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We studied magnetic vortex oscillations associated with vortex gyrotropic motion driven by spin-polarized
out-of-plane dc current by analytical and micromagnetic numerical calculations. Reliable controls of the tun-
able eigenfrequency and orbital amplitude of persistent vortex oscillations were demonstrated. This work
provides an advanced step toward the practical application of vortex oscillations to persistent vortex oscillators
in a wide frequency �f� range of 10–2000 MHz and with high values of f /�f .
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I. INTRODUCTION

In 2007, spin-polarized dc-current-driven self-sustained
oscillators based on magnetic vortex oscillations were ex-
perimentally demonstrated using a nanoscale spin valve
structure.1 Since then, magnetic vortex oscillators have be-
gun to attract considerable attentions owing to several advan-
tages over spin-transfer-torque�STT�-driven nano-oscillators
associated with the precessional motion of uniform magneti-
zation �M� in a nanomagnet. For examples, Shibata et al.2

observed a vortex gyrotropic motion, the so-called vortex-
core �VC� translation mode, through STT driven by in-plane
current passing through a single vortex. Kasai et al.3 reported
on resonant vortex oscillations in soft magnetic nanodots
driven by in-plane harmonic oscillating current. Krüger et
al.4,5 and Lee et al.6,7 also reported more quantitative studies
of harmonic vortex oscillations in nanodots driven by har-
monic oscillating currents and magnetic fields applied in the
dot plane. Meanwhile, several other groups reported on the
use of out-of-plane dc current for the dynamic excitation of
vortex oscillations in different types of nanostructures.8–11

More recently, Mistral et al.12 experimentally demonstrated
current driven sub-GHz oscillators caused by VC orbital mo-
tions outside a metallic nanocontact area. In addition, Ruo-
tolo et al.13 showed experimentally the coherent synchroni-
zation of multivortex oscillations in multi-point-contact
systems.

From these studies mentioned above, it is known that the
vortex oscillators have the narrow width of the eigenfrequen-
cies of vortex oscillations and that the phase and orbital am-
plitude of VC gyrotropic motions are reliably controllable
without the application of additional large magnetic fields.
Although a new concept of nano-oscillators based on such a
vortex translation mode excited in magnetic nanodots has
been proposed, the quantitative understandings of the under-
lying physics of this phenomenon and associated new phe-
nomena have yet been explored. In this paper, we report on
quantitative interpretations of vortex oscillations in a free
standing soft magnetic nanodot driven by spin-polarized out-
of-plane dc current studied by analytical calculations and
numerical simulations. In this study, we consider both the
STT effect of spin-polarized currents acting directly on vor-
tex nonuniform M structure and the comparable Oersted

field �OH� effect accompanying the current flow. The results
obtained from this work reveal a reliable means of manipu-
lating the eigenfrequency and the orbital amplitude of VC
translation motions in an oscillating manner in a dot of a
different vortex state, by out-of-plane dc currents flowing
through a perpendicular M polarizer. The quantitative under-
standing of dc current driven vortex oscillations and its ma-
nipulation by key driving parameters, as found in this study,
can offer an advanced step in its practical applications to
persistent vortex oscillators with a tunable eigenfrequency
�f� in its broad range of 10–2000 MHz and a high f /�f
value, without applying additional large in-plane and perpen-
dicular magnetic fields.

II. MICROMAGNETIC SIMULATION AND RESULTS

To quantitatively understand and explore the underlying
physics of vortex oscillations in nanodots driven by spin-
polarized out-of-plane dc currents, we chose two comple-
mentary approaches: micromagnetic numerical and analyti-
cal calculations using a model system of the circular shaped
Permalloy �Py:Ni80Fe20� nanodot of 2R=300 nm diameter
and L=20 nm thickness, as shown in Fig. 1. The ground
states of energetically equivalent four different vortex struc-
tures can be characterized by two vortex integers: the chiral-
ity c and the polarization p. The term c= +1�−1� corresponds
to the counter-clockwise �CCW� �clockwise �CW�� rotation
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FIG. 1. �Color online� Vortex state with p= +1 �upward M ori-
entation at the VC� and c= +1 �CCW in-plane curling M� or
c=−1 �CW in-plane curling M� in a Py nanodot with the indicated
thickness and diameter. The color and height indicate the in-plane
orientation of local Ms and the out-of-plane M components, respec-
tively. The direction of current flow is indicated by the large arrow
pointing in the +z direction.
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sense of the in-plane curling M, and the term p= +1�−1�
corresponds to the upward �downward� M orientation of the
VC. Figure 1 shows a specific vortex state having c= �1 and
p= +1. In the present simulations, we used the
LLG COMMERCIAL code14 that utilizes the Landau-Lifshitz-
Gilbert equation of motion,15 including the STT term16 ex-
pressed as TSTT= �aSTT /Ms�M� �M�m̂P� with aSTT

