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In this Brief Report we present the theoretical analysis of excitation of the surface plasmon polaritons by a
thin electron beam propagating in the vacuum gap separating a plasmalike medium �metal� from an artificial
dielectric with negative magnetic permeability. We have obtained and discussed the dispersion relation for the
vacuum-gap-localized waves for an arbitrary vacuum-gap width. We have shown that the interface-localized
waves with the negative total energy flux can be excited.
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Nowadays a good deal of attention is focused on studies
of the electromagnetic properties of artificial media, espe-
cially left-handed media �LHM�, and combined structures
made of the juxtaposed planar slabs of epsilon-negative
�ENG� and mu-negative �MNG� media. These media sustain
the propagation of electromagnetic waves �EMWs� possess-
ing negative group velocity �i.e., their group velocity vgr is
antiparallel to the phase velocity vph, vgr↑ ↓vph�.1,2 Such
waves are also referred to as backward or left-handed waves
�LHWs�.3 The bulk LHWs demonstrate a number of unusual
properties which are of great interest for different applica-
tions. As a matter of fact, there can possibly exist left-handed
surface electromagnetic waves �LHSWs� that also possess
exotic properties as their volume counterparts. In close anal-
ogy to the media supporting bulk LHWs and thus often
called LHM, such interfaces could be called left-handed sur-
face. The LHSWs are existent at different interfaces starting
with a thin metallic layer sandwiched between two dielectric
half spaces �see Ref. 4�, supporting well-known surface plas-
mon polaritons �SPPs�, and the most advanced interfaces in-
cluding artificial media such as double negative and double
positive ones �see Ref. 5�, and ENG/MNG interfaces �see,
e.g., Ref. 6 and references therein�. The electrodynamic
properties of ENG/MNG interfaces have been theoretically
investigated in Ref. 7. Examination of surface EMWs prop-
erties and excitation of these waves are of considerable in-
terest both from the scientific point of view and due to their
possible role in subsequent miniaturization of the devices for
light manipulation, which is currently a top-priority issue.

Surface wave excitation can be achieved by different
methods, but if one of the neighboring media forming an
interface that supports the surface EMWs is transparent, then
excitation can be realized using optical methods �the total
internal reflection in Otto or Kretschmann geometry and dif-
fraction by appropriate periodic structures; see Ref. 8 and
references therein�. However, if both the media are opaque,
say, ENG/MNG interface, then surface waves cannot be ex-
cited by the above methods.

In the present Brief Report we deal with this particular
case and analyze the excitation of left-handed quasisurface
waves by means of an electron beam instability. The electron
beam is supposed to propagate within a very narrow vacuum
gap separating the ENG and MNG media. This method is
shown to be an effective one for surface waves excitation
over the GHz frequency range and it is really difficult to

indicate other appropriate methods for the case under study.
Existence of a narrow gap between the media results in the
eigenmodes of the system differing from the media interface
surface EMWs. However, for rather thin vacuum gap these
hybridized eigenmodes possess the negative energy flux and
thus they are left handed �backward�. It should be empha-
sized that as the gap vanishes, these modes strictly revert to
the surface waves of the ENG/MNG media interface.

We consider the simplest case where the wave vector q� of
the EMWs excited is parallel to the beam velocity v�0, q� �v�0.
Below it will be shown that in this instance the TM-polarized
waves can only be excited. Note that the excitation of nega-
tive group-velocity TM- and TE-polarized surface waves at a
vacuum/LHM interface by an electron bunch over the GHz
frequency range has been theoretically examined in Ref. 9.

The system under consideration is shown in Fig. 1. This
three-layer system consists of half space 1 with negative di-
electric permittivity �1�0 and positive magnetic permeabil-
ity �1�0 �say, plasmalike or metal-like medium�, and arti-
ficial dielectric half space 3 with �3�0, �3�0 separated by
vacuum gap 2 of thickness h. The coordinate system is cho-
sen so that the z axis is directed normal to the interfaces and
media 1 and 3 correspond to z�−h /2 and z�h /2, respec-
tively. Let an electron beam moves with velocity v0 in the
positive Ox direction in z=0 plane. We suppose that the
beam is infinitely thin in Oz direction and infinitely wide in
Oy direction. Such an approximation implies that we sup-
pose the radiation wavelength, �, to be much greater than the
beam thickness. Examine the excitation of TM-polarized
EMWs propagating along Ox axis with electric and magnetic

