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We study the transport properties of a neutral graphene sheet with curved regions induced or stabilized by
topological defects. The proposed model gives rise to Dirac fermions in a random magnetic field and in a
random scalar potential acting like a space-dependent Fermi velocity induced by the curvature. The last term
leads to a singular long-range correlated disorder with special characteristics. The Drude minimal conductivity
at zero energy is found to be inversely proportional to the density of topological disorder, a signature of
diffusive behavior.
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I. INTRODUCTION

Since its experimental realization,1–3 graphene has been a
focus of intense research activity both theoretically and ex-
perimentally. The origin of this interest lies partially in the
experimental capability of exploring the transport properties
that show a set of interesting features related to disorder and
which open the way to graphene-based electronics.4

One of the most intriguing properties of graphene is the
observation of a minimal conductivity at zero frequency in
undoped suspended samples that in early measurements was
argued to have a universal value of the order of e2 /h �Refs.
2, 5, and 6� independent of the disorder concentration and a
factor of � bigger than the one predicted by theory.7–17 Other
experiments in both mechanically deposited graphene and
graphene grown on a substrate3,18,19 have found a bigger dis-
persion in the coefficient of the universal behavior while
more recent calculations20–22 have casted some doubts on the
disorder dependence of the numerical coefficient and the ac-
tual situation remains unclear.

Another peculiarity of most of the graphene samples is
the existence of mesoscopic corrugations19,23,24 whose pos-
sible influence on transport properties only now starts to be
explored.23,25–28 Although the observed ripples were invoked
from the very beginning to explain the absence of weak lo-
calization in the samples,6,29,30 there have been so far few
attempts to model the corrugations based on either the
curved space approach with31,32 or without topological
defects,33 or the theory of elasticity.23,34–36 The possible
physical implications of the ripples in connection with the
charge anisotropies has been revisited in very recent
works.37,38

In Refs. 31 and 32, we proposed a model for rippled
graphene based on the presence of defective rings �pentagons
and heptagons� in the samples. These types of topological
defects were observed before in nanotubes and in bombarded
graphite and are known to be a natural way to get rid of
tensions in the hexagonal lattice.39 They have also very re-
cently been produced and observed with transmission elec-
tron microscopy in suspended graphene samples.40 It is also
natural to think that some of the defects that were either
present in the graphite sample or formed during the very
energetic procedure of mechanical cleavage, stay quenched
in the two-dimensional samples.

It is clear by now that the low-energy electronic properties
of graphene are very well described by the massless Dirac
equation in two dimensions, a fact coming from the symme-
tries of the hexagonal lattice, and also obtained in the tight-
binding approximation.41 It is also known that the Dirac
points are very robust to deformations of the lattice42 so we
will model curved graphene assuming that the Dirac points
are not affected by the presence of ripples and hence that the
curved samples can be described by writing the Dirac equa-
tion in the given curved surface.43 Within this formalism, we
studied recently the electronic structure of the sample with
topological defects31,32 and that of graphene with smooth
curved regions.33 In the last work, we emphasized the fact
that curvature gives rise not only to an effective magnetic
field, a property known from the early times of
graphene,44–46 but also to an effective position-dependent
Fermi velocity which can have strong influence on the physi-
cal properties of the system.

In this work, we continue studying the physical properties
of curved graphene within the geometrical approach. The
electronic properties of the system were explored in Refs. 31
and 32 by computing the two-point Green’s function of the
electron. There, we were able to make advances keeping a
fixed number of defects at given positions of the lattice.
Studying the transport properties is a much more difficult
task. We need to assume a density of defects with some
statistical distribution and to average over defects. We apply
the standard techniques of disordered electrons47 to rippled
graphene by averaging over the random effective potential
induced by curvature. We will make special emphasis on the
case of having topological defects. The smooth curvature
case can be implemented easily. We find that averaging over
the different metric factors in the case of having a nontrivial
metric induced by topological defects gives rise to a long-
range correlated interaction that affects severely the one-
particle properties of the system. We compute semiclassi-
cally the zero frequency conductivity and find that it depends
on the inverse of the density of disorder, a behavior charac-
teristic of diffusive systems. We argue that even if the Drude
value obtained in this work is renormalized by quantum cor-
rections to the universal minimal conductivity, there will still
be a region in parameter space where this model differs from
the ones studied previously.

