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Interleaving magnetophotonic garnet layers with layers of a structurally chiral material �SCM� leads to a
one-dimensional helicoidal magnetophotonic crystal, the interaction of whose overall period and the helicoidal
period of the SCM layers leads to intra-Brillouin-zone photonic band gaps which depend on the structural
handedness of the SCM layers and whose gap widths are magnetically controllable. Even as the overall period
grows very large, one photonic band gap remains unaffected as it is due to the helicoidal period. Also, the gap
widths can be magnetically decreased by turning up the magnitude of the externally impressed dc magnetic
field.
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I. INTRODUCTION

Light incident normally on a sufficiently thick periodic
stack of two or more dissimilar materials can be highly re-
flected if the frequency of light lies in a Bragg zone. The
center frequency and the bandwidth of a Bragg zone are
dependent on the photonic properties of the materials and the
thicknesses of the layers in the unit cell.1 The periodic stack
is a one-dimensional �1D� photonic crystal �PC� and the
Bragg zone is a photonic band gap �PBG�. The center fre-
quency of a PBG is inversely proportional to the structural
period of a 1D PC, which can operate as a Bragg filter.

The photonic properties of ferrimagnetic garnets are
strongly influenced by an externally impressed magnetic
field.2 If at least one constituent material of a PC is a ferri-
magnetic garnet, the center frequencies and the gap widths of
the PBGs are magnetically tunable.3–5 Other factors such as
misalignment between the optic axes of two consecutive lay-
ers in the unit cell of a 1D magnetophotonic crystal �MPC�
can either aid or impede magnetic tunability.6

Multiple structural periodicities are desirable for 1D
MPCs to operate in multiple frequency bands, each band
being magnetically tunable. One way to accomplish that is to
interleave homogeneous layers of a ferrimagnetic garnet with
layers of a structurally chiral material �SCM�—such as a
chiral liquid crystal7 or a chiral sculptured thin film8—which
has a helicoidal morphology and is therefore periodically
inhomogeneous by itself. Having thus proposed this 1D heli-
coidal magnetophotonic crystal �HMPC� with two periodici-
ties, our task now is to examine how the overall periodicity
of the HMPC and the periodicity of one of its two constituent
materials �the SCM� interact to yield distinctive photonic-
band-structure features.

II. THEORY

The thickness of the magnetophotonic garnet layer in the
unit cell is denoted by dm and that of the nonmagnetopho-

tonic SCM layer by dh. The overall period is thus �=dm
+dh. The relative permittivity tensors of the two materials
�superscripted �m� and �h�, respectively� are as follows:
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Here �g indicates the optical gyrotropy of the garnet that
manifests itself when an external dc magnetic field is applied
parallel to the thickness direction �the z axis�; the rotational
tensor

S�� ��� = �cos � − sin � 0

sin � cos � 0

0 0 1
� , �3�

is needed to describe the helicoidal variation in the SCM
morphology along the z axis; 2� is the helicoidal period but
� is the dielectric period for light propagation along the z
axis;9 h= �1 represents the structural handedness of the
SCM layer and therefore of the HMPC; and �̄�m,h�, ��m,h�, and
�zz

�m� represent the scalar permittivities when the external
magnetic field is absent. We characterize the optical gyrot-
ropy through the magnetophotonic angle �=tan−1��g /��m��.
For simplicity, the SCM is assumed to be locally uniaxial
and both materials are assumed to be nondispersive, nondis-
sipative, and nonmagnetic. The two materials can be dielec-
trically similar ��̄�m�= �̄�h� and ��m�=��h�� or not. An exp�
−i	t� time dependence is implicit.

Suppose that the electromagnetic-field phasors are inde-
pendent of x and y. Wave propagation inside the 1D HMPC
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can then be formulated using standard techniques.5,10 The
overall periodicity of the 1D HMPC permits invocation of
the Floquet-Bloch theorem, whereby Bloch states emerge as
solutions of the eigenvalue problem

D�m�−1
Y�h�W�h�Y�h�−1

D�m�P�m�A j
�m� = exp�iK��A j

�m�. �4�

Here, K is the Bloch wave number; A j
�m� is a column four

vector containing eigenmodal amplitudes for the garnet layer
in the jth unit cell; the 4
4 matrices D�m� and P�m� are
explicitly expressed in Ref. 5; W�h� is a transfer matrix for
the SCM layer available in Ref. 10; and the auxiliary matrix
Y�h� is determined by enforcing the continuity of the tangen-
tial components of the electromagnetic field phasors across
the interface between the two constituent layers of the unit
cell. Solution of Eq. �4� yields the relationship between K
and the angular frequency 	. Propagating Bloch states are
indicated by real-valued K and evanescent Bloch states by
complex-valued K; PBGs can thus be identified in Brillouin
diagrams.

