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We discuss the superconductor-to-normal phase transition in an infinite-layered, type-II superconductor in
the limit where the Josephson coupling between layers is negligible. We model each layer as a neutral gas of
thermally excited pancake vortices and assume that the dominant interlayer coupling is the electromagnetic
interaction between the screening currents induced by these vortices. Our main result, obtained by exactly
solving the leading order renormalization group �RG� flow, is that the phase transition in this model is a
Kosterlitz-Thouless transition despite being a three-dimensional system. While the transition itself is driven by
the unbinding of two-dimensional pancake vortices, an RG analysis of the low temperature phase and a
mean-field theory of the high temperature phase reveal that both phases possess three-dimensional correlations.
An experimental consequence is that the jump in the measured in-plane superfluid stiffness, a universal
quantity in 2d Kosterlitz-Thouless theory, receives a small nonuniversal correction �of order 1% in
Bi2Sr2CaCu2O8+x�. This overall picture places some claims expressed in the literature on a more secure
analytical footing and resolves some conflicting views.
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I. INTRODUCTION

In this paper, we revisit the problem of the
superconductor-normal phase transition of a layered type-II
superconductor in the limit where Josephson coupling be-
tween layers is negligible. We model this system as an infi-
nite stack of superconducting planes, each layer containing a
neutral gas of thermally excited, two-dimensional �2D� pan-
cake vortices.1 We take the viewpoint that the dominant
mechanism coupling the layers is the long-range electromag-
netic interaction2 between the screening currents induced by
these vortices. We expect this model to be relevant to layered
superconductors where the dominant mechanism by which
the superconductivity is lost �as the temperature is raised� is
the loss of long-range order in the phase of the order
parameter.3 Candidate materials include the underdoped
high-Tc cuprates as well as layered structures made from
conventional type-II superconductors.

One motivation for considering this model is that investi-
gations of the superconductor-normal phase transition in the
cuprates have revealed 3dXY critical exponents, a hallmark
of Josephson coupling between the planes, in only one case:
optimally doped YBa2Cu3O6+x, the least anisotropic of these
materials.4 In underdoped Bi2Sr2CaCu2O8+x, the most aniso-
tropic of these compounds, signatures suggestive of a
Kosterlitz-Thouless �KT� transition have been seen5–7 while
recent measurements8 on underdoped YBa2Cu3O6+x, which
is substantially more anisotropic than the optimally doped
material though less so than underdoped Bi2Sr2CaCu2O8+x,
show a transition that is neither KT, nor 3dXY, nor any ob-
vious interpolation in between.9 While these observations do
not conclusively show that Josephson coupling can be
neglected,10,11 they do suggest that investigations of different
mechanisms for coupling the layers might be a fruitful line
of attack if there is reason to suspect that Josephson coupling

is very small. The Biot-Savart interaction between screening
currents in different layers is a long-range, three-dimensional
coupling which is always present though its influence is usu-
ally assumed to be small compared to the Josephson term.

A second motivation is a recent experiment12 on
La2−xBaxCuO4 near its stripe-ordered state at x=1 /8 where a
2d superconducting phase has been observed below an ap-
parent Kosterlitz-Thouless transition temperature. One
proposal13 suggests that under the right circumstances, the
superconducting state can occur with a finite wave vector,
where the periodicity is in the same direction as the charge
order but double the period. Since the stripes in adjacent
layers orient with a relative angle at 90°, an orthogonality
argument implies that the Josephson coupling among first,
second, and third neighbor planes is cancelled exactly and
further estimates13 imply that the residual terms are ex-
tremely small. In such a scenario, we expect our model to be
directly applicable to the experiments.14 In a similar vein,
there is a series of somewhat older experiments15,16 on vari-
ous cuprates in a dc flux transformer geometry where the
observation of effective 2d vortices was explained as the
cutting of 3d vortex lines. Since Josephson coupling is the
strongest reason why pancake vortices tend to form 3d
stacks/lines �as the penalty for breaking a line of pancakes
bound by the Josephson interaction would be proportional to
the system size L� one way to interpret the experiment is that
the Josephson coupling is effectively “cancelled” by the ap-
plied field. Once again, in such a case we would expect our
model to apply.