This paper is organized as follows. In Sec. II we review
the model of topological defects and establish the effective
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Hamiltonian. In Sec. III, we define the statistical properties
of the fields induced by the defects and apply the replica
trick to get the effective four Fermi interaction. We see that
the interaction is anisotropic and singular in the forward di-
rection, a behavior due to the long-range character of the
conical singularities. We discuss this issue and extract the
interaction coefficients that will appear in the computation of
the lifetime and the density of states of the disordered sys-
tem. Section IV contains the semiclassical expansion of the
sigma model to get the low-energy behavior of the system.
We discuss two possible saddle points and compute the ef-
fective potential to establish the symmetry-breaking mini-
mum, a basic point to the rest of the calculation. From there,
we deduce, after some calculations detailed in the Appendix,
the diffusive behavior of the system. Section V contains a
discussion of the results and open questions.

II. MODEL

In this section, we follow closely Refs. 31 and 32 to de-
scribe the explicit form of the potential generated by the
defects and its statistical properties. The model for corru-
gated graphene is based on the presence of defective carbon
rings at arbitrary positions in the lattice. It is known that the
substitution of an hexagon by an n-sided polygon with n
greater �smaller� than six gives rise to locally curved portions
in the sample with positive �negative� curvature. It was ar-
gued that the presence of an equal number of heptagons and
pentagons would keep the sample flat in average and mimic
the corrugations observed in the free-standing samples. In
order to study transport properties, we need to consider a
density of defects located at random positions.

The behavior of the electrons in curved graphene is de-
scribed by the Hamiltonian

H = ivF� d2r�g�̄����� − ���r��� . �1�

The curved Dirac matrices ���r� are related with the usual
constant matrices �a by

���r� = ea
��r��a,

where ea
� is the tetrad constructed with the metric tensor. It is

this factor in combination with the determinant of the metric
�g that gives rise to a long-range correlated scalar field. In a
tight-binding scheme, this term can be modeled as a global
modulation of the nearest neighbor hopping37 or of the aver-
age distance between carbon atoms38 induced by curvature.
The term �� contains the spin connection and the possible
extra gauge fields induced by the defects.39 It is given by

���r� = ���r� − ��A�
��r� , �2�

where �� is due to the spin connection and the nonabelian
part ��A�

� is related to the holonomy and will be discussed
later.

In Refs. 32, we described the curved space generated by
an arbitrary number of topological defects located at posi-
tions r j by the metric

gij = e	�r�
ij , �3�

where the conformal factor 	�r� takes the form

	�r� = �
j=1

N
� j

2�
log� r − rj

a� � , �4�

where � j is a constant related to the defect �or excess� angle
of the disclinations and a� is a constant of the order of the
lattice spacing, interpreted as the radius of the “core” of the
defect. The specific form of the conformal factor �4� gave
rise to strongly diverging one-particle properties such as the
local density of states. We will see that in the process of
averaging over disorder one-particle properties will remain
singular while two-particle properties, such as the Drude
conductivity, will be finite.

It is well known that the presence of topological defects
has other consequences besides that of the inducing local
curvature to the graphene sheet. Odd membered rings mix
the two Fermi points what can be modeled by nonabelian
gauge fields.44,45 Also if various defects are present, an extra
phase appears due to the noncommutativity of the holonomy
operators associated to the valley mixing phase and the
proper Berry phase acquired by the fermions when surround-
ing the defects.48,49 All these phases are naturally incorpo-
rated in the formalism by generic external nonabelian gauge
fields A��r� in Eq. �1�. This also accounts for the classifica-
tion of the various disorder types described in Refs. 14 and
50. In the case of having an equal number of pentagonal and
heptagonal defects, it can be shown that only the �abelian�
gauge field associated to the conical singularity remains39

and we can restrict ourselves to the scattering problem
around a single Fermi point. We will comment on the pos-
sible modifications of the calculation that a more general
case would induce in Sec. V.

