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We show that a diamond-shaped periodic network, recently proposed as a model of a spin filter �A. Aharony,
O. Entin-Wohlman, Y. Tokura, and S. Katsumoto, Phys. Rev. B 78, 125328 �2008��, is capable of behaving as
a p-type or an n-type semiconductor depending on a suitable choice of the on-site potentials of the atoms
occupying the vertices of the lattice and the strength of the magnetic flux threading each plaquette of the
network. A detailed study of the density of states of an infinite network is made together with the conductance
of finite-sized system to establish the idea.
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Low-dimensional model quantum systems have been the
objects of intense research, both in theory and in experi-
ments, mainly due to the fact that these simple-looking sys-
tems are prospective candidates for nanodevices in electronic
as well as spintronic engineering.1–15 Apart from this feature,
several striking spectral properties are exhibited by such sys-
tems owing to the quantum interference which is specially
observed in quantum networks containing closed loops. Ex-
amples are the Aharonov-Bohm �AB� effect5 in the magne-
toconductance of quantum dots,7 electron transport in
quantum-dot arrays,3,4 Fano effect in a quantum ring-
quantum dot system,8 spin-filter effects in mesoscopic
rings,10,11 and dots6 to name a few.

Recently, Aharony et al.1,2 proposed a model of a nano-
spintronic device using a linear chain of diamondlike blocks
of atomic sites. Each plaquette of the array is threaded by
identical magnetic flux. They have analyzed how the Rashba
spin-orbit interaction and the AB flux combine to select a
propagating ballistic mode. A similar chain was earlier inves-
tigated by Bercioux et al.12,13 in the context of spin-polarized
transport of electrons and by Vidal et al.14 and Doucot and
Vidal15 to study two interacting particles,14 and Josephson-
junction chain of diamonds,15 both in the presence of a mag-
netic field. However, there are certain special spectral fea-
tures offered by the diamond chain, particularly, the role of
the AB flux, which we believe, remain unexplored. This is
precisely the area we wish to highlight in the present com-
munication. We show that an infinite diamond chain of iden-
tical atoms behaves as an insulator at T=0 K in the presence
of a nonzero AB flux. As we arrange atoms of two different
kinds �represented by two different values of the on-site po-
tential� periodically on a diamond chain, a highly degenerate
localized level is created near one of the two subbands of
extended states. The proximity of this localized level to ei-
ther of the subbands can be controlled by tuning the AB flux
and can be made to stay arbitrarily close to either of the
subbands. The entire system is then capable of behaving as
an n-type or a p-type semiconductor as explained later. The
conductance spectrum of a finite array of the diamond
plaquettes is also studied to judge the applicability of such a
network geometry in device engineering.

We adopt a tight-binding formalism and incorporate only
the nearest-neighbor hopping. We begin by referring to Fig.

1�a�. A magnetic �AB� flux � threads each plaquette. The
Hamiltonian of the network is given by

H = �
i

�ici
†ci + �

�ij�
t�ci

†cje
i�ij + cj

†cie
−i�ij� , �1�

where ci�ci
†� are the annihilation �creation� operator at the ith

site of the network, �i is the on-site potential at the ith site
which we shall choose as �A or �B as shown and t is the
constant nearest-neighbor hopping integral. The phase �ij is
constant and is given by �ij = �2�� /4�0, where �0=hc /e is
the flux quantum. The positive or negative sign of the phase
factor depends on whether the electron hops from site A�B�
to site B�A� along the arrow �called the “forward” hopping�
or against it �“backward” hopping�.

To obtain the average density of states �AVDOS� of the
infinite system we make use of the system of equations sat-
isfied by the Green’s function Gij, viz.,

�E − �i�Gij = �ij + t�
k

ei�ikGkj . �2�

On the right-hand side of Eq. �2� the index k runs over the
nearest neighbors of the ith site. The density of states is
obtained by a decimation renormalization-group �RG�
method.16 The RG scheme is depicted in Fig. 1. The lower A
vertices in Fig. 1�a� are decimated first, and the original dia-
mond array gets transformed into an array of triangular
plaquettes with the surviving A atoms sitting at the top and
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FIG. 1. �Color online� �a� Schematic view of a section of an
infinite diamond chain. �b� The RG scheme. The arrow gives the
direction of the forward hopping t exp�i�ij�.
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the pair of original B atoms getting renormalized into a pair
of B1 atoms, each characterized by the effective on-site po-
tential �B1

=�B+2t2 / �E−�A�. The B1-B1 effective hopping in-
tegral is � f = t2 exp�i�� /�0� / �E−�A�, and its complex conju-
gate �b=�F

