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In this paper, we report on experimental and theoretical investigations of magnetic transitions in cobalt rings
of size �diameter, width and thickness� comparable to the exchange length of cobalt. Magnetization measure-
ments and calculations were performed for two sets of magnetic ring arrays: ultra-small magnetic rings �outer
diameter 13 nm, inner diameter 5 nm and thickness 5 nm� and small magnetic rings �outer diameter 150 nm,
width 5 nm, and thickness 5 nm�. Our calculations suggest that if the linear dimensions of a magnetic ring are
comparable to, or smaller than, the exchange length of the magnetic material, then only one magnetic state is
important—the pure single-domain state. Vortex and onion-shape magnetic states do not arise. For a ring of
larger diameter, magnetization reversal at zero field occurs via a vortex state. Theoretical calculations are based
on an energetic analysis of pure and slightly distorted single-domain and vortex magnetic states. The calcula-
tions have been verified by micromagnetic simulations for ultra-small and small ring geometries. The hyster-
esis curves measured for small rings are consistent with the calculations, but there is a discrepancy for
ultra-small rings. Micromagnetic simulations suggest that the discrepancies may be due to the variations in the
shape and size of the ultra-small rings in the measured sample.
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I. INTRODUCTION

In recent times, the magnetic ring geometry has been ex-
tensively studied, mostly because of its possible applications
in magnetic memory devices. The application in memory
devices is mostly driven by the fact that near zero-field
value, a narrow nanoscopic magnetic ring can be in a flux
closure vortex magnetic state.1–3 A magnetic ring in vortex
state has zero total magnetization and therefore each ring in
an array acts like an individual memory element. Ring ge-
ometry is used in at least one current design of magnetic
random access memory �MRAM�.4

In addition to the vortex magnetic state, a small magnetic
ring also forms two other stable magnetic states: the “onion
state,” characterized by the presence of two head-to-head
domain walls, and the single-domain �SD� state, as shown in
Fig. 1.5 If the ring’s width and thickness are comparable to
the characteristic length �exchange length� of the parent mag-
netic material then the magnetic transition processes between
these states are expected to be different from those in rela-
tively larger size nanoscopic rings ��100 nm�. We have
found that if the ring sizes �diameter, width, and thickness�
are sufficiently small then vortex and onion magnetic states
have higher energies and do not arise. Therefore, magnetic
transition processes in such ultra-small rings �outer diameter
13 nm� involve only saturating SD states. In the case of
small rings �outer diameter 150 nm�, having width and thick-
ness comparable to those of ultra-small rings, the magnetic
transition process is different: it occurs between two saturat-
ing SD states via the formation of vortex state near zero
field. These conclusions are based on the calculation of total
magnetic energies for various possible magnetic states and
the measurement of magnetization as a function of applied
field.

Due to the circular geometry of rings, shape anisotropy is
absent; if the parent magnetic material is of polycrystalline
origin then magnetocrystalline anisotropy is limited to ran-

dom grains and can also be ignored.6 For polycrystalline
magnetic rings at zero field, the only competing energy terms
are magnetostatic energy and quantum-mechanical exchange
energy.7,8 Exchange energy favors the parallel alignment of
spins while the magnetostatic energy favors the circular
magnetization.

In this paper, we present a study of magnetization and
magnetic transitions in ultra-small and small polycrystalline
magnetic, Co, rings of width and thickness comparable to the
exchange length of Co �lex=3.8 nm�.9 The outline of this
paper is as follows: first we discuss the fabrication of ultra-
small and small ring arrays. The magnetic rings are fabri-
cated using copolymer template, angular metal deposition,
and ion-beam etching technique. Using this fabrication tech-
nique, we have been able to fabricate arrays of rings at two
geometrical scales: ultra-small rings with outer diameter 13
nm, ring width 4 nm, and thickness �5 nm and small rings
with outer diameter 150 nm, ring width 5 nm and thickness
�5 nm. In the following sections, magnetization measure-
ments of both ultra-small and small rings arrays are dis-
cussed. Experimental data are compared with detailed theo-
retical calculations for these rings. The theoretical
calculations are based on the energetic analysis of possible
magnetic states with the underlying assumption that only the
lowest energy magnetic states will be excited. Different mag-
netic states in a ring structure are obtained using reasonable
models of magnetization distortion on the ring’s circumfer-
ences. Finally, experimental and theoretical results are dis-
cussed along with micromagnetic simulations in Sec. V.