field components E� �= �Ex� ,0 ,Ez�� and H� �= �0,H� ,0�, where
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FIG. 1. �Color online� Geometry of the problem.
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subindex �, �=1, 2, and 3 denote the media. In half spaces 1
and 3 the EMW fields obey homogeneous Maxwell equa-
tions with regard to the time dispersion of the electromag-
netic properties. We describe the fields in the electron beam
using the Maxwell equations concurrently with the linearized
continuity and motion equations in small-velocity and
electron-density perturbations v�x , t� and n�x , t�. Then the x
component of the electron current-density perturbation is

j�x,z,t� = ev0n�x,t���z� + en0v�x,t���z� , �1�

where ��z� is the Dirac delta function, e is the electron
charge, and n0 is the two-dimensional mean electron density.
The latter can be expressed as n0=N0d, where d is
the beam thickness and N0 denotes three-dimensional
mean electron density. Let us seek for the solution of the

problem in the exponential forms n�x , t�, v�x , t�, E� �, and

H�	exp�i�qx−
t��. Then the electric displacement D� �

and the magnetic induction B� � are D� �=���
�E� � and

B� �=���
�H� �. The dispersion relation for the waves in the
above system results from the system of Maxwell and linear-
ized magnetohydrodynamic equations and continuity condi-
tions for the tangential components of the electric and mag-
netic fields crossing the gap interfaces z= �h /2 along with
the continuity conditions crossing the beam plane z=0.
These are the continuity of the tangential component of the
electric field and the jump of the tangential component of the
magnetic field proportional to the current j.

The dispersion relation for the coupled TM waves is

��32
�+�

�32
�−�exp�− i
� −

�12
�+�

�12
�−�exp�i
���2

= ��1 +
�12

�+�

�12
�−�exp�i
���1 +

�32
�+�

�32
�−�exp�− i
�� . �2�

Here �12
���=Q1 /�1�
��Q2, �32

���=Q3 /�3�
��Q2,
�=−i
B

2Q2d /2, 
=Q2h, 
B=�4�e2N0 /m0 is the beam elec-
tron plasma frequency,

� = 
 − qv0 �3�

denotes the Doppler-shifted frequency, m0 is the electron
mass, and Ql are the normal components of the wave vectors,

Q� = ����
����
�
2/c2 − q2,

Re,Im�Q1� � 0, Re,Im�Q2� � 0, Re,Im�Q3� � 0,

�4�

where c is the light velocity. The right-hand side in Eq. �2� is
responsible for the interaction between the EMW modes of
the empty vacuum-gap and the beam modes,
�=0. For N0→0 the interaction vanishes. Then vanishing of
the first �second� multiplier on the left of Eq. �2� gives us the
dispersion relation for the waveguide EMW eigenmodes �the
electron-beam waves�.

If the vacuum-gap thickness is far less than the wave-
length, then 	
	�1 and Eq. �2� can be simplified as

�
 − qv0�2�TM�
,q� = − i
B
2Q1Q3d , �5�

where �TM�
 ,q�=�3�
�Q1−�1�
�Q3.
It should be noted that the surface TE modes are not ex-

cited by the beam for q� �v�0. The thing is that the electric field
of the TE mode is perpendicular to the beam velocity v�0 and,
therefore, the velocity disturbance is perpendicular to v�0 and
thus the TE mode does not affect �in the linear approxima-
tion� the energy of the beam. Consequently, the energy ex-
change between the TE-polarized modes and the beam van-
ishes and the instability is evidently absent. The TE modes
excitation is possible when q��”v�0 or in high-order approxima-
tions for q� �v�0, but in these cases analytical calculations are
more cumbersome. We will consider these cases in a subse-
quent paper.

For the numerical calculations we take �1�
� and �3�
�
in the form10–12

�1�
� = 1 −

P

2


2 , �3�
� = 1 −
F
2


2 − 
0
2 , �6�

where 
P is the metal plasma frequency, 
0 is the resonance
frequency of the artificial magnetic medium, and F�1 is the
geometric form factor of this medium. Here we ignore the
dissipation.