� . xf = t exp�i�� /2�0� is the B1-A hopping integral
as shown in Fig. 1�b�. Its conjugate is named xb. The sub-
scripts �f� and �b� refer to the forward or backward hopping
due to the broken time-reversal symmetry due to the mag-
netic flux. In Fig. 1�b� we have not shown the flux explicitly
as the flux has been automatically included in xf, xb, � f, and
�b. The array of triangles is now renormalized by decimating
the alternate A sites and the appropriate B sites preserving
the triangular geometry of the array. The recursion relations
satisfied by the parameters are given by

�A� = �A + p2xb + p1xf ,

�B1
� = �B1

+ 2
xfxb

E − �A
+ hfr1 + hbr2 �3�

for the site potentials and

xf� = hbp2; � f� = hfq1 �4�

for the hopping integrals between B1-A and B1-B1 pairs on
the renormalized triangular array. Obviously, xb� and �b� are
given by xf�

,� and � f�
,�, respectively, and p1= �xb�E−�2�

+xf� f� /�, p2= p1
�, hf =� f +xb

2 / �E−�A�, hb=hf
�, r1= �hb�E

−�2�� /�, and r2=r1
� with �2=�B1

+xfxb / �E−�A� and �= �E
−�2�2−� f�b. With a small imaginary part added to the energy
E, the local Green’s functions at the sites A and B of the
original diamond array are then obtained as

GAA =
1

E + i0+ − �A
� ; GBB =

1

E + i0+ − �B1

� , �5�

where the superscript * above refer to the fixed-point values
of the respective parameters. The AVDOS is given by

	�E� =
2

3
	A�E� +

1

3
	B�E� , �6�

where 	i�E�=−�1 /��Im Gii, with i being A or B.
Let us now present two separate cases which will throw

light on the central problem addressed in this Brief Report,
viz., the semiconducting behavior of such a network.

Case I: �A=�B.
The AVDOS in this case is illustrated for �A=�B=0 in

Figs. 2�a�–2�c� for �=0, for �=�0 /5, and for �=2�0 /5,
respectively. In the zero flux case the spectrum is a con-
tinuum with a very high value of the density of states at the
center, i.e., at E=0. The system exhibits a metallic character.
As the magnetic field through the plaquette assumes nonzero
value, a gap opens at the center with the peak in the AVDOS
fixed at E=0. This high value of the AVDOS corresponds to
strongly localized states. It is to be appreciated that these
states are localized strictly on the A-type vertices of the array
and the care has to be taken while renormalizing the dia-
mond array so that both the A-type sites do not get deci-
mated. This precise RG scheme is explained earlier. If the
state corresponding to an energy E is localized then the

renormalized hopping integral will iterate to zero. This is
observed for the central peak in the AVDOS by iterating Eq.
�4�. The gap around the central peak widens as the flux is
increased gradually and the subbands at the two extremities
shrink to two sharp lines of zero width as �=�0 /2. The
picture reverses as � increases from �0 /2 to �0. The exactly
symmetrical location of the localized level with respect to
the subbands at the flanks makes the system behave as a
semiconductor when the electronic filling of the system lies
between 1

3 and 2
3 . More precisely, one can get a p-type semi-

conductor when the filling factor ne is 1
3 and an n-type semi-

conductor when 1 /3
ne�2 /3.
Case II: �A��B.
The AVDOS is exhibited in Fig. 3 with �B=0 and �A=2

for different values of the flux. By comparing Figs. 2 and 3
we see that the highly degenerate localized level is pinned at
E=�A. This has been verified using various values of �A
keeping �B fixed. So the states are localized at the vertices A
of the diamond chain. The other interesting feature is that as
the gaps open up for nonzero flux, the localized level is
placed asymmetrically with respect to the continuous sub-
bands of extended eigenstates. With a proper tuning of the
flux, one such subband can be brought arbitrarily close to the
sharp-localized level. For example, with �A=2, the localized
level resides closer to the upper subband �the conduction
band� than the lower one �the valence band�. A reversal of
the sign of the on-site potential �A reverses the picture. In
either case, the localized level can be placed arbitrarily close
to any one of the subbands by appropriately tuning the value
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FIG. 2. �Color online� 	�E�-E for an infinite diamond network
array when the AB flux is �a� �=0, �b� �=�0 /5, and �c� �=2�0 /5.
We have chosen �A=�B=0 and t=1. The AVDOS has been plotted
within the range zero to two.
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of the magnetic flux. This control over the proximity of the
degenerate localized level and a subband can be utilized to
simulate an extrinsic semiconductorlike behavior. For ex-
ample, let us refer to the case in which �A=2 and �B=0 and
fix the Fermi level at E=2 �i.e., all states from the bottom of
the left �valence� band up to E=2 are filled up at T=0 K�.
The strongly degenerate level is pinned at E=2. If the mag-
netic field is small then the energy gap between the localized
level at E=2 and the bottom of the conduction band �the
right subband� is small enough for electrons to bridge. The
system now behaves as an n-type semiconductor. By revert-
ing to the case of �A=−2 we can simulate a p-type semicon-
ductorlike behavior observed by the same diamond chain. In
this case the localized level is pinned at E=−2 and we need
to fix the Fermi level at the top of the valence band so that
electrons can jump into unoccupied levels above creating
holes in the valence band. It should be noted however that
with increasing flux the gap width increases, and hence the
probability of electrons crossing over to any one of the sub-
bands decreases.