The value of 	� j	
� is 1
24 for both pentagon and hepta-

gon rings that differ in its sign. We use � as a perturbative
parameter around flat space and expand the determinant of
the metric g�r�, the zweibeins ea

��r�, and the spin connection
��r� in Eq. �1�. To first order in � the Hamiltonian is

H = ivF� d2r��1 + 	�r���̄�i�i� +
i

2
�̄�i��i	�r���� . �5�

Equations �4� and �5� are the basis of our calculation. We
have a term associated to the conformal factor 	�r� that can
be described in flat space as a disorder-induced modification
of the Fermi velocity, and a gauge-field-type term if we iden-
tify Ai�i	�r�. Notice that although the gauge potential Ai
seems to be a total derivative, the effective magnetic field is
not zero due to the singular form of the function 	�r� �Eq.
�4��.

III. AVERAGING OVER DISORDER

We will study the transport properties of this topologically
disordered graphene by assuming a random distribution of an
equal number of pentagons and heptagons. The statistical
properties of these topological defects were analyzed in part
in Ref. 51. It was proposed there that the Gaussian disorder
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induced by a random distribution of topological defects can
be described by a single dimensionless quantity � propor-
tional to the average fluctuations of the non-abelian-vector
potential representing a vortex at the position of the defect,

�A�r�A�r��� = �
2�r − r�� . �6�

The infrared behavior of � was analyzed in Ref. 51 and
shown to diverge logarithmically with the size R of the sys-
tem in the case of unbounded disclinations,

� = 2��0
2 log�R

l0
� , �7�

while it remains of constant value,

�  �0
2ndislb

2, �8�

in the case of having pentagon-heptagon pairs bounded into
dislocations with density ndisl and with an average distance b.

We will consider a case in which we have a random dis-
tribution of an equal number of five and seven rings not
bounded into dislocations but at average distances d such
that the “volume” occupied by virtual strings pairing the de-
fects is small compared with the total size of the sample
�d /L�2�1. This allows us to neglect the gauge fields associ-
ated to the Z3 electronic holonomy described in Refs. 48 and
49. This assumption is reasonable if the total density of de-
fects is small as should be the case in the experimental
samples that exhibit all the properties of the clean honey-
comb lattice.

The most important issue in this work is the new random
field 	�r� associated to the Fermi velocity modification
given in Eq. �4�. We will assume for this scalar field a zero
mean value �	�r��=0 and

�	�r�	�r��� = na�2 log� r − r�

a� � , �9�

where n is proportional to the areal density of defects and a�

is of the order of the lattice spacing. This correlator diverges
in both the infrared and the ultraviolet limits. It induces over
the random magnetic field Ai�r� the average

�Ai�r�Aj�r���  na�2
ij
�r − r�� . �10�

The special form of the correlator �Eq. �9�� can be under-
stood when we consider the nature of the defects. In a geo-
metrical description of defects in two-dimensional crystals,52

the equations of motion for the metric tensor gij�r� reduce to
a unique equation for the conformal factor �Eq. �4��

�2	�r� = �
j

N
� j

2�

�r − r j� . �11�

We can rewrite Eq. �4� in terms of the Green’s function
K�r−r�� of Eq. �11�,

	�r� = �
j=1

N
� j

2�
� dr�
�r� − r j�K�r − r�� , �12�

where the asymptotic behavior of K�r−r�� for distances r
�a� is

K�r − r�� � log� r − r�

a� � , �13�

what justifies Eq. �9�.
In momentum space the correlators are

�	�p�	�− p�� =
na�2

p2 , �14�

�Ai�p�Aj�− p�� = na�2
ij . �15�

Notice that the 	 term describes a new type of disorder;
Dirac Fermions in two space dimensions with a random ve-
locity, a problem that, to our knowledge, has not been ad-
dressed in the early literature.53–56

In momentum space representation the action correspond-
ing to Eq. �5� reads

S =
1

2
� d� dk �̄��,k�����0 − vF��k�����,k��

−
vF

2
� dp dk	�p��̄��,k����k� ���,k��

−
i

2
vF� dk

1

2
�̄��,k����A� �k�����,k�� , �16�

where dk
 d2k
4�2 and

	�p� =� d2x

2�
eipx log� x

a
� . �17�

The double integral in the middle term of Eq. �16� comes
from the Fourier transform of the product 	�x��x which re-
sults in a convolution

	�x��x →� 	̂�s��k − s�ds .