Our main result is that the superconductor-to-normal
phase transition in a layered superconductor, with an infinite
number of electromagnetically coupled layers, is still a
Kosterlitz-Thouless transition. The mechanism resembles the
single-layer problem in that �a� the transition occurs through
the unbinding of two-dimensional pancake vortices and �b�
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the screening within an individual layer at temperatures
above TKT is not significantly different from an isolated two-
dimensional system. However, both the low- and high-
temperature phases have three-dimensional correlations and
the jump in the in-plane superfluid stiffness, as inferred from
a penetration depth measurement, receives a small nonuni-
versal correction �of order 1%�. Our results are obtained via
a renormalization group �RG� study of the low-temperature
phase and a Debye-Huckel mean-field theory of the high-
temperature state.

The electromagnetic coupling may be formulated as an
interaction between the pancake vortices.1,2,17–21 The basic
mechanism is that a vortex in one of the layers induces
screening currents in the same and in other layers, which
cause Biot-Savart forces on the other vortices. For a single,
literally two-dimensional layer, this vortex-vortex interaction
is screened at distances larger than the magnetic penetration
depth �. For distances much less than �, but greater than the
coherence length �, the interaction energy of two vortices of
the same sign will be repulsive and scale logarithmically
with separation. However, if the layer has a small but non-
zero thickness d, the effective screening length becomes
��=2�2 /d��.17,21 �� often exceeds the sample sizes con-
sidered in experiment, and in such cases, the interaction is
effectively logarithmic.

For a layered system, the relevant screening length be-
comes �=2��

2 /s, where �� is the in-plane magnetic penetra-
tion depth and s is the layer spacing. However, for an infinite
number of layers, the interaction between two vortices of the
same sign in the same layer is logarithmic at all length
scales, not just for separations smaller than �. The difference
stems from the fact that in the infinite layer problem, currents
in the other layers guide a vortex’s magnetic flux radially out
to infinity within a disk of thickness �� while in the single
layer problem, the flux spreads over all space.1 For two vor-
tices of the same sign in different layers, it turns out that the
interaction is also logarithmic at large distances but is
attractive.1,19 Therefore, the interlayer coupling favors pan-
cake vortices of the same sign aligning into stacks. This is
qualitatively what happens with Josephson coupling except
the attractive force keeping the pancakes aligned is now
logarithmic and long-ranged instead of linear and short-
ranged.

Because the interlayer interaction is logarithmic, it was
conjectured22 that the phase transition should be in the
Kosterlitz-Thouless universality class despite being a three-
dimensional system. A number of important renormalization
group studies,23–26 emphasizing the role of pancake vortices,
explored the issue in greater detail. In each case, the phase
transition was investigated through numerical studies of the
resulting flow equations, where the interlayer interactions
were treated at varying levels of approximation and detail �in
each case, the Kosterlitz-Thouless equations occurred as
leading terms when the interlayer interaction was treated per-
turbatively�. References 23–25 provided support for the KT
scenario; while Ref. 26, which was prima facie the most
complete study, reached a very different conclusion: runaway
RG flows in a very narrow temperature range close to TKT
appeared to signal a three-dimensional critical region26 or
perhaps a first-order transition. This motivated the present

work. Our central result, obtained by exactly solving the
leading order RG flows which occur when the interlayer in-
teraction is treated nonperturbatively, is that the phase tran-
sition is, indeed, in the Kosterlitz-Thouless universality
class.

There are a number of reasons, in addition to three dimen-
sionality, why a KT transition is not a foregone conclusion
for this model. In Ref. 24, it was noted that while the inter-
layer logarithms individually come with much smaller coef-
ficients than the in-plane logarithm, the infinite set of cou-
plings obeys a “sum rule” �see Eq. �2.5�� which follows from
flux conservation. Therefore, there is the possibility that the
collective effect of a large number of layers could influence
the critical properties. In a similar vein, in Ref. 27 it was
noted that configurations involving stacks of vortices where
one or both ends terminate inside the superconductor, which
are topologically forbidden in the presence of Josephson
coupling �since vortex lines may then only terminate on the
surface of the material�, should be accounted for in its ab-
sence.

In the next section, we review some basic facts about the
Biot-Savart interaction. In Sec. III we present an analytical
theory of the phase transition using an extension of the 2d
momentum shell renormalization group.28 Accounting for
configurations involving stacks of vortices, as discussed
above, we rederive the coupled set of flow equations ob-
tained in Ref. 26 and establish this set as an accurate descrip-
tion of the low-temperature physics. We explicitly solve this
set and find that the phase transition is, in fact, in the
Kosterlitz-Thouless universality class. In Secs. IV and V, we
discuss the low- and high-temperature phases, with the latter
using a Debye-Huckel mean-field theory. We conclude with a
summary. Technical aspects of the calculation are discussed
in three appendixes.

