
rections.

Our findings corroborate recent results revealing that non-
collinear magnetic structures encounter sizable renormaliza-
tion of the excitation spectrum when improving the linear
%harmonic0 spin-wave theory by the first 1 /S corrections.51

While this happens already in zero field for the triangular
lattice52,53 with noncollinear 120° magnetic order, on the
square lattice,20 this effect is driven by the magnetic field,
and can thus be tuned in experiments.

In the longitudinal structure factors away from %0,00 and
%* ,*0, one observes a sometimes sizable jump of the energy
of the first pole as the system is polarized. This discontinuity
is caused by different finite-size effects present at zero field
and for m60. The longitudinal magnon mode at Sz=0 is in
fact the Sz=0 component of a spin-1 level. At m=0, the
energy thus contains a finite-size contribution of the Ander-
son tower that scales away as 1 /N. In contrast, at m60, the
longitudinal structure factor couples predominantly states of
equal spin, and the leading 1 /N finite-size corrections are
absent.

Apart from the main spin-wave branch, a second distinct
feature of the dynamical structure factors is the almost lin-
early increasing mode at low fields. Its intensity fades away
as the field is increased and it is visible at all momenta. This
is not a new mode but a finite-size hybridization between the
longitudinal and the transverse spin structure factors, which
can be explained by the Wigner-Eckart theorem. At a mag-
netic field h, corresponding to a magnetization m, the ground
state is in a total spin Sm=mN state with polarization Sz

=Sm. The S+ scattering operator entering S−+ couples only to
total spin S=Sm+1 states in the spectrum because it is the +1
component of a spin-1 tensor operator. The Sz scattering op-
erator entering Szz couples to total spin S=Sm and S=Sm+1
states in the spectrum while S− couples to total spin S=Sm
−1, Sm, and Sm+1 states. Using the Wigner-Eckart theorem
one can prove that the part of the Sz operator that couples to
"Sm+1,Sm/ states is actually related to the action of S+, and
the following relation holds

Szz%q,)0"S=Sm+1 = Czz
−+ 4 S−+%q,) + h0 ,

with

Czz
−+ = # !1,0;Sm,Sm"Sm + 1,Sm/

!1,1;Sm,Sm"Sm + 1,Sm + 1/
#2

=
1

Sm + 1
,

a squared fraction of Clebsch-Gordan coefficients. As one
increases Sm=Nm, either by increasing m at fixed system size
N, or by increasing N at fixed m, the proportionality factor
Czz

−+ decreases as 1 /Sm for large Sm, and therefore, the shifted
shadow of S−+ fades away unless S−+ is sufficiently diver-
gent. Similarly, one can show that S+− contains a shadow of
Szz which is generically Clebsch-Gordan suppressed at large
m and N.

C. Magnon instabilities

We have seen that the location of the dominant pole in the
longitudinal structure factor at momentum %* ,*0, and hence

at %0,00 in the transverse spin correlations, is equal to the
magnetic field. The corresponding plots in Fig. 13 thus rep-
resent nothing but the inverse magnetization curve m%h0. In
the longitudinal structure factor, the lowest-lying pole at
small magnetizations is also the dominant one but interest-
ingly, for m'9 /32, we observe an increasing number of
poles with almost negligible weight appearing below the
main spin-wave feature. Because of their low intensity, we
have indicated the locations of these poles by uniformly
sized open symbols in the area denoted “zoom.” Only
weights larger than 10−6 have been included in the plot but
most symbols represent poles with weights around 10−3. For
small clusters, i.e., N!36, this group of levels first appears
around m.0.1, still above the spin-wave band, remaining
roughly constant at energy ).3 until they cross the main
magnon branch and lose some of their intensity. Data from
bigger clusters suggests that these low-lying excitations form
a continuum. Hence magnons in the main branch seem to
have a very long but finite lifetime. Given the tiny weight of
the low-energy excitations, one can conclude that, while
there is phase space available at these energies, the decay
matrix element is extremely small. The dominant pole in the
longitudinal %* ,*0 structure factor in sector Sz=Sm origi-
nates from the local copy of the ground-state level in the
neighboring spin sector with spin S=Sm+1. In contrast, the
almost negligible poles can be traced back to low-lying spin
S=Sm states whose energies decrease with increasing mag-
netic field. The transverse structure factor at %0,00 does not
exhibit such a continuum of low-intensity poles below the
spin-wave branch because the S− operator acts as a global
spin lowering operator creating an exact excited eigenstate,
which gives rise to a single delta function in Sxy%q=$ ,)0.