III. NUMERICAL RESULTS AND DISCUSSION

Figure 1 shows the Brillouin diagrams for a 1D HMPC
made of dielectrically similar materials, when the external

magnetic field is either absent ��=0� or present ��=� /6�.
Several PBGs are present inside the Brillouin zone near the
zone boundaries K�=0 and �. The band profiles around
these intra-Brillouin-zone PBGs are dependent on the struc-
tural handedness parameter h for ��0 but not for �=0;
however, the gap widths are handedness-independent regard-
less of �.

For convenience, we classify the PBGs into groups A and
B when they are in close proximity of the zone boundaries
K�=0 and K�=�, respectively; furthermore, PBGs in
group A are labeled 	0, �2, �4, . . .
, while those in group B
are labeled 	�1, �3, �5, . . .
. In Fig. 1, group A is repre-
sented only by the PBG labeled 0, whereas group B is fully
populated, which becomes evident when the horizontal axis
is extended beyond the limits shown in the figure. PBGs not
labeled 0 reflect the interaction of the overall period � with
the electromagnetic field, being found when � is finite
�HMPCs� and even in the limit �→� �nonhelicoidal
MPCs�. In contrast, the PBG labeled 0 is located at 	
= �� /��̄�h���c /��, which is the center frequency of the Bragg
regime of the SCM layer.8,10 Thus, the PBG labeled 0 exists
only for HMPCs �finite �� but not for nonhelicoidal MPCs
��→��.

In an isolated SCM layer with a sufficient number Nh of
periods, a PBG is known to occur when a central phase de-
fect is introduced in the form of a twist defect,12,13 a spacer
layer,14 or some combination of twist defects and spacer
layers.8,14 Because of the phase interruption, a resonance oc-
curs in the isolated SCM layer. The resonance is localized
spatially at the defect site and spectrally at the center of the
Bragg regime. This resonance can be excited by left- and
right-circularly polarized light. When the handedness of the
incident circularly polarized light is the same as the struc-
tural handedness of the isolated SCM layer, the resonance
develops and vanishes as Nh is increased from a small value.
When the two handednesses differ, the resonance develops
and saturates as Nh is increased from a large value12,13 be-
cause the localized energy density increases drastically with
Nh until attaining a saturation level—this phenomenon is
manifested in the Brillouin diagram as a PBG that blocks
arbitrarily polarized light from propagating through the iso-
lated SCM layer containing a central phase defect.

Given the existence of PBGs in isolated SCM layers with
central phase defects and as the PBG labeled 0 does not exist
when dm=0 in the 1D HMPC, we conclude that this PBG is
solely due to each magnetophotonic garnet layer acting as a
phase defect inserted between two identical SCM layers with
sufficiently large numbers of periods. Also, this PBG is, at
best, weakly affected by the ratio 0.5� /� of the overall pe-
riod to the helicoidal period. This becomes clear from Fig. 2
which displays the center frequencies �	bc� and the gap
widths ��	� of the PBGs labeled 0 and �1 in Fig. 1�b� as
functions of � /�.

In contrast, the PBGs labeled �1 in Fig. 1�b� exhibit no-
table dependences on the ratio � /�. For a fixed helicoidal
period, the center frequencies and the gap widths of these
two PBGs from group B appear to vary as ��−1. This ten-
dency is generally observed for PBGs in single-period non-
helicoidal PCs,15 thereby affirming that the PBGs of group B
are intimately connected to the overall periodicity of the 1D
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FIG. 1. �Color online� Brillouin diagrams for 1D HMPC with
�a� �=0 and �b� �=� /6. The two materials in the unit cell are
dielectrically similar: �̄�m�= �̄�h�=6.576 and ��m�=��h�=0.035,
which values are typical of bismuth iron garnet in the infrared re-
gime �Ref. 11�. Dimensions are: dm=dh=0.5�=60�. The dotted
lines in �a� are for the HMPC of either handedness, the solid lines in
�b� are for the left-handed HMPC �h=−1�, and the dashed lines in
�b� are for the right-handed HMPC �h=1�. Intra-Brillouin-zone
PBGs in the diagrams are labeled by 0 and �1.
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HMPC. But the helicoidal periodicity also affects these
PBGs significantly. For fixed �, as � increases, �i� their
center frequencies approach the center frequency of the PBG
labeled 0 and �ii� their gap widths remain finite. This is be-
cause the HMPC retains the helicoidal periodicity of the
SCM layer even in the limit �→�. Were this HMPC to be
made nonhelicoidal by setting h=0 in Eq. �2�, the center
frequencies and gap widths of all PBGs would go to zero as
�→�.