II. FABRICATION PROCEDURE

Recently small ferromagnetic rings have been fabricated
by electron-beam lithography,1,10 evaporation over spheres,11

and other methods.12,13 Our nanoring fabrication technique is
described in detail in an earlier work.14 The fabrication pro-
cess for both ultra-small and small rings involves the cre-
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ation of a nanoporous polymer templates, angular deposition
of desired material, Co, onto the wall of the pores and ion-
beam etching technique to remove undesired material from
the top of the template. In the case of ultra-small rings, the
template is created from a self-assembled diblock copolymer
film15 which was 36 nm thick and had pores of average di-
ameter 13 nm, separated by 28 nm. In the case of small rings,
the template is created by electron-beam lithography
technique16 using 40 nm thick copolymer film PMMA
�poly�methyl-metha-acrylate��. In the case of copolymer
PMMA film, the pore size was 150 nm and the separation
between pores �center-to-center distance� was 350 nm.

The angular deposition of the desired material onto the
walls of the nanopores was the most critical step of this
fabrication scheme. During the angular deposition process,
the substrate �a thin silicon wafer with polymer template on
it� was uniformly rotated about the axis perpendicular to its
plane. Angular deposition depends on a critical deposition
angle �c=tan−1�D /h�, where D and h are the diameter and
height of the nanopore, respectively. In our experiment D
=13 nm and h=36 nm for the fabrication of ultra-small
rings and D=150 nm and h=40 nm for small rings, result-
ing in the critical angles of �c�20° and 75°, respectively.
Angles of �=23° and 75° were chosen for the fabrication of
ultra-small and small rings, respectively. The thickness of
deposited Co material on the walls of nanopores was in the
range of 4–5 nm �based on the calibrated quartz-crystal mi-
crobalance reading�. After material �cobalt� deposition, cali-
brated ion-beam etching was used to get the desired thick-
nesses of both ultra-small and small rings. The desired
resulting thicknesses of both ultra-small and small rings were
�5 nm.

After ion-beam etching, the small ring samples were
rinsed in acetone solvent to remove the remaining polymer
residues and characterized by a field-emission scanning elec-
tron microscope �FESEM� �Fig. 2�. Structural characteriza-
tion of ultra-small rings was done using transmission elec-
tron microscope �TEM� �Fig. 2�. Sample preparation of ultra-
small rings for TEM imaging involved the transfer of ring
templates onto electron transparent substrates. It was a diffi-
cult process and can be found in detail elsewhere.14 The
transfer of ring templates on electron transparent substrates
also resulted in the loss of rings. For the magnetic measure-
ment process, ultra-small rings were not transferred to an
electron transparent substrate.

III. MAGNETIZATION MEASUREMENTS
AND DATA ANALYSIS

Magnetic measurements of ultra-small and small rings ar-
rays were carried out in a superconducting quantum interfer-

ence device �SQUID� magnetometer with base temperature
1.8 K and with the applied field in the plane of the rings.
Figures 3 and 4 show magnetization measurements at T
=2 K and T=300 K for arrays of ultra-small and small
rings, respectively. The data shown have been corrected for a
linear diamagnetic background arising from the thin silicon
wafer �500 �m�. No magnetic hysteresis was observed in
magnetization measurements at room temperature, 300 K.

(a) (b) (c)

FIG. 1. �Color online� Magnetic states of nanorings. �a� Vortex
magnetic state. �b� Onion magnetic state, with domain walls. �c�
Single-domain magnetic state. (a) (b)

FIG. 2. �Color online� Images of rings. �a� TEM image of ultra-
small rings and some empty diblock pores �rings came out of these
pores during sample preparation for imaging�. �b� FESEM images
of small rings with thin wall.