After reshifting the momentum, we get Eq. �16�. We inte-
grate out 	 using Eq. �14� as a quadratic action. It is inter-
esting to note that this term is similar to the interaction be-
tween curvatures in a continuous hexatic membrane where
1 /na�2 plays the role of the hexatic stiffness constant.52

Replicating the fields and integrating out 	 in Eq. �16� we
get

S = S0 + vF
2 �

2
� dk dk���k,k����̄a�i�a���̄b�i�b� , �18�

where summation over replica indices a ,b is assumed, �
=2��2na2 is a dimensionless parameter proportional to the
density of defects n and

��k,k�� = � �k + k��2

�k − k��2 −
1

4
� . �19�

The constant term in the interaction vertex �Eq. �19�� comes
from the random magnetic field and would give rise to the
standard result found in previous works. The term coming
from the Fermi velocity is anisotropic and singular when
k→k�, a signature of the infrared singularity associated to
the effect of a conical defect at infinite distances from the
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apex. Because we are dealing with elastic scattering, the
modulus of the momentum is conserved provided that the
energy � in the process is conserved. The function ��k ,k�� in
Eq. �19� can be written as a function of the difference of the
scattering angles, �
�k−�k�,

���� = � cos2��/2�
sin2��/2�

−
1

4
� . �20�

This function diverges at scattering angles �=0 �forward
scattering� and the one-particle properties of the system such
as the density of states will show anomalous behavior when
compared with their counterparts in short-ranged scattering
processes. The divergence in Eq. �20� can be regularized by
including a cutoff 
,

���,
� = � cos2��/2�
sin2��/2� + 
2 −

1

4
� . �21�

The meaning of the cutoff can be understood from the origin
of the correlator for the function 	�r� in Eq. �9�. Instead of
having a long-ranged propagator corresponding to infinite
range defects that behave like 1

p2 , we may consider a cor-
relator of the type

K�p� 
1

p2 + 
2 , �22�

which corresponds in real space to changing Eq. �13� by a
modified Bessel function of the second kind,

K�r − r�� = K0�
	r − r�	� , �23�

whose leading term in a small 
 expansion is

K�r − r�� � log�
	r − r�	� . �24�

Using Eq. �22� instead of Eq. �14�, we arrive at Eq. �21�,
where we have redefined 
 as 
=
 /k2. We can assume that
the momenta involved in the problem are of the order of the
wavelength � of the states near the Dirac points �or the lo-
calization length if those states are localized� so we can con-
sider that 
 is of the order of � /� where � is the biggest
length scale of the problem comparable to the system size L.
We will make the important assumption that ���. We will
see that the Drude conductivity is independent of 
 and then
well defined.

The free action in Eq. �18� is the usual,

S0 =� dk�̄a���0 − vF�k + i�M��a. �25�

The replica indices run from 1 to 2N. The first N indices are
associated to advanced fields �+i� in the free action�, and the
second ones to retarded fields, related to −i�, with the obvi-
ous definition of the matrix M,

M = �1 0

0 − 1
�

2N
. �26�

This � term breaks explicitly the O�2N� symmetry of the
action �Eq. �18�� leading to possible massless excitations.57

In addition to the forward divergence, the scattering func-
tion �Eq. �21�� is highly anisotropic58 which will lead us to

deal with a multichannel scattering problem in contrast to the
sort ranged scattering case where the scattering only occurs
in the s channel. We will see that despite the anisotropic
scattering the diffusion process will have an isotropic behav-
ior described by a scalar diffusion constant.

In order to keep track of the role of each channel, we
decompose ���� in harmonics,

���� = �
n

�ne−in�. �27�

We will see later that only the n=0, �1 channels will play a
role �notice that �n=�−n�. Their explicit values as a function
of the cutoff 
 are

�0 =
1



− 5/4 + O�
�, �1 =

1



− 2 + O�
� . �28�

IV. SADDLE POINT APPROXIMATION IN THE
NONLINEAR � MODEL AND RESULTS

In this section, we will construct the low-energy field
theory describing the large scale behavior of the system �i.e.,
at length scales larger than the elastic mean-free path, l� fol-
lowing standard procedures.47 The interaction term in Eq.
�18� can be written as

Sint =
1

2
�vF

2�
n
� �dk��dk���n�n�k̂��n

��k�̂���̄a�i�a���̄b�i�b� ,

�29�

where �n�k̂�=ein�k. Now we proceed to simplify the model
�Eq. �29��. The current-current interaction in Eq. �29� can be
transformed into a density-density-type term,59

Sint = −
1

2
gvF

2�
n
� dkdk��n�n�k̂��n

��k�̂�

����̄a�b���̄b�a� − ��̄a�5�b���̄b�5�a�� , �30�

where we have redefined the coupling constant as g
−2�.
The four fermi interaction in Eq. �30� can be decoupled

by means of a Hubbard-Stratonovitch transformation,

S = S0 +� dk
1

4�gvF
2 ��

n

�n�Qn
2 + �n

2�

+ i�
n

�n�n�k̂��̄�Qn − i�5�n��� , �31�

where Qn and �n are the Hubbard-Stratonovitch fields which
are 2N-dimensional matrix fields.