The magnetic tunability of the PBGs of the 1D HMPC of
Fig. 1 is illustrated in Fig. 3. PBGs in both groups A and B
depend on �. The tunabilities of the gap widths of the higher-
frequency PBGs �with labels �	0,1 ,3 ,5 , . . .
� differ from
those of the lower-frequency PBGs �with labels �	−1,−3,
−5, . . .
�. The gap widths of the higher-frequency PBGs de-
cline linearly with increase in sin�. The gap widths of the
lower-frequency PBGs first decrease to zero and then in-
crease as sin� increases. For each of the lower-frequency
PBGs, we can designate a closure value �c of � as follows:
when �=�c, the gap width vanishes and so does the PBG.
The farther that a negatively labeled PBG is from the PBG
labeled 0 on the 	 axis, the lower is the value of the former’s
closure angle.

Figure 3 shows that the magnetic tunability of gap widths
in HMPCs differs from that in nonhelicoidal MPCs in a sig-
nificant manner. The gap widths in nonhelicoidal MPCs in-
crease with �.5,6 In contrast, the gap widths in HMPCs de-
crease as � increases for the higher-frequency PBGs and

prior to the closure angle �c for the lower-frequency PBGs.
The role of the helicoidal periodicity diminishes in the
lower-frequency regime because the SCM layer of the
HMPC tends to become effectively homogeneous as
�	 /c��→0. In other words, the optical role of helicoidal
periodicity can be trumped by the post-�c magnetically in-
duced optical gyrotropy at sufficiently low frequencies.

Both groups A and B of PBGs are also exhibited by a 1D
HMPC made of dielectrically dissimilar materials such that
�̄�m�� �̄�h� and/or ��m����h�. As shown in Fig. 4, the ampli-
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FIG. 2. The dependences of �a� the center frequencies 	bc and
�b� the gap widths �	 of intra-Brillouin-zone PBGs on the ratio
� /�. Lines with �, �, and � are for the PBGs labeled 0, +1, and
−1, respectively, in Fig. 1�b�.
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FIG. 3. �Color online� The dependences of the gap widths �	 of
intra-Brillouin-zone PBGs on �. All parameters are the same as for
Fig. 1 except �=20�.
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FIG. 4. �Color online� Brillouin diagrams for 1D HMPC made
of dielectrically dissimilar materials such as �a� ��h�=0.5��m� and
�b� ��h�=5��m�. Other parameters are as follows: ��m�=0.035, �̄�m�

= �̄�h�=6.576, �=� /6, and dm=dh=0.5�=60�. The solid lines are
for the left-handed HMPC �h=−1� and the dashed lines are for the
right-handed HMPC �h=1�.
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tudes of the uniaxial-anisotropy parameters ��m� and ��h� af-
fect the center frequencies and the gap widths of PBGs. In-
crease in these parameters tend to amplify the gap widths, as
may be seen by comparing the gap widths in Fig. 4�a� for
lower ��h� with those in Fig. 4�b� for higher ��h�. Further-
more, the density of PBGs on the 	 axis increases as well,
for which the two parts of Fig. 4 contain evidence. Finally,
the effect of structural handedness gets amplified, as may be
seen by comparing Figs. 1�b� and 4�b�, both having been
drawn for all constitutive and geometric parameters the same
except for ��h�.

IV. CONCLUDING REMARKS

In this communication, we have delineated the character-
istic features of intra-Brillouin-zone PBGs that are displayed
by a 1D HMPC because the effects of its overall period �
are significantly modified by the helicoidal period 2� of the
SCM layer contained in its unit cell. One of the PBGs �la-
beled 0� occurs entirely due to a saturated wave resonance
that occurs because each magnetophotonic garnet layer acts
as a phase defect inserted between two identical SCM layers
with sufficiently large numbers of periods. The helicoidal

period is responsible for other qualitative differences with
respect to nonhelicoidal MPCs. For example, the center fre-
quencies of all PBGs approach a nondiminishing value even
as �→� and the gap widths of the PBGs can be magneti-
cally decreased by increasing the magnetophotonic angle by
turning up the magnitude of an externally impressed dc mag-
netic field. These magnetically controllable PBGs are also
affected by the structural handedness of the HMPC.

One-dimensional HMPCs can be conceived to display
even more remarkable photonic-band-structure features. For
instance, crystalline misalignment may be introduced by
twisting all the magnetophotonic garnet layers by a certain
angle about the z axis,6 which would introduce new features
even when the magnetophotonic garnet and the SCM are
dielectrically similar. Another possibility is to use ferroelec-
tric crystals for the magnetophotonic layers, which would
introduce additional control by an externally impressed dc
electric field. Yet another possibility is that the magnetopho-
tonic layers also have a helicoidal morphology; then the ad-
ditional helicoidal periodicity would introduce new features.
All these potential new features about the 1D HMPC are
worthy of being explored in the future.
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