= 1
2�h�Pj0 / ��02eMsL�. The m̂P is the unit vector of spin-

polarization direction, h is the Plank’s constant, � is the gy-
romagnetic ratio, P is the degree of spin polarization, j0 is
the current density, �0 is the vacuum permeability, e is the
electron charge, and Ms is the constant magnitude of M.
Out-of-plane dc currents were applied toward the +z direc-
tion for sufficiently long time �100 ns in this study� through
the polarizer with perpendicular M pointing in either +z or
−z direction. Nonignorable OHs accompanying the out-of-
plane dc currents were taken into account using Biot-Savart’s
formulation. Here, we define the directions of the applied
current and the spin polarization as ip and Spol, respectively:
the sign of ip= +1�−1� and Spol=1�−1� corresponds to the
+z�−z� direction. Thus, the rotation sense of the circumfer-
ential OH is determined simply by the sign of ip, i.e., ip
= +1�−1� represents the CCW �CW� rotation sense of the OH
in-plane orientation.

Figure 2 shows examples of the characteristic features of
the translational motions of a VC driven by specific values of
j0=1.5, 0.1, 0.52, and 0.48�107 A /cm2, which were ob-
tained from simulations with considering both the STT and
the accompanying OH with its circumferential in-plane ori-
entation parallel �P� to c= +1 and antiparallel �AP� to c
=−1. By the definitions of c and ip, the P �AP� configuration

can also be denoted as c · ip= +1�−1�. The first and middle
rows in Fig. 2 represent the observed trajectories of the or-
bital motions and the � components, respectively, of the VC
position vector, X�t�= �Xx�t� ,Xy�t�� in the dot �x-y� plane,
where Xx and Xy are the x and y components of X�t�. The
initial VC position X0 at t=0 was displaced to �−1.5 nm,
25.5 nm� for c= +1 or �1.5 nm, −25.5 nm� for c=−1 by a
static field of 100 Oe along the x direction before applica-
tions of out-of-plane dc currents.

The simulation results reveal that spirally rotating mo-
tions of a VC with the exponentially increasing, decreasing,
and almost constant orbital radii �shown in Figs. 2�a�–2�c�,
respectively�, along with the corresponding eigenfrequencies
�third row of Fig. 2� are remarkably contrasting for different
j0 values chosen here. The first thing to stress here is the
observed blue and redshifts of the eigenfrequency from 580
MHz at j0=0 �i.e., without application of current� for c · ip
= +1 and −1, respectively, as reported in Ref. 17. The second
one is the remarkable variation in the orbital amplitude of
VC motions with different j0 values. For j0=1.5�0.1�
�107 A /cm2, the orbital amplitude exhibits its increase �de-
crease� with time from the corresponding X0. By contrast,
for the application of j0=0.48�0.52��107 A /cm2 for the
c · ip=−1�+1� configuration, the VC is allowed to be main-
tained around the initial orbit, being analogous to the reso-
nant motion of a VC on a steady-state circular orbit that is
driven by harmonic oscillating in-plane magnetic fields and
currents.6,7,18,19 Also, the numerical estimates of the eigenfre-
quency f , the full width at half maximum �FWHM: �f�, and
f /�f values in frequency spectra are given in Table I. Such
remarkable variations in the eigenfrequency and the orbital
amplitude with j0 have not been understood quantitatively
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FIG. 2. �Color online� VC translation motions
driven by spin-polarized out-of-plane dc current
of �a� j0=1.5�107 A /cm2, �b� 0.1�107

A /cm2, and �c� 0.48�107 and 0.52�107

A /cm2 for indicated antiparallel �AP: c · ip=−1�
and parallel �P: c · ip= +1� configurations, as
noted in text. The orbital trajectories of a moving
VC are shown in the top row as well as the time
variations of the y components of the VC position
in the middle row and their FFT power spectra in
the bottom row. The FFT power spectra obtained
from the VC motion during t=0–100 ns.