We can further simplify the calculations by performing a
unitary transformation that diagonalizes the fermionic part of
the action in Eq. �31�, and leaves unchanged the functional
integration measure,

� → U�, �̄ → �̂U+, Qn → UQnU+, �n

→ U�nU+, �5 → U�5U+.

Without loss of generality we will name the transformed
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fields as the original ones. Integrating out the fermionic
modes leads to the usual final form for the nonlinear � model

Seff =� Tr ln G−1 −
1

4gvF
2 �

n

�n�Qn
2 + �n

2� , �32�

where the Green’s function is defined by

G−1 = G0
−1 + i�M + i�

n

�n�n�k̂��Qn − i�5�n� �33�

and

G0
−1 = �w + vFk 0

0 w − vFk
� � 12N. �34�

Next we will make a saddle point approximation and seek
for a solution of the saddle point equation


Seff


�Qn�
= 0. �35�

In contrast to the case of isotropic short ranged scatterers7,60

where a single equation is obtained, Eq. �35� represents an
infinite number of coupled equations,

1

2gvF
2 �Qn� =� �dk�

�n�k̂�

G0
−1 + i�n

�n�n�k̂��Qn�
. �36�

In the limit �→0 and despite the fact that the scattering
mechanism is anisotropic, we can try to find a solution of the
type

�Qn� = f
n0M . �37�

Of course, the solution of the mean-field equations is not
unique and other vacua with different properties may be
found. The value of the trial function f is

f =
vFK

�0
�e2�/g�0 − 1�−1/2, �38�

where K is an ultraviolet cutoff. Now we are free to make a
choice over the mean field values of Q and �. The standard
choice is �Q0�= �S0� and ��0�=0. With this solution for �Q�
we get the lifetime

1

2�

 vFK�e2�/g�0 − 1�−1/2, �39�

which turns out to be a constant whose dependence on the
disorder strength is typically nonperturbative �−1�g�
exp�1 /g�. This value for the lifetime depends on both the
ultraviolet cutoff K, and on the infrared cutoff 
 through the
scattering coefficient �0 1


 −5 /4. The ultraviolet cutoff can
be removed by renormalization-group techniques60 but the
infrared cutoff 
 remains and the one-particle properties of
the theory depend explicitly on it.61 We will see later that the
transport properties become independent of the infrared
cutoff.62

We can now compute the averaged density of states at the
Fermi level,

��0� = −
1

N�
Im� d2k

4�2GR�k� , �40�

the index N in the denominator is the replica index that will
be taken to zero at the end of the calculation. From now on
we drop any reference to this limit.

The density of states as a function of the lifetime Eq. �39�
is

��0� =
1

g�0vF
2

1

2�
. �41�

Before proceeding to compute the quantum fluctuations
around the chiral symmetry-breaking solution of the saddle
point equations, we will make a comment on the solution
�Sn�=0. This solution leads to a vanishing density of states at
the Fermi energy and to a sublinear frequency dependence
����	�	�, with � being a function of the strength of the
disorder, a behavior reported in.53 In order to determine the
true minimum of the Q field action, we have computed the
effective potential as a function of the trial function f defined
as in Eq. �38�. This effective potential is the same as that of
the Nambu-Jona Lasinio model63–65 for ��0�=0,

Veff =
1

4gvF
2 f2 +

f2

4�
�log� f2

K2� − 1� . �42�

The result is well known. This potential has two critical so-
lutions: f =0 corresponding to a zero value for the effective
potential and a symmetry-breaking solution

f = Ke1/2−K2/2e−�/2g,

for which the value of the effective potential is Veff=− K2

4� f2.
This broken-symmetry solution equivalent to Eq. �38� is then
a minimum of the theory.