Within linear spin-wave approximation, magnons are
stable at any momentum and magnetic field simply because
the Hamiltonian does not contain terms that would allow a
single magnon to decay into two spin waves. Knowing that
such processes are however present in the original Hamil-
tonian, one can use purely kinematical arguments to study
the necessary conditions for magnon instabilities. Following
Ref. 20, we expand the spin-wave dispersion in the vicinity
of the gapless mode at %* ,*0 leading to

#q . cq+1 + 8qq2& ,

where "q−Q""1 and c is the spin-wave velocity. The curva-
ture 8q is wave-vector dependent. Along the diagonal, one
finds 8=−7 /3+2 /,1−h2, which changes sign at a critical
field hc=2 /,7hs.0.755hs, corresponding to a magnetization
mc.0.33. This signals the onset of the spin-wave
instability.20

Away from the special %* ,*0 point, our results are much
clearer and show evidence for the decay of spin waves in
multispin-wave continua. Inspecting the longitudinal struc-
ture factor at %3* /4,3* /40 for instance, or equivalently, the
transverse spin correlations at %* /4,* /40, we see that the
spin-wave band fades away at m.0.3 and enters a con-
tinuum, which on these finite clusters manifests itself as an
area with densely distributed poles having relatively small
intensity. For polarizations close to the ferromagnetic re-
gime, the number of poles decreases rapidly. In the Hilbert
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space with only one flipped spin, the single pole coincides
with the dashed classical line because, in the limit m→1 /2,
spin-wave results for the ferromagnet are exact. Compared to
the situation at %* ,*0, which seems to be unique, our results
at %3* /4,3* /40 clearly show that the initially well defined
magnon branch dives into a continuum and hence acquires a
finite lifetime.

Looking at other points in the Brillouin zone, one clearly
recognizes similar longitudinal instabilities at %* /2,* /20,
%* ,00, and %* /2,00, or equivalently at %* ,*0 shifted points
in the transverse structure factor. The critical field at which
magnon decay sets in depends on the momenta. To identify
the regions of instability, it is useful to plot the weights of the
first poles in the structure factors as a function of the mag-
netization. Since different clusters have incompatible magne-
tization steps, it is necessary to use an interpolation to collect
data from all clusters at a given magnetization. Figure 15
shows the weights of the lowest-lying pole in the longitudi-
nal and the transverse structure factors for various magneti-
zations m. To eliminate spurious effects arising from very
small Hilbert spaces at high polarization, we have only in-
cluded data from sectors with m!mmax. We would like to
emphasize that this way of illustrating the instabilities with
respect to spontaneous decay does not contain any informa-
tion about the lifetime of the magnons but merely indicates
the availability of phase space for decay. It is also important
to note that, in contrast to Fig. 13, representing the full struc-
ture factors, in Fig. 15, we only indicate the weights of the
poles with lowest energy. This plot nicely illustrates the
spreading out of the decay region, starting around %* ,*0 in
the longitudinal and %0,00 in the transverse structure factors,
respectively. Note that this evolution is opposite to the insta-
bility evolution advocated in Ref. 20, where the decay into
two spin waves sets in the vicinity of the gapless point. We
believe that this behavior is difficult to study, given the in-
frared cutoff imposed by the small size limitations of exact
diagonalizations. On the other hand, our results clearly dem-
onstrate the importance of multispin-wave continua for the
decay processes, and those are first visible in the opposite
corner of the Brillouin zone.

Based on these results, we can say that high energy mag-
nons around %* ,*0 become unstable at a critical polarization
mc.0.3. For higher magnetizations, the region of instability
quickly increases. At m=0.4, we expect the spin waves in
more than half the Brillouin zone to have a finite lifetime.

V. CONCLUSION

We have studied the antiferromagnetic spin-1
2 Heisenberg

model on the square lattice in a magnetic field. We have
calculated the field dependence of the microscopic param-
eters of the low-energy long-wavelength . model descrip-
tion, namely, the spin-wave velocity c, the spin stiffness +s,
and the transverse magnetic susceptibility 7!. The motiva-
tion behind this work being the availability of compounds
well described by this prototypical model, the main part of
this paper has been devoted to studying the field dependence
of the dynamical spin structure factors, directly proportional
to the neutron-scattering cross section. On the one hand, we
hope that our comprehensive presentation of these dynamical
quantities encourages future theoretical and especially ex-
perimental work to examine particular aspects in even more
detail. On the other hand, we are confident that our results
obtained by means of extensive exact diagonalizations of
finite clusters with up to 64 sites, for which no approxima-
tion or simplification has been made, serve as a benchmark
for other methods.
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