-1.0

-0.5

0.0

0.5

1.0
M

/M
s

-4000 0 4000

Field (Oe)

T = 2 K

1.0

0.5

0.0

-0.5

M
/M

s

-4000 0 4000

Field (Oe)

T = 300 K

(a)

(b)

FIG. 3. �Color online� In-plane magnetization measurements for
an array of ultra-small Co rings. �a� Measurements at 2 K. �b�
Measurement at 300 K.
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For arrays of ultra-small rings, the coercivity drops to zero
above 20 K �data not shown here�. Since interesting magne-
tization behaviors were observed only at low temperature
�2 K�, where thermal fluctuations are negligible, the remain-
der of the paper will focus on interpreting the low-
temperature magnetization data.

As we can see in Figs. 3�a� and 4�a�, the hysteresis curve
is narrower near zero-field value than it is at saturation. Simi-
lar behavior is observed in nanoscopic narrow rings.17 In
relatively larger size nanoscopic rings, it is observed that the
magnetic state is a single-domain state at saturation and as
the field is decreased, the ring’s magnetic state transforms to
an “onion shape,” and finally forms the flux closure vortex
state near zero field �Fig. 1�.3,4 In general, magnetic transi-
tion processes in a small magnetic ring depend on the ring’s
diameter, width, thickness and ferromagnetic exchange
length.18

In order to understand the magnetization data, shown in
Figs. 3 and 4, and also to see if the magnetic transition pro-
cesses in these cases are similar to what was observed for
nanoscopic narrow rings, we calculate the total energy of a
cobalt ring for possible magnetic states as a function of ap-
plied field. For any shape of body, those magnetic configu-
rations which are energetically favored are dominant in de-
termining the magnetic behavior.5 In general, the magnetic

state of a ring will be determined by the competition between
exchange energy, magnetostatic energy, Zeeman energy, and
magnetocrystalline energy. The exchange energy contribu-
tion favors the parallel alignment of the local magnetization
m over the entire body while magnetostatic energy favors
configurations where the magnetization follows a closed path
inside the body, so that no net magnetic moment is produced.

As mentioned before, a magnetic ring exhibits three mag-
netic states in general: the uniformly magnetized SD state,
the onion state, and the flux closure vortex state �Fig. 1�. We
calculate the energies of these three states as functions of
applied field. For this purpose, we first consider an ultra-
small ring. Since the thickness �5 nm� and width �4 nm� of
the ultra-small ring are comparable to the exchange length,
lex, of Co material �lex=3.8 nm�,9,19 magnetocrystalline an-
isotropy can be ignored for simplicity. For an ultra-small
ring, the energetic analysis described below shows that only
single-domain states are of significance at fields near zero;
the energies of onion and vortex states lie above. An impor-
tant underlying assumption in the calculation of energy is
that since the thickness and width of the ring are comparable
to the exchange length for cobalt, there is no variation in
magnetization along the easy axis of the ring i.e., the mag-
netization pattern is purely two-dimensional in nature.

In dimensionless form, the free energy for a magnetic
system of volume V is given by19

E = Eex + Ean + Em + Ezeeman

=
1

V
� � lex

2

2
��m2� + �f�m� −

1

2
�hm • m� − ha • m�d3r .