TABLE I. Estimates of the eigenfrequency �f�, FWHM ��f�, and f /�f factor obtained from Gaussian fits
to the simulation results shown in Fig. 2. The FFT power spectra shown in Fig. 2 were obtained from time
oscillations of the y component of a moving VC position for a time duration t=0–100 ns.

j0

�107 A /cm2� 1.5 0.1 0.52 0.48

cip +1 −1 +1 −1 +1 −1

f �MHz� 660�0.7 500�0.6 586�0.7 572�0.7 612�0.3 550�0.06

�f �MHz� 60�1.4 60�1.3 38.7�1.5 33.4�1.5 14.9�0.5 6.5�0.04

f /�f 11�2.7 8.3�0.2 15.1�0.7 17.1�0.9 41.1�1.4 84.6�0.5
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and analytically, whereas the quantitative understanding of
these dynamic properties are crucial in the determination of
key parameters to control vortex oscillations that are practi-
cally applicable to self-sustained nano-oscillators. Also, the
phase of a moving VC position and the f /�f values are
crucial factors to be understood from an application point of
view.

III. ANALYTICAL CALCULATION AND RESULTS

To elucidate the underlying physics of the observed dy-
namic behaviors and to search for key parameters for reliably
controlling the eigenfrequency and the orbital amplitude of
VC oscillations in a nanodot of a different size and of a
different vortex state characterized by c and p, we analyti-
cally calculated X�t� in the dot �x-y� plane. In this analytical
calculation, we used the linearized Thiele’s20 equation of mo-
tion by employing the force term, FSTT=2�SpolaTj0�ẑ�X�
with the STT coefficient aT=aSTTLMs / ��j0�= 1

2�hp / �2�0e�
�Refs. 8 and 21�. The governing equation of VC translation
�gyrotropic� motions in the linear regime is written in terms
of a moving VC position vector X�t� as

− G � Ẋ + �W/�X − DẊ − FSTT = 0, �1�

where G=−p�G�ẑ is the gyrovector with its constant G, and
D�0 is the damping constant. The potential energy of a
displaced VC in a circular dot can be expressed as W�X , t�
=W�X=0�+	X2�t� /2 with the stiffness coefficient 	. Equa-
tion �1� is rewritten in the matrix form

− � D p�G�
− p�G� D

�Ẋ + � 	 2�SpolaTj0

− 2�SpolaTj0 	
�X = 0.

�2�

The general solution of Eq. �2� is simply given as X�t�
=X0 exp�−i
t� with the angular eigenfrequency 
. Inserting
this solution into Eq. �2� leads to the analytical form of the
eigenfrequency 
= �	+ i2�SpolaTj0� / �p�G�− iD�, and the re-
lation of the Xx and Xy, i.e., Xy = iXx. Since 
=
R+ i
I is a
complex function, the real and imaginary terms can be ex-
pressed as 
R= �	p�G�−2�SpolaTj0D� / �G2+D2� and 
I
= �	D+2�SpolaTj0p�G�� / �G2+D2�, respectively. The VC
position vector as a function of time in response to
the out-of-plane dc current is thus given by X�t�
=X0 exp�
It�exp�−iRt�. Here 
R corresponds to the true
eigenfrequency of VC gyrotropic motion and nonzero values
of the imaginary term 
I indicate that the orbital amplitude
changes with time as in the form of X0 exp�
It�. From the
above results, the orbit radius of the VC motion as a function
of time is given as Rorb= �X0�exp�
It�, and the phase relation
between Xx and Xy is Xy /Xx=e�/2, which reflect a circularly
rotating motion of a VC inside the dot with 
R and with
CCW �CW� rotation sense for 
R�0 �
R�0�. Therefore,
the obtained results from the simulations shown in Fig. 2 can
be more quantitatively understood from the analytical equa-
tions of 
R and 
I that vary with p= �1 and c= �1, the
magnitude and direction of j0, and Spol= �1 for the material
and the dimensions of a given nanodot.