We will then proceed computing the physical properties
of the quantum field model built around the broken-
symmetry solution. We will see that the physics obtained for
this case is typically nonperturbative irrespective of the
strength of the disorder.

The technical details of the rest of the computation are
given in the Appendix. Once we have calculated the value of
the leading configuration of Qn from the saddle point Eqs.
�35�, we expand the action �Eq. �32�� around this value, set-
ting Qn= �Qn�+
Qn and retain in the expansion terms up to
second order in 
Qn,

S � �S� + 
Qn

2S�


Qn
Qm

Qm + ¯ . �43�

The � means that the functional derivative is evaluated at the
saddle point solution for Qn and �n.

The ultimate goal is to compute the action for the mass-
less modes


S =� dq
Q0
�2���0

4gvF
2 �� + Dq2�
Q0, �44�

from where we can extract the diffusion constant is D. From
Eq. �44�, we get
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D =
1

2�2

1

g��0�
1

�0 − �1
, �45�

where the coefficients �0 and �1 are given in Eq. �28� and
their difference is �0−�1= 3

4 +O�
�, hence the diffusion co-
efficient is well defined when the cutoff 
 is send to zero.

Finally, we can compute the semiclassical value for the
static dc conductivity using the Einstein relation for the two
diffusive channels 
Q0 and 
�0 in Eq. �30�

�dc = 4
e2

�
��0�D =

4e2

h
2

4

3�g
. �46�

The factor of 4 comes from the spin and valley degeneracy
and the factor 2 comes from the two diffusive channels. Be-
cause of the static nature of the disorder potential, the con-
ductivity can acquire an extra factor of � coming from the
chiral anomaly. This factor is independent of the disorder and
would modify so that the complete conductivity is

�dc 
4e2

h

1

� + g̃
, �47�

where g̃ is proportional to g=4��2na2, which contains in-
formation about the type of disorder ��� and the density of
disorder n.

V. DISCUSSION AND OPEN QUESTIONS

In this work, we have addressed the effects of curvature
on the transport properties of corrugated graphene sheets. We
have shown that coupling the Dirac field to a curved space
gives rise to an effective potential whose general form and
statistical properties depend on the metric. The main feature
of the geometrical description is the appearance of an effec-
tive long-range correlated random scalar field coupled to the
kinetic energy term in the Hamiltonian.

Smooth curved regions in graphene give rise to standard
short-range correlated disorder as the one studied in the
literature.7 The presence of topological defects in the sample
either as the main source of curvature or as a way to stabilize
the ripples in the mechanically deposited samples gives rise
to singular, long-range correlated disorder. The static con-
ductivity of the system at the neutrality point implies diffu-
sive behavior. A similar nonuniversal behavior has been
found in the same system21,22,66,67 and has been attributed to
random coulomb scatterers present in the substrate. A crucial
difference with the present work is that in the mentioned
references the graphene sample is either heavily doped or it
has a nonzero carrier density due to a local-field effect in-
duced by the Coulomb impurities. In our work, the density of
states is generated by the disorder as in Refs. 7 and 10.

Another noticeable feature of the model presented in this
work is the strong dependence of the one-particle properties
on the parameter 
 regulating the infrared behavior of the
model. The situation here is even worse than that of a two-
dimensional electron gas in a long-range correlated random
magnetic field discussed in Ref. 68. There, the one-particle
relaxation time was found to diverge as the infrared cutoff is
sent to zero but the finite density of states made the transport

relaxation time �tr finite. In our case, �tr also depends on the
density of states at the Fermi level but now the DOS is di-
vergent for 
→0. We have obtained a finite Drude conduc-
tivity due to the particular dependence of the diffusive con-
stant with the density of states �Eq. �45��.