Here Ms is the saturation magnetization of the material
and m=M /Ms. hm=HM /Ms and ha=Ha /Ms are dimension-
less magnetic fields. Ha is the applied magnetic field, and HM
is the magnetic field produced by the magnetization of the
sample. Energy is measured in units of �0Ms

2V therefore E
= �Energy /�0Ms

2V� is a dimensionless quantity. �
=2K1 /�0Ms

2=Han /Ms, where K1 is the first crystalline aniso-
tropy constant �which is taken to be zero for simplicity�. The
exchange length lex= 	�2A /�0Ms

2�, where A is the exchange
stiffness constant. Numerical values of relevant parameters
are following: Ms=1400�103 A /m, lex=3.8 nm, and ha is
the ratio of the applied field in A/m to 1400�103 A /m
�which corresponds to 18000 Oe�. Geometrical parameters
for ultra-small and small ring are: R1 �inner
radius,ultra-small ring�=2.5 nm, R2 �outer radius,
ultra-small ring�=6.5 nm, t �thickness,ultra-small ring�
=4 nm, R1 �inner radius, small ring�=70 nm, R2 �outer
radius, small ring�=75 nm and t �thickness, small
ring�=5 nm.

For the uniformly magnetized SD state, the exchange en-
ergy is zero and the total energy is the sum of the magneto-
static and Zeeman contributions.

ESD = Em + Ezeeman, �1�

=0.2 − ha. �2�

In the above equation, the dimensionless magnetostatic en-
ergy Em=0.20 was obtained by numerical integration of the
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FIG. 4. �Color online� �a� Magnetization measurements data for
small rings at 2 K. �b� Magnetic measurement at 300 K.
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energy density, which may be written as half the product of
�magnetic� charge density and magnetostatic potential. The
�surface� charge density was taken to be that of two oppo-
sitely charged ribbons on the ring’s inner and outer surfaces,
while the volume charge density is zero. We calculate the
magnetostatic potential at an arbitrary point of the ring and
then numerically integrate the energy density over the two
ribbons.

For the vortex state, the magnetostatic, domain wall, and
Zeeman energy contributions are all zero. Therefore, the total
energy is solely exchange energy and is independent of the
applied field. The exchange energy may be calculated
analytically.

Evortex = Eex, �3�

=
lex
2

R2
2 − R1

2 ln
R2

R1
. �4�

To calculate the energy of the onion configuration, we
separate it into two parts: the ring arms and the domain walls
�DW�. The contributing energy terms are exchange, Zeeman,
and magnetostatic. Exchange energy density is proportional
to �m2, so the vortex state and the ring arms of the onion
state have the same exchange energy. The Zeeman energy is
proportional to the cosine of the angle between the applied
field and a line joining the two domain walls. The energy of
onion magnetic state is

Eonion = Eex + Ezeeman + Em�ringarms� + EDW

=
lex
2

R2
2 − R1

2 ln
R2

R1
� −

2

�
�ha� + Em�ringarms� + EDW.

The line joining the domain walls has been taken to be in the
direction of the applied field. Both Em�ringarms� and EDW are
positive: each increases the total energy of the onion state.

The energies of the SD and vortex states, together with a
lower limit to the onion state energy, are plotted as functions
of the dimensionless applied field ha in Fig. 5. The lower
limit is obtained by neglecting the domain wall and magne-
tostatic terms. If the domain walls were not lined up with the
applied field, the slope of the onion curve would be smaller
in magnitude. This figure suggests that at a given applied
field the energy landscape has three local minima, with the
SD state being lowest in energy. As the applied field is swept
through zero, the vortex and onion magnetic states are not
excited. Hence the corresponding magnetic hysteresis curve
would correspond to a transition from one SD state to an-
other SD state of opposite polarity, possibly by a uniform
rotation of magnetic spins.

We have also carried out similar energy calculations for
small rings. As mentioned in the fabrication section, a small
ring’s width �5 nm� and thickness �5 nm� are comparable to
those of an ultra-small ring and therefore comparable to the
exchange length of Co. However, the outer diameter of a
small ring �150 nm� is an order of magnitude larger than the
diameter of an ultra-small ring �13 nm�. Based on the energy
calculations, the calculated energies of the SD, onion, and
vortex magnetic states are plotted as functions of magnetic

field in Fig. 6. From this figure, the magnetic transition oc-
curs between two saturating SD states via the formation of
an onion state at intermediate field and a vortex magnetic
state near zero field. For a small ring, excitation of the vortex
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FIG. 5. �Color online� Magnetic energies of ultra-small rings.
Energies of SD, vortex, and onion states are plotted as functions of
dimensionless applied field ha. �The onion curve is a lower limit—
see text.�
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FIG. 6. �Color online� Energy plot for a small ring of diameter
150 nm, width 5 nm, and thickness 5 nm. For such a ring, the
magnetic transition occurs via the formation of onion state, and
finally to vortex state near zero field.
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magnetic state is primarily due to the dominance of the mag-
netostatic energy term in the overall energy.