II. BIOT-SAVART INTERACTION

In this section, we give a physical discussion of the Biot-
Savart interaction and introduce our model Hamiltonian. To
make our assumptions clear, in Appendix A we review how
this interaction formally arises from a Ginzburg-Landau-type
free-energy functional.

We model our system as an infinite stack of superconduct-
ing planes, where the stacking is in the z direction and the
positions of the planes are given by zn=ns, where n is an
integer and s is the interlayer spacing. A two-dimensional
“pancake” vortex29 of strength m1 �m1 is an integer� placed at
the origin of layer n=0 will induce an azimuthal screening
current m1K��� ,ns� in layer n where � is the cylindrical
radial coordinate. A vortex of strength m2 located at position
�� ,ns� will feel a radial Lorentz force given by F��� ,ns�
=K��� ,ns�m1m2�0 /c where �0= hc

2e .
These screening currents were computed in Ref. 1 in the

limit where s is small compared to the in-plane penetration
length �� and for distances � that are large compared to s and
the in-plane coherence length ��,

K���,ns = 0� =
c�0s

8�2��
2�
�1 −

s

2��

�1 − e−�/���� , �2.1�
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K���,ns � 0� = −
c�0s2

16�2��
3�

�e−�ns�/�� − e−	�2+�ns�2/��� ,

�2.2�

Equation �2.1� indicates that to leading order, the in-plane
screening current K��� ,0�
 1

� . This implies an in-plane
vortex-vortex interaction potential where vortices of the
same sign repel each other logarithmically with distance, as
in the 2dXY model.30 If, in addition to ��s ,��, we also
assume that ���� , �ns�, then Eq. �2.2� indicates that the out-
of-plane screening current K��� ,ns�
− 1

� . This implies that
the interaction between two vortices in different planes also
varies logarithmically with distance but vortices of the same
sign now attract. Therefore, in this limit, the interaction be-
tween two vortices of strengths m1 and m2 at positions
�x1 ,n1s� and �x2 ,n2s� is given by

V12 � − q2m1m2	�n1−n2� ln� �x1 − x2�



 , �2.3�

where

	n ��− �n�0
	n � 1 −

s

2��

if n = 0

−
s

2��

e−s/���n� if n � 0� , �2.4�

q=	 �0
2

8�2s
� s

��
�2, and 
 is a nominal short distance length scale

�of order ���.
Equation �2.3� is a model of the Biot-Savart interaction

which was considered in Refs. 24 and 26 and is the model
considered in this paper. A noteworthy feature of this inter-
action is that the coupling constants obey a “sum rule,”

�
n

	n = 0. �2.5�

This is not an accident but follows from flux quantization24

and is related to an important feature of the full interaction
�Eqs. �2.1�, �2.2�, and �A13��: the current distribution of an
infinite stack of pancake vortices, one in each layer, is expo-
nentially screened at distances ���� �Ref. 1� in analogy with
the well-known result for a vortex line in a bulk three-
dimensional superconductor.31 In contrast, for a stack of un-
coupled two-dimensional layers, the current in each layer
would decay according to the Pearl criterion:17 as 
 1

� for
distances ��� and as 
 1

�2 for ���, where g−1, with d
being the layer thickness.

The electromagnetic interaction causes �same charge�
pancake vortices in different layers to preferentially align
into stacks, which is phenomenologically what happens with
Josephson coupling except that now the aligning force is
logarithmic and long ranged as opposed to linear and be-
tween neighboring layers in the Josephson coupled case. In
particular, even though 	1�	0, which naively suggests that
only the in-plane interaction is important, the 	’s decay very
slowly and the sum rule indicates that the combined effect of
many layers could possibly lead to three-dimensional effects.
We will return to this issue in the next section.

We conclude this section by discussing some of the ap-
proximations inherent in Eq. �2.3�. In the high-temperature
superconductors, typical orders of magnitude1 are s�12 Å
and �� �1400 Å so the smallness of s

��
�10−2 assumed in

the derivation is met in practice. In and near the low-
temperature superconducting phase, we expect the density of
�thermally excited� pancake vortices in each layer to be small
and hence the characteristic vortex-vortex separation �̄ to be
large. In our analysis, we assume that �̄ is large compared to
other characteristic lengths, such as ��, which is one of the
conditions for the interlayer logarithmic form to be valid.
Also, in an infinite layer system, the logarithmic approxima-
tion will break down for interlayer separations �ns�� �̄. How-
ever, the length scale associated with the convergence of the
sum rule �Eq. �2.5�� is of order �� so, if �̄���, we expect the
net contribution of these farthest layers to be small regardless
of whether the full �Eq. �A13�� or simplified �Eq. �2.3�� in-
teraction is used. Therefore, in this paper, we will approxi-
mate the Biot-Savart interaction by its long distance form,
which permits us to use Coulomb gas techniques to analyze
the partition function. However, we will retain some aspects
of the short distance physics, i.e., on length scales shorter
than ��, by introducing fugacity variables as discussed in the
next section.