Moreover, the circumferential OH generated by the flow
of out-of-plane currents should be considered to understand
how this type field affects both 
R and 
I. As reported in our
previous work,17 it is known that the OH influences the
variation of 	, such that 	=	0+	OH, where 	0 is the intrinsic
stiffness coefficient without considering the OH contribution,
and 	OH is the additional term newly introduced by the OH
contribution to the effective potential energy of a displaced
VC. The 	OH term is proportional to j0 with a constant value
of �=cip
 �where 
�0�,17 so that the sign of � can switch
depending on the sign of c · ip. Note that the OH contribution
gives rise to the increase �decrease� in 	 for the configuration
of c · ip= +1�−1�. Based on the “surface charge free”
model,22 
 can be analytically derived in terms of dot dimen-
sional parameters R and L and a material parameter Ms, as

= 45

68RLMs �for detail, see Ref. 23�. Consequently, the 
R
and 
I terms are parametrized as


R =
p
�G�

G2 + D2�	0



+ cipj0� , �3a�


I =
B

G2 + D2� j0 + 	0
D

B
	 with B = cip
D + 2�SpolaTp�G� .

�3b�

For a given dot dimension and a material, 
R and 
I are both
controllable with only external driving force parameters j0
and ip, for a given vortex state characterized by p and c and
for a given Spol. Here p ·Spol= +1�−1� corresponds to the P
�AP� orientation between p and Spol.

For different combinations of p ·Spol= �1 and c · ip= �1,
we plotted the numerical values �solid lines� of 
R and 
I
calculated from Eqs. �3a� and �3b� as a function of the vari-
able j0 and compared them with the corresponding simula-
tion results �symbols�, as shown in Fig. 3. The values of 
R
and 
I vary with j0. For j0=0 the values of 
R and 
I be-
come 
R,0= p	0�G� / �G2+D2� and 
I,0=	0D / �G2+D2�, re-
spectively. More specifically, for p= +1 
R increases �de-
creases� linearly with j0 for c · ip= +1�−1�, independently of
the sign of Spol �see left panel of Fig. 3�a��. In addition, we
obtain the relation of 
R�p=−1�=−
R�p= +1� �see Fig.
3�a��. Regardless of what signs p and Spol have, for c · ip
=−1 there exists a critical value of j0= jmax=−	0 / �cip
�
where 
R becomes zero, as indicated by the black thick ar-
rows in Fig. 3�a�. According to the analytical calculation, the
sign of 
R switches crossing j0= jmax, such that VC gyrotro-
pic motion for a given p= +1�−1� is CCW �CW� in the re-
gion of j0� jmax and switches to CW �CCW� in the region of
j0� jmax. However, the numerically estimated value of jmax is
as extremely large as an order of 108 A /cm2, and hence in
such large j0 values vortex polarization and chirality switch-
ing events can take place additionally according to simula-
tion results �not shown here because these switching events
are beyond the scope of the present paper�. Consequently, the
analytical results in the region of j0� jmax are physically
meaningless. The corresponding simulation results �indicated
by symbols� for relatively small values of j0 are in the same
trends as the analytical results, although they show some
discrepancies in magnitude.21
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Instead, as shown in Fig. 3�b�, the linear variations of 
I
with j0 are contrasting and of opposite slope between
p ·Spol= +1 and −1, but their dependence on the sign of c · ip
is ignorable in the region of small j0 values. For p ·Spol
= +1, 
I�0 in the entire region of j0, which reflects the fact
that Rorb�t� decreases exponentially with time, as Rorb�t�
= �X0�exp�
It�, and consequently reaches X=0. For the other
case of p ·Spol=−1, 
I linearly increases with j0, but its sign
changes from negative to positive one crossing j0= jcri where

I=0. The value of jcri is analytically derived as jcri
=−	0D /B with B=cip
D+2�SpolaTp�G� from Eq. �3b�. It is
clear that for j0� jcri, 
I�0, but for the other region j0

� jcri, 
I�0. The fact of 
I�0 implies that Rorb�t� exponen-
tially increases with time, as �X0�exp�
It�. The important
point we have to stress here is that VC gyrotropic motions
driven by j0= jcri are maintained on an initially displaced VC
orbit radius �X0� and with a characteristic value of 
R�
=
R�j0= jcri�. The analytical form of 
R� was obtained to be

R� =
R,0�1−cip
D /B� by putting j0= jcri into Eq. �3a�. The
value of jcri is a crucial parameter for controlling persistent
vortex oscillations by applications of out-of-plane dc current.
For the cases of j0� jcri, the vortex oscillations cannot per-
severe because the orbital amplitude either decreases or in-
creases for those cases. This phenomenon can be applicable
to self-sustained vortex oscillators. Some simulation results
�noted by symbols� are in similar trends with the analytical
calculations, but their discrepancy in magnitude becomes in-
creased with j0.