In the previous paragraphs, we discussed the energies of
possible magnetic states for two magnetic rings of different
lateral dimensions. It was found that the magnetic transition
processes in these rings are different. At sufficiently high
applied field the magnetization is saturated and the ring’s
magnetic state is pure single domain. As the field is reduced
from its saturation value, the ring’s magnetic state may no
longer be purely single domain. The pure single-domain state
will distort in order to minimize the total energy, which in-
cludes magnetostatic, exchange, and Zeeman energy terms.
Near zero field, these competing energy terms determine the
magnetic state of the ring and thus the magnetic transition
process. Similarly, if the original magnetic state of a ring
were a pure vortex state �for example at zero field� then
changing the applied field would distort the vortex state
which would eventually become a pure single-domain state
at saturation. Then an important question arises: are these
intermediate �distorted� magnetic states stable i.e., lower in
energy than the pure SD and vortex states, respectively.

In Sec. IV, we calculate the energies of distorted SD and
vortex states using a reasonable model of magnetization dis-
tortion in an ultra-small magnetic ring. It is found that small
distortions in the pure SD and vortex states lead to higher
energy distorted magnetic states; pure SD states are always
the lowest energy magnetic states in an ultra-small magnetic
ring.

IV. DISTORTED SINGLE-DOMAIN AND VORTEX STATES

For an ultra-small ring, at very high applied field the mag-
netic state is a saturated single domain �pure SD state�. When
the field is reduced from the saturation value, the pure SD
state becomes distorted. A schematic description of this phe-
nomenon is shown in Fig. 7. In this figure, we call the mag-
netic state at intermediate field value as the “distorted single-
domain state.” Figure 8�a� shows how the spin direction �
depends on the azimuthal angle 	 specifying positions along
the circumference of the ring. At position 	, ��	� is the
angle between the direction of the spin and the direction of
the applied field �the X axis�.

It is assumed that the magnetization direction in a ring
does not vary in the radial direction. Thus all the magnetic
spins at a given 	 point in the same direction � with respect

to the direction of applied field. Both � and 	 are in the
range 0 to 2� �or −� to ��. It will be assumed that in the
distorted single-domain state � varies only slowly with 	.
We seek a function, �= f�	�, which will give us a magneti-
zation distribution as shown in the profile of Fig. 8�a�. Keep-
ing in mind that the profile of magnetic spins shows oscilla-
tory behavior, we chose the following function for the
variation in angle � as a function of azimuthal angle 	:

��	� = − 
 sin�2	� , �5�

mx�	� = cos���	�� �6�

(a) (b) (c)

h
Field value
reducing

or,

Saturating
field value

Intermediate
field value

Near zero
field value

FIG. 7. �a� At very high-field value, the magnetic state of ring is
single domain. �b� When the field is reduced then possible magnetic
state may be a distorted SD state. �c� Near zero-field value, the
magnetic state of an ultra-small ring can be either a vortex state or,
rotated single domain �SD�.
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FIG. 8. �a� The one-dimensional profile of magnetic spins in a
distorted SD state. ��	� is the angle between a spin at azimuthal
angle 	 and the applied field axis �X axis�. In this model, the angle
� is supposed to be slowly varying along the circumference of the
ring. �b� In this picture, mx is plotted as a function of 	 for two
different values of distortion parameter 
=0.2 �dark gray curve� and
0.5 �light gray curve�. Magnetic spin arrangements on the circum-
ference of a ring for different values of distortion coefficients �0.0,
0.2, and 1.0� are shown in the inset.
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=cos�− 
 sin�2	�� , �7�

where 
 is the distortion coefficient and X is the direction of
the externally applied magnetic field. The saturated single-
domain state is described by 
=0, with the vector m being in
the direction of applied field. It is assumed that in the dis-
torted state the directions of the magnetization vectors are no
longer along the X axis, but their magnitudes are unchanged.
Figure 8�b� shows mx as a function of 	 for two different
distortion parameters 
=0.2 and 0.5. The corresponding spin
directions along the circumference of a ring are as shown in
the inset of Fig. 8�b�. The distortion described by Eqs. �5�
and �6� would appear to be a plausible one.

In zero applied field, the total dimensionless energy, E�
�,
of a distorted SD state is the sum of two terms.

E�
�=Eex�
�+Ems�
� �As mentioned in Sec. III, we ig-
nore the crystalline anisotropy term in the expression for the
total energy�. Exchange and magnetostatic energies have
been calculated as a function of distortion coefficient �
� for
the ultra-small ring geometry. In Fig. 9, exchange energy,
magnetostatic energy, and total energy are plotted as a func-
tion of distortion coefficient, 
. As we see in this figure, in
the pure SD state �
=0� the exchange energy is minimum
�zero� but the magnetostatic energy is maximum �for positive

�. With increasing distortion, the exchange energy increases
but the magnetostatic energy decreases. Overall, the total en-
ergy of distorted SD state increases with increasing value of

. We conclude that for perturbations of this particular form,
at zero applied field the minimum-energy state is still a pure
SD state.

Exchange, magnetostatic, and Zeeman energies depend on

 in the case of a distorted single-domain state, and 
 de-
pends on the applied field. Near zero field, the total energy is

found to be minimum for 
 very close to zero. So even in the
presence of an applied field, pure SD state is still of lower
energy than the distorted SD states. For different values of 

�pure and distorted SD states�, the total energy of an ultra-
small ring is plotted in Fig. 10 as a function of applied mag-
netic field. Our calculations suggest that distorted states with

 greater than zero are always higher in energy than the pure
SD state. Perhaps the magnetization does distort, but to some
other shape, that we did not take into account.

Now we want to check whether or not distortion in a pure
vortex state leads to a state of lower energy. A possible sce-
nario is that near zero field the magnetic state of an ultra-
small ring is already a vortex state and that as the applied
field changes the ring makes a transition to a saturated
single-domain state via the formation of distorted vortex
state. For this purpose, we consider another realistic model
that involves a vortex distortion coefficient, 
v. In this
model, the vortex magnetization state is given by

mx = cos��� ,

��	� =
�

2
+ 	 − 
v cos�	� , �8�

where once again ��	� is the angle between the direction of
the magnetization vector and the field direction �applied
along the X axis�. 
v=0 corresponds to no distortion and
��	�=� /2+	. Again the total energy of an ultra-small ring
in zero field consists of exchange and magnetostatic energy
terms �ignoring the magnetocrystalline anisotropy energy
term�. For distorted vortex states the exchange energy as a
function of 
v is given by the following equation:

Eex�
v� =
�1/2�lex

2

��R2
2 − R1

2�
��2 + 
v

2�ln
R2

R1
. �9�

Magnetostatic energies for distorted vortex states are cal-
culated by numerical integrations �as explained previously�.
In Fig. 11, we have plotted the total energy of distorted vor-
tex states in zero field as a function of vortex distortion co-
efficient 
v. As we see in this figure, the pure vortex state is
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FIG. 9. �Color online� Energies of pure and distorted SD states
for an ultra-small magnetic ring are plotted in this figure as a func-
tion of distortion coefficient 
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FIG. 10. �Color online� In this figure, energies of pure SD state
and distorted SD states are plotted as a function of field.
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the lowest energy state in zero field. In the following para-
graph we will compare the energies of pure and distorted
vortex states in the presence of a changing applied field.