III. RENORMALIZATION GROUP ANALYSIS

The partition function of a layered superconductor, where
each layer contains a neutral gas of thermally excited pan-
cake vortices is

Z = �
�Nk,l�

�
k,l

yk,l
Nk,l�

�c�
exp�− �

i�j

Ṽij , �3.1�

where yk,l=exp�−Ek,l�, with  being the inverse tempera-
ture and Ek,l as the energy cost of creating a pancake vortex
of type k in layer l and the species label k denoting both
strength and sign. We assume that the layers are equivalent
which implies that the fugacities are the same in each layer;
i.e., yk,l=yk. Nk,l is the number of type k vortices in layer l.
The sum on �Nk,l� is over layer occupations which satisfy
charge �vortex� neutrality in each layer. The sum on �c� is
over spatial configurations of vortices consistent with the set

�Nk,l�.32 Ṽij is the vortex-vortex interaction which includes a
hard-core constraint that two vortices in the same layer must
be separated by a distance 
 of order ��, the in-plane coher-
ence length.

At this stage, Ṽij is the exact vortex-vortex interaction. To

make analytical progress, we separate �i�jṼij into two parts,

�i�j
� Ṽij +�i�j

� Ṽij, corresponding to the contribution from
pairs of vortices with in-plane separation, ���� and ����,
respectively. The latter interaction is given by Eq. �2.3� and
in a dilute system will apply for most of the pairs �with the
caveats mentioned in the previous section�. We approximate
the shorter-distance physics in two steps. The possibility of
having two vortices in the same plane separated by a dis-
tance less than �� can be accounted for by suitably redefining
the fugacity variables.33 To approximate the interaction be-
tween two closely spaced vortices in different layers, we
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introduce a set of fugacity variables �wab;ij�, where wab;ij
=exp�−Eab;ij�, with Eab;ij being the interaction energy of
having a pancake vortex of type b in layer j directly above a
pancake vortex of type a in layer i. For equivalent layers,
wab;ij will depend only on �i− j� �and strengths a and b�. With
these approximations, Eq. �3.1� becomes

Z = �
�Nk,l;Nab;ij�

�
k,l

yk,l
Nk,l �

ab;ij
wab;ij

Nab;ij�
�c�

exp�− �
i�j

�Vij ,

�3.2�

where Nab;ij is the number of pairs of vortices where the first
member is a vortex of type a in layer i which is directly
below the second member, a vortex of type b in layer j. The
sum over �c� is now over those spatial configurations of pan-
cakes consistent with a set of �charge-neutral� layer occupa-
tions �Nk,l� and interlayer patterns �Nab;ij�. The sum inside
the exponential is over pairs of vortices that are laterally
separated by at least �� and their interaction Vij is given by
Eqs. �2.3� and �2.4�.

There is another way of viewing Eq. �3.2�, which is more
in line with previous treatments of a vector Coulomb gas.
Two vortices in the same layer are always separated by a
distance of at least ��, which may then be viewed as the
effective “size” of a vortex. For a system with an infinite
number of layers, each having a small but nonzero density of
vortices, an infinitely long cylinder of radius �� perpendicu-
lar to and piercing the layers will “catch” an infinite number
of vortices. The stack of pancakes caught by the cylinder
may be viewed as an extended object. By densely packing
the system with such cylinders, the configurations of the sys-
tem may be viewed as configurations of these extended ob-
jects. The extended objects can be labeled by a species index
n= �. . . ,n1 ,n2 , . . .� where ni is an integer indicating the
strength and sign of the vortex occupying layer i of the ob-
ject in question �for a dilute system, most of the entries in n
will be zero�. We can formulate the problem in terms of these
extended objects in which case the partition function Eq.
�3.1� becomes

Z = �
�n�

�
n

yn
Nn�

�c�
exp�− �

i�j

Vni,nj , �3.3�

where ��n� is a sum over sets of extended objects consistent
with charge neutrality in each layer and ��c� is over distinct
spatial configurations of these objects. The interaction be-
tween two of these objects, indexed by ni and n j, is logarith-
mic by construction and is given by the sum of the pairwise
interactions between the pancakes comprising each stack,

Vni,nj
= �

k,l
Vnik,njl

, �3.4�

where k , l are layer indices and Vnik,njl
is given by Eq. �2.3�.