It is worthwhile to address more physical pictures on the
observed steady-state vortex oscillations. The oscillation be-

TABLE II. Comparison of the numerical values of jcri and 
R� /2� between the analytical calculation and
micromagnetic simulation results for several dot dimensions, as indicated by the small red circles in Fig. 4.

cip

Dot size
jcri

�106 A /cm2�

R� /2�
�GHz�

R
�nm�

L
�nm� Analytical Micromagnetic Analytical Micromagnetic

+1 105 20 9.29 6.4 1.05 0.83

150 20 6.21 5.2 0.74 0.61

150 10 1.47 1.6 0.36 0.34

−1 105 20 8.79 6.1 0.99 0.78

150 20 5.77 4.8 0.69 0.55

150 10 1.42 1.5 0.35 0.32
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FIG. 3. �Color online� Estimated values of the real �
R� and
imaginary �
I� terms of the eigenfrequency �
� versus j0 for the
indicated cases of p ·Spol= �1 and c · ip= �1. Symbols and solid
lines represent the results of micromagnetic simulation and analyti-
cal calculations, respectively.
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corresponds to stable vortex states obtained using an analytical
equation of Ref. 25.
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haviors of Ms of single domains in spin valve structures
caused by STT have been understood by the force balance
between the STT and the Gilbert damping term. In analogy,
we consider force balance between the Gilbert damping term
FD=DẊ=
R�D�ẑ�X� and FSTT=2�SpolaTjcri�ẑ�X� for the
condition of 
I=0 at j0= jcri required for steady-state vortex
oscillations. Inserting jcri=−	0D /B and 
R� =
R,0�1
−cip
D /B� into the two yields FD=−FSTT, verifying that the
steady-state vortex oscillations can maintain at j0= jcri in the
case where the spin torque force cancels the Gilbert damping
force.

Next, we numerically calculated the values of jcri and 
R�
versus L and R, as shown in Figs. 4�a� and 4�b�. In the
calculations, we used the analytical forms of jcri=−	0D /
�cip
D+2�SpolpaT�G�� and 
R� =
R,0�1−cip
D /B� with an
approximated function of 	0= 40

9 �Ms
2L2 /R �Ref. 22�. The

terms G and D are also given as G=2�pMsL /� and D
=−��MsL�2+ln�R /Rc�� /� with the VC critical radius Rc,
which of these equations are also functions of L and R �Ref.
24�. As seen in both equations, the values of jcri and 
R� are
functions of c · ip, so that they vary with the sign of it. The
contour plots of jcri and 
R� on the �L-R� plane allow us to
gain technologically useful phase diagrams for designing the
dot dimensions and a magnetic material, in order to control
persistent vortex oscillations and their eigenfrequencies. As
shown in Fig. 4�a�, the value of jcri increases dramatically
with the increasing L for a given R, whereas jcri decreases
slowly with increasing R relatively for a constant value of L.
The surprising result is that the value of jcri is as extremely
low as the order of 104 A /cm2 in the region of L�3 nm.
The eigenfrequency obtained at j0= jcri varies remarkably
with L and R, indicating its tunability by dot dimensions, in
a very broad range from 10 MHz to 2 GHz. We also compare
the numerically estimated values of jcri and 
R� /2� using the

analytical equations �Fig. 4� with those obtained using mi-
cromagnetic simulations for several dot dimensions of
�R�nm� ,L�nm��= �105,20�, �150,20�, and �150,10�, as shown
in Table II. Although there are some discrepancies in the
results between the analytical and simulation calculations,21

their general trends according to L and R are in good agree-
ment.

IV. CONCLUSION

We numerically and analytically calculated the depen-
dences of the eigenfrequency and the orbital radius ampli-
tude of the translation motion of a vortex core in soft mag-
netic nanodots driven by spin-polarized out-of-plane dc
currents. We found some key parameters to reliably control
the persistent vortex oscillations, including the vortex eigen-
frequency and orbital amplitude. Using the analytically de-
rived equations of the critical current density jcri for persis-
tent vortex motions and their eigenfrequencies 
R� , we
constructed two phase diagrams of jcri and 
R� on the plane of
dot thickness and radius for a Py material. These results pro-
vide guidance for practical implementation of vortex oscilla-
tions in nanodots to a new class of dc-to-ac oscillator with
eigenfrequency tunability in a broad range of 10–2000 MHz,
with high f /�f values, and extremely low current densities
as small as 104–105 A /cm2.
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