In Sec. III, we have introduced the parameter 
 defined in
a phenomenological fashion as the ratio between the charac-
teristic length scale of the defect �, and the wave or local-
ization length � of the states around the Fermi energy. In a
semiclassical approximation to the problem, this parameter is
essentially uncontrollable. We can nevertheless made an es-
timation of the range of applicability of our results by assum-
ing that the localization length can be obtained from an
analysis of the quantum corrections to the conductivity. The
diffusive regime is characterized by a static mean-free path
l=vF�tr greater than the localization or wavelength � but
smaller than the system’s size. The mean-free path can be
estimated using expressions in Eqs. �39�, �41�, and �45� and
assuming that a�a and �L. We thus find

l 
2

3�
��

�
�1/2 1

nimp
1/2 , �48�

from where we can get a lower bound for the density of
defects in the case �� l,

nimp �
4

9�2

L

�3 . �49�

In the same spirit, an upper bound can be estimated using the
condition l�L,

nimp �
4

9�2

1

L�
. �50�

In Refs. 13 and 69, the possible fixed points of the total
conductivity where classified according to the symmetries of
the original Hamiltonian in a renormalization-group analysis.
As our disorder term preserves both chiral and time-reversal
symmetries, the final conductivity once quantum corrections
are taken into account should flow to the universal value of
4e2 /�h. We note that in previous works, this universal value
is already obtained at the Drude level. The topological dis-
order discussed in this work sets as an initial condition of the
RG flow a rather different—disorder dependent—value that
can—or not—flow to the usual fixed point.70 The analysis of
the quantum corrections to the conductivity �Eq. �46�� is be-
yond the scope of this work and will be worked out in the
future.
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APPENDIX: SIGMA MODEL CALCULATIONS

Once we have calculated the value of the leading configu-
ration of Qn from the saddle point Eqs. �35�, we expand the
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action �Eq. �32�� around this value, setting Qn= �Qn�+
Qn
and retain in the expansion terms up to second order in 
Qn:

S � �S� + 
Qn

2S�


Qn
Qm

Qm + ¯ . �A1�

The finite density of states of Eq. �41� allows us to use the
usual identity in the integration of momentum derived for the
two-dimensional electron gas:

� d2k

4�2 → ��0�� d�k, vFk → �k.

As a consistency test, computing the density of states with
this change we get the expression in Eq. �41�. This change in
variables will simplify the calculations. The � in Eq. �43�
means that the functional derivative is evaluated at the saddle
point solution for Qn and �n. Also, other terms of quadratic
order appear in Eq. �43� with crossing functional derivatives
in the fields 
Q and 
�. We will see shortly that these de-
rivatives are zero and the former fields are not coupled.
These derivatives are


Qn

2S�


Qn
Qm

Qm = −

1

2�
n

�n
Qn
2 +

1

4
� �dp�

��dq��
n,m

�n�m�p�k��m�p

+ q�
Qn Tr G�k�G�p + q�
Qm

�A2�

and


�n

2S�


�n
�m

�m = −

1

2�
n

�n
�n
2 −

1

4
� �dp�

��dq��
n,m

�n�m�n�p��m�p

+ q�
�n Tr �5G�p��5G�p + q�
�m.

�A3�

Since the spectral functions are peaked at the Fermi en-
ergy, we can effectively restrict the q integration to values
around the Fermi point, q�KF and write �m�p+q���m�p�
with an error of the order of O�q�. In Eq. �A2� the integral
will be dominated by the product GRGA, i.e., by the off di-
agonal sector of the fields 
Q+− leading to the diffusive pole
behavior for the fields Qn. By contrast, in Eq. �A3� using the
symmetry property �5GR�5=−GA we can see that the diffu-
sive pole will come from the product GAGA and its retarded-
retarded counterpart 
�++,−− will be the channel for the dif-
fusive behavior �also, the minus sign appearing in this
symmetry corrects the relative sign between the second terms
in Eqs. �A2� and �A3��.

Let us define the quantity Cmn�� ,q� as

Cmn��,q� =
1

4
� �dp��n�p��m�p�Tr GR�p�GA�p + q� .

�A4�

To obtain an action for the modes Qn and �n at small q and
�, we expand GR up to first order in � and to second order in
q in Eq. �A4�.

The first term in this expansion, without any reference to
the replica index, is

Cnm
0 =

1

4
� �dp�ei�n+m�� Tr�

1

vFp − i�
0

0
1

− vFp − i�
�

��
1

vFp + i�
0

0
1

− vFp + i�
� .