In Fig. 4 we present the variation in the concentration of
electrons �holes� at finite temperatures in the conduction �va-
lence� bands for �A=2 and −2, respectively. With flux in-
creasing from zero the carrier concentration �electron or
hole� diminishes.

The applicability of the above physics depends on
whether such features are exhibited by systems with a finite
size as well. In order to check this we have calculated the
density of states and conductance of a 20-plaquette chain. To

calculate the conductivity, the system is connected between
two metallic electrodes, viz., the source and the drain �Fig.
5�, described by the standard tight-binding Hamiltonian and
parametrized by a constant site potential �0 and nearest-
neighbor hopping integral t0. The hopping integral between
the source and the system is �S while it is �D between the
system and the drain. Throughout the calculation we choose
the units where c=e=h=1. For low bias and low temperature
one calculates the conductivity using the single-channel Lan-
dauer formula17 g= �2e2 /h�T, where the transmission coeffi-
cient T is given by17 T=Tr��SGr�DGa�. �S and �D corre-
spond to the imaginary parts of the self-energy due to the
coupling of the diamond chain with the electrodes and G
represents the usual Green’s function. In Figs. 6 and 7 we
have shown simultaneously the AVDOS and the conductance
spectra. Figure 6 illustrates the symmetric case with �A=�B
=0. With zero flux, the system exhibits oscillating conduc-
tance profile with resonance peaks. As the flux becomes non-
zero and increases in value, the conductance windows oc-
cupy the regions corresponding to the two subbands at the
flanks and shrink in width as the flux increases toward the
half-flux quantum. Figure 7 depicts a similar qualitative fea-
ture but now with an asymmetric conductance profile as the
potentials �A and �B are different.

Before we end, it may be mentioned that whether an array
of such plaquettes will behave as an insulator or will have a
metallic character in the absence of an external magnetic
field, depends on the geometry of the unit cells. For example,
with an array of identical triangular plaquettes a gap already
exists in the middle of the spectrum even when the external
magnetic field is zero. Thus such a triangular array will have
an insulating character at T=0 K and at zero flux. However,
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FIG. 3. �Color online� 	�E�-E for an infinite diamond network
array when the AB flux is �a� �=0, �b� �=�0 /5, and �c� �=2�0 /5.
We have chosen �A=2 and �B=0 with t=1. The AVDOS has been
plotted within the range zero to two.
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FIG. 4. �Color online� Variation in the electron concentration n
as a function of the flux �. The red, green, and blue curves corre-
spond to the temperatures kBT=0.5, 1, and 1.5 respectively, with kB

being the Boltzmann constant.
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FIG. 5. �Color online� Schematic view of a finite diamond chain
attached to two metallic electrodes.
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by changing the site potentials one can generate strictly lo-
calized levels inside the gap and can again have the n- or
p-type semiconducting behavior as discussed earlier in re-
spect of the diamond plaquette array.

Finally, in view of the potential application of the net-
works as a device we would like to point out that the quali-

tative features presented here should remain valid even at
finite temperature ��300 K� since the broadening of the en-
ergy levels of the diamond array due to its coupling with the
electrodes will be much larger than that of the thermal
broadening.17
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FIG. 6. �Color online� g-E �red color� and 	-E �blue color�
curves for a 20-ring chain. �a� �=0, �b� �=0.2, and �c� �=0.4.
Other parameters are �A=�B=0, t=3, �0=0, t0=4, and �S=�D=2.5.
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FIG. 7. �Color online� g-E �red color� and 	-E �blue color�
curves for a 20-ring chain. �a� �=0, �b� �=0.2, and �c� �=0.4.
Other parameters are �A=2, �B=0, t=3, �0=0, t0=4, and �S=�D

=2.5.
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