In the presence of a field, the total energy consists of three
terms,

E�
v� = Eex�
v� + Ems�
v� + Ezeeman�
v� .

Zeeman energy for distorted vortex states is given by

Ezeeman�
v� = −
ha

2�
2�BesselJ�1,
v� . �10�

Total energy, including the Zeeman energy, for pure and dis-
torted vortex states �for distortion parameters 
v=0.2 and
0.3�, along with the total energy of pure SD states, are plot-
ted in Fig. 12 as a function of applied field. Some interesting
behaviors are observed in this figure.

Near zero field, pure vortex state is still the lowest energy
state. At a field value of 0.2 or so the state with distortion

v=0.2 �light blue� crosses over to become lower in energy
than the state with distortion 
v=0.0. At a somewhat higher
field the purple curve with distortion parameter 
v=0.3 be-
comes the one with lower energy. This is not exactly the case
for distorted SD states �Fig. 10�, as discussed earlier. In the
case of single-domain states, pure SD states always remain
the lowest energy states as the applied field is changed.
Therefore distorted single-domain states can be ignored in
considering the magnetic transition in an ultra-small mag-
netic ring. Thus there are three important states to consider:
pure SD state, pure vortex state and distorted vortex state. As
inferred from Fig. 12, it is concluded that pure SD states are
always the lowest energy states.

V. DISCUSSION

Based on the above analysis, it is found that the magnetic
transition process for ultra-small ring would involve pure SD
states of opposite polarity and the transition occurs via the
rotation of SD state. Similar calculations for small rings sug-
gest that the magnetic transition process in this case would
be from one SD state to another SD state of opposite polarity
via the formation of onion state at intermediate field and pure
vortex state near zero field �Fig. 6�. In the experimental data
for small ring �Fig. 4�a��, we see that the magnetic transition
starts occurring around �1000 Oe of field value but the cur-
vature of magnetic transition is very large.

We have verified our calculations using micromagnetic
simulations. Simulations were carried out for both ultra-
small and small ring geometries and were computed by solv-
ing the micromagnetic equilibrium equation for each applied
field on a square mesh, with a 0.1 nm cell size for ultra-small
ring and 2 nm for small ring. The OOMMF package20 was
used for the micromagnetic simulations. The intrinsic param-
eters used for Co are: Ms=1400�103 A /m, A=17
�1012 J /m, and K1=0. Micromagnetic simulation results
are shown in Fig. 13 and are in reasonably good agreement
with our energetic analysis. Figure 13�a� shows that the mag-
netic transition in an ultra-small ring occurs via the uniform
rotation of SD state. In a small ring, the magnetic transition
process involves the formation of vortex magnetic state and
the onset to vortex state transition starts at �1000 Oe.

The above analysis and micromagnetic simulations rea-
sonably explain the magnetic transition process in a small
ring. In the case of an ultra-small ring, however, the experi-
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FIG. 11. �Color online� Energies of pure and distorted vortex

states, in zero field, are plotted in this figure as a function of dis-
tortion coefficient 
v. Magnetic spin arrangements on the ring’s
circumference for two different values of distortion coefficients �0.0
and 0.4� are also shown in the inset.
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mental data �Fig. 3�a�� is not quite the same as expected from
the energy calculations. The explanation for this discrepancy
lies in the variation in shapes and sizes of ultra-small rings
�outer diameter varies between 12–14 nm�. Due to the ultra-
small nature of these magnetic elements �as compared to
exchange length�, even a slight distortion in the shape and
size causes a change in the magnetic transition process of
individual element. To illustrate this fact, we have performed
micromagnetic simulations using the same intrinsic param-
eters �Ms and A� for two different ultra-small rings: in first
case, the outer diameter of the ring is 14 nm along X axis and
12 nm along Y axis and in second case, the outer diameter of
ring is 12 nm with a slight distortion along Y axis. The simu-
lation results are shown in Fig. 14. In both cases, magnetic
transition occurs via the rotation of an SD state, vortex state
does not form. In this figure, we clearly see that small
changes in the shape and size of an ultra-small ring strongly
affect the magnetic transition process. In the magnetic hys-
teresis measurements, we observe the collective behavior of
an array. Since magnetic rings of different shapes and sizes
behave differently, the observed magnetic hysteresis curve
appears different than the calculated one for a perfect ultra-
small ring. It is also possible that this variation in the shapes
of ultra-small rings may lead to interring interactions. More