In Fig. 2 we depict the dispersion curves of the beam
wave �curve 1� and the surface EMWs of the 1/3 interface
�curves 2 and 3� with no interaction between EMWs and the
beam wave. Curve 4 is the light line. Formally, the interac-
tion vanishing corresponds to 
B=0. The specific parameters
were chosen so that �1=�3=1, 
̄0=
0 /
P=0.66, F=0.56,
�=v0 /c=0.1, 
̄=
 /
P, and q̄=cq /
P are the normalized
frequency and the wave number. Points A and B denote the
intersection of the straight line of the beam dispersion rela-
tion, 
=qv0, with dispersion curves 2 and 3 corresponding
to the surface modes of the 1/3 interface. Here TM branch 2
exists in the frequency region where �1�
��−1, �3�
��0.
For q̄→� its asymptote is the resonance frequency of mag-
netic permeability 
̄→ 
̄0. TM branch 3 exists in the fre-
quency region where inequalities �1�
��0, �3�
��0, i.e.,

FIG. 2. �Color online� Dispersion curves of the surface and
beam modes for vanishing interaction. Curves 5 and 6 correspond
to the surface TM/TE waves existing at the metal-vacuum �vacuum-
artificial dielectric� interfaces.
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̄0�
̄�
̄0 /�1−F, simultaneously hold true, and for
q̄→� it asymptotically approaches the surface plasmon fre-
quency, 
̄→ 
̄sp=1 /�2. It is easy to show that the highest
frequency relating to curve 3 �i.e., at q̄=0� is

̄�−�= ��f2+4
̄0

2F− f�1/2 / �2F�1/2
0.756, where f =1−F. The
negative slope of dispersion curve 3 indicates that the abso-
lute instability is possible in the interaction between the cor-
responding wave and the electron beam.13 Corresponding
primordial dispersion curves of TM modes �curve 5� and TE
modes �curve 6� existing at the interfaces of vacuum/first
medium and vacuum/third medium are shown, respectively.
Dispersion curve 5 describes surface TM waves �the surface
plasmon polaritons or SPP�. It exists in the frequency region
where the inequality �1�
��−1 holds true. For q̄→� curve
5 approaches the surface plasmon frequency from below,

̄→ 
̄sp. These waves are present in the frequency region
defined by �3�
��−1, i.e., for 
̄0�
̄�
̄0

�2 / �2−F�. For

̄→ 
̄0 curve 6 approaches the light line at q̄= 
̄0. At
q̄→� it approaches the frequency 
̄= 
̄0 /�1−F /2 for which
�3=−1. It should be stressed that the artificial dielectric/
metal interface supports two TM branches in contrast to the
ordinary dielectric/metal interface, where the single low-
frequency branch exists, 
�
sp �see curve 5�. Figure 3 pre-
sents the detailed structure of the splitting of initial disper-
sion curves in the close vicinities of the resonance points
�i.e., close to the points A and B in Fig. 2�.

Here q̄�=Re�q̄�. Curve 1 is for the electron-beam wave
without interaction; curves 2 and 2� are for the modes that
result from the coupling of the low-frequency SPP mode and
the beam mode �splitting near the point A in Fig. 2�. In their
turn curves 3 and 3� correspond to the coupling of the high-
frequency SPP mode �splitting near the point B in Fig. 2�.

Let us concentrate on the vicinity of point B, where the
SPP mode with negative energy flux could be generated by
the electron beam. For 
=
B+�
, 	�
	�
, q=qB+�q, and
	�q	�qB, where �qB ,
B� are coordinates of point B,


B = qBv0, �TM�
B,qB� = 0, �7�

the value �
 obeys the cubic equation �expansion of the
dispersion relation in Eq. �5�� with real coefficients if the
absorption is neglected. That is, we obtain one real and two

complex conjugate roots, and one of the complex roots cor-
responds to the beam-induced instability with the increment


B� �
�3

2
� 
B

2
Pqd

2�1 + �3�3/2�1/3

� 
P. �8�

As can be seen from Fig. 3, in the vicinity of point B, the
dispersion curve with negative group velocity vanishes. This
means that the corresponding root of the dispersion relation
becomes complex and thus the beam instability occurs for
the wave with the negative group velocity. The dispersion
curves shown in the Fig. 3 in this region correspond to the
stable eigenmodes with real values of �
.