We have denoted �=�+ 1
2� . In terms of these variables, we

have

Cnm
0 =

1

4
��0�
−nm

1

� + 1
2�

. �A5�

Expanding Eq. �A5� up to first order in �, and using �41�, we
get

Cnm
0 =


−nm

4gvF
2�0

−
1

4
��0�
−nm�2��2� + O��2� . �A6�

The constant term in Eq. �A6� coincides with the term pro-
portional to 
Qn

2 and 
�n
2 in Eqs. �A2� and �A3�, respec-

tively. This mass contribution to the action is

Lm 

1

4gvF
2 �

n

�n��n

�0
− 1��
Qn

2 + �n
2� . �A7�

We immediately see that only the modes 
Q0 and 
�0 are
massless, and they will responsible for the diffusive behavior
of the system exactly as happens in the 2DEG.68 In what
follows, we will eliminate the � field. It represents another
diffusion channel that does not mix with the Q’s and plays
the same role. We will simply multiply by two the final re-
sult. The next term in the q expansion reads

Cnm
1 =

1

4
� �dp�ei�m+n��vFq cos �� − 1

�vFp − i���vFp + i��2

+
1

�− vFp − i���− vFp + i��2� . �A8�

Note that in the case of short-ranged isotropic scattering this
term vanishes due to the angular integration. In our case,
however, the presence of ei�m+n�� allows linear terms in q,
coupling the massive modes 
Q�1 to 
Q0. The integral in
Eq. �A8� is performed changing to the energy variable and
noticing that the angular integration gives a nonzero result
only when n=−m�1
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Cnm
1 =

1

4
vFq�
nm−1 + 
nm+1���0�� d�p

1

��p − i����p + i��2 ,

�A9�

or, after setting �=0,

Cnm
1 = −

vFq

4
��0��
nm−1 + 
nm+1��2��2. �A10�

To compute the next term in the q expansion, we will use the
following trick. The trace of the product of Green functions
in �A4� can be explicitly written as

Tr GRGA =�
1

vFp − i�
0

0
1

− vFp − i�
�

��
1

vF	p + q	 + i�
0

0
1

− vF	p + q	 + i�
�
�A11�

or, rearranging signs,

Tr GRGA =
1

vFp − i�

1

vF	p + q	 + i�
+

1

vFp + i�

1

vF	p + q	 − i�
.

�A12�

We immediately see that the second term in the right hand
side is the complex conjugate of the first term, thus,

Tr GRGA = 2 Re� 1

vFp − i�

1

vF	p + q	 + i�
� . �A13�

The terms already calculated in the expansion of Cnm�� ,q�
can be easily derived with this trick, but where we make a
real profit of this simplification is in the calculation of the
term q2

Cnm
2 =

1

2
q2 Re � �dp�ei�m+n�� 1

vFp − i�

�� cos2 �

�vFp + i��3 −
sin2 �

2vFp�vFp + i��2� . �A14�

If we compare the angular part of Eq. �A14� with the corre-
sponding part in Eq. �A8� we see that after performing the

integral in Eq. �A14� there are terms of the type 
−nm�2 to-
gether with terms 
−nm which generate couplings between the
zero modes 
Q0 and the massive 
Q�2, and 
Q0
Q0, respec-
tively. The couplings involving 
Q�2 being of order q2 will
produce terms of order q4 and can be neglected. We will only
keep the terms independent of � in Eq. �A14�, from which
we will extract the diffusion coefficient D for the massless
diffusive mode 
Q0. The result for Eq. �A14� only taking
into account the terms proportional to 
−nm is �we shift the
pole at vFp=0 in the second term in the integrand and take
the real part, the first term will not contribute to this real
part�

Cnm
2 =

vF
2q2

8�

−nm��0��2��3. �A15�

Collecting all the terms, the action for the modes 
Q0 and

Q�1 is


SQ �� �dq�
1

4gvF
2 �

n�1
�n��n

�0
− 1�
Qn

2

−
��0��2��2

4
�0

2
Q0�� +
vF

2�2��q2

2�
�
Q0

+
�1�0��0�vFq�2��2

4
�
Q0
Q1 + 
Q0
Q−1� .

�A16�

In order to get a theory for the n=0 modes, we integrate out
the n= �1 modes in Eq. �A16�. Using again Eq. �41� we get


S =� dq
��0��2��2�0

2

4

Q0�� +

vF
2q2�2��

2�

+
�1

�0 − �1

vF
2q2�2��

2�
�
Q0. �A17�

If we simplify and use again Eq. �41� we arrive to the final
action for the massless modes


S =� dq
Q0
�2���0

4gvF
2 �� + Dq2�
Q0, �A18�
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