theoretical works are necessary to further understand it. Ear-
lier, Cowburn et al. studied the magnetic transition in small
magnetic disk arrays and established that the magnetic tran-
sition occurs between pure SD states.21

Magnetic measurements at room temperature for both
ultra-small and small rings do not show any magnetic hys-
teresis. At high temperature, thermal fluctuations dominate
the magnetic energy of these rings. This cancels out any
remnant magnetization at zero field. In the low-temperature
magnetic hysteresis curve for ultra-small ring arrays �Fig.
3�a��, there is a slight asymmetry between positive and nega-
tive fields. This is possibly due to a weak exchange bias
phenomenon. On the surface of the ring, partial oxidization
of Co material into CoO creates an interface of ferromag-
netic �FM� �Co�/antiferromagnetic �AFM� �CoO� layer, re-
sulting in a very weak exchange bias phenomenon. Similar
behavior has recently been reported in small ferromagnetic
disks.22

Now we summarize the above analysis for ultra-small and
small ring geometries: a magnetic ring’s geometrical param-
eters and the exchange length of the parent magnetic material
decide which magnetic state has the lowest energy at zero
field. Increasing the diameter reduces both the magnetostatic
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FIG. 13. �Color online� �a� Micromagnetic simulated magnetic
hysteresis loop for ultra-small ring. Magnetic transition process in
an ultra-small ring occurs between pure SD states via the uniform
rotation of spins. �b� Hysteresis loop generated using micromag-
netic simulations for small ring. In this case, magnetic transition
occurs via the formation of vortex magnetic state near zero field.
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FIG. 14. �Color online� �a� Magnetic hysteresis curve generated
using micromagnetic simulations for slightly asymmetric ultra-
small ring �outer diameter=14 nm along X axis and 12 nm along Y
axis�. The magnetic transition occurs between pure SD states of
opposite polarity. �b� Simulated hysteresis curve for another slightly
asymmetric ultra-small ring �outer diameter=12 nm, distorted
along Y axis�.
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and exchange energies but the exchange energy decreases
more rapidly and therefore magnetostatic energy starts domi-
nating as the overall diameter of the magnetic ring increases.
In the above analysis it has been assumed that for both small
and ultra-small rings the magnetization pattern is purely two-
dimensional �2D�; the magnetization vector does not cant out
of the ring’s plane. For a magnetic ring of width and thick-
ness comparable to the characteristic length �exchange
length� of the parent magnetic material, this assumption is
quite reasonable. As a consequence, we do not observe the
“triple point”—defined as the point where the energies for
onion, vortex, and uniform out-of-plane magnetization are
same—as recently reported by other authors based on theo-
retical calculations for the ring geometry.23,24

To have a complete understanding of these magnetic tran-
sition phenomena, one needs to solve the following integrod-
ifferential equation25,26:

lex
2 d2�

d2	
+ cos����2hM − sin����2hM − sin����2hax = 0,

hM��,	� =� d	����,	��K��,	,	�� , �11�

where � is the radial coordinate, � is magnetic pole density
�depending on azimuthal position 	��, the kernel K is an
explicit but complicated function involving � and 	 and X is
the direction of applied magnetic field. By solving these in-
tegrodifferential equations, we can get the functional ��h ,	�
and since m�h�=cos �, �m=1�, so we can get m �magnetiza-
tion� as a function of h �dimensionless magnetic field�. Fu-
ture works discussing the solution of above integrodifferen-
tial equations would be very desirable.
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