Let us show that the total energy flux relating to the high-
frequency modified SPP mode can remain negative even if it
becomes unstable. This holds in the vicinity of point B,
where the magnetic permeability of the artificial dielectric is
negative, �3�
��0, and the dielectric permittivity of the
metal −�3��1�
��0. The sum of the partial energy fluxes
in 1 ��1�0� and 3 ��3�0� media for a thin vacuum gap
�	
	�1� is as follows:

�1 + �3 =
c2

16�
	H1

�0��
,q�	2

�Re�−
q


�1�
�Q1�
+

q


�3�
�Q3�
	1 + �0	2


�exp�2
�t� + O�hQ2�� , �9�

where Q��=Re�Q��, Q��=Im�Q��, �=1,2 ,3, Im�
�=
�,
H1

�0��
 ,q� denotes an initial amplitude of the magnetic field
in medium 1, �0=−i
B

2Q1d / ��1�
��2�, and we have ne-
glected a small absorption. The dimensionless parameter �0
describes the electron-beam input into the relation between
the magnetic-field magnitudes in the adjacent media for the
waves excited. The first term in Eq. �9� corresponds to �1
while the second term corresponds to �3. The partial energy
flux within the vacuum gap is weak when the gap width is
small,

�2 � O�hQ2�� . �10�

Then the total energy flux ��������1+�3. In Eqs. �9�
and �10� the dispersion relation of the coupled waves, Eq.
�5�, is taken into account. Note that Eq. �9� is valid not only
in the −�3��1�
��0 region, but this region is of specific
interest.

For infinitely weak electron-beam density, �0→0,

�→0, and Eq. �9� becomes

�1 + �3 =
c2

16�
	H1

�0��
,q�	2Re� q


�3�
�Q3�
�1 −

�3�
�2

�1�
�2�

+ O�hQ2�� . �11�

Therefore, for the high-frequency-modified SPP mode the
total energy flux is negative, ���1+�3�0, for
−�3��1�
��0. Note that in the vicinity of point B,

�
sp and �1�
��−1 for �3=1 �cf. Fig. 2�. From Eq. �11�
it follows that the modules of the partial energy fluxes �1
and �3 are very close to each other, i.e., 	�1+�3	 /�3�1.
However, �1+�3�0. For a finite electron-beam density the

FIG. 3. �Color online� Detailed picture of the dispersion curves
in close vicinities of the resonance points A and B.
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total EMW energy flux is negative for the unstable mode
�
��0� in the vicinity of the intersection point B because
the factor 	1+�0	 is less than unity.

Now we make a series of numerical calculations for the
high-frequency region. For the widely used parameters, 
0
=5�109 s−1, 
̄0=0.66,11 N0=1015 m−3�
B
1.8�109 s−1�,
�=v0 /c=0.1, �3=�1=1, and d�h, we find that for the un-
stable mode ��0 at h�h0, where h0�2.7�10−4 m
at �B=2� /qB�3.5�10−2 m. Specifically, for h
=10−4 m	1+�0	2�0.96 and ��−0.22�3�0. The incre-
ment for slow waves �vph=
 /q�c� is 
B� �5�10−2
P at
d=h=10−4 m.

Note that the quasisurface waves with the negative total
energy flux can exist in gaps between media other than those
considered above. Specifically, there may be two metals,
metal/dielectric, and two artificial media structures. The
above results could be easily reformulated for some of these

cases. For instance, for two neighboring metals the total en-
ergy flux is negative when the vacuum-gap width is smaller
or equal to the skin depth, i.e., h�c /
P
5�10−8 m for

P�5�1015 s−1. For other cases, the additional analysis is
needed. A number of properties of these structures are dis-
cussed in Ref. 6.

Thus, in the present work the SPP waves excitation by the
infinitely thin electron beam moving in the vacuum gap be-
tween the plasmalike medium and the artificial dielectric has
been theoretically investigated. The dispersion relation for
the coupled modes of an arbitrary vacuum-gap width has
been found. The total energy flux is shown to be a negative
one in the system with a finite vacuum-gap width in the
presence of an electron beam.
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