Since an extended object is composed of an infinite number
of pancakes, it will require an infinite creation energy En and
the corresponding fugacity yn=exp�−En� will be formally
zero.34 However, we can write the energy of an extended
object as

En = �
k

Enk,k + �
k�l

Enknl;kl, �3.5�

where the first term is the creation energy of each pancake in
the stack while the second is the pairwise interaction energy
between different pancakes in the same stack. Equations
�3.4� and �3.5� show that Eqs. �3.2� and �3.3� are equivalent
ways of expressing the partition function.

Our goal is to determine the phase diagram of the model
described by Eq. �3.2� �or Eq. �3.3�� in the dilute limit where
each plane contains a small, but nonzero, density of vortices.
The advantage of separating the vortex-vortex interaction
into a long-distance logarithmic term, accounting for the
short-distance physics through generalized fugacity vari-
ables, is that it permits the use of RG techniques developed
for studying the two-dimensional Coulomb gas.28,30,35 The
procedure requires us to consider a generalized version of
Eq. �3.2�,

Z = �
�Nk,l;Nab;ij¯�

��
k,l

yk,l
Nk,l �

ab;ij
wab;ij

Nab;ij �
abc;ijk

wabc;ijk
Nabc;ijk

� �
abcd;ijkl

wabcd;ijkl
Nabcd;ijkl

¯�
�c�

exp�− �
i�j

�Vij . �3.6�

In this equation, wabc;ijk=exp�−Eabc;ijk�, where Eabc;ijk is the
three-body interaction energy of an aligned triplet of vortices
where the first member is a vortex of type a in layer i, di-
rectly below the second member, a vortex of type b in layer
j, which is directly below the third member, a vortex of type
c in layer k. For equivalent layers, Eabc;ijk will depend only
on �i− j� and �j−k� �and strengths a, b, and c�. Similarly, we
include fugacity variables corresponding to four �and higher�
body interactions. These terms may be visualized in the ex-
tended object picture where Eq. �3.5� generalizes to

En = �
k

Enk,k + �
k�l

Enknl;kl + �
k�l�m

Enknlnm;klm + ¯ .

�3.7�

In Appendixes B and C, we present a detailed renormaliza-
tion group treatment of this model. The analysis may be
viewed as an iterative coarse-graining procedure connecting
our model with a series of other models with the same criti-
cal properties. A physical picture of this procedure is illus-
trated and discussed in Fig. 1.

The analysis of Appendix C yields an infinite set of
coupled flow equations for the extended object fugacities
�yn� and the analogous equations for the ��yk,l� , �wij;kl� , . . .�
variables. The system has a fixed point when the �yn� vari-
ables are identically zero. A linearized theory about this fixed
point �Eq. �C21�� suggests that at sufficiently low tempera-
tures the fixed point is stable while at higher temperatures
these variables become RG relevant. Beginning in the low-
temperature phase and raising the temperature, the phase
transition is indicated by one of the �yn� becoming marginal.
Which fugacity is the first to “unbind” depends on the initial
conditions of the RG flow.

If the starting model is given by Eq. �2.4�, then the first
extended objects to become marginal are those where n has
+1 in one of its entries and zeroes everywhere else. By Eq.
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�3.7�, the fugacity of this object is precisely the fugacity of a
single strength pancake y ��y1,i, but since we have assumed
a translationally invariant system, the layer index is not
needed�. The flow equation for this quantity, in the approxi-
mation where we keep only the leading y dependence, is

dy2

d�
= y2�4 − q2	0� . �3.8�

In the same limit, the flow equations for the coupling con-
stants are

d�q2	n�
d�

= − �y2�
m

�q2	n−m��q2	m� , �3.9�

where we have also taken the “distance to marginality,” �4
−q2	0�, as a small parameter. We will discuss the flow
equations for the other variables further below.

Equations �3.8� and �3.9� are precisely the flow equations
obtained in Ref. 26, using a formulation that involved only
single pancakes, without accounting for extended objects.
Our analysis implies that the more complicated objects are
irrelevant at temperatures below the transition in this limit,
Eqs. �3.8� and �3.9� may have greater validity than initially
suspected. As discussed in Appendix C, this irrelevance does

not simply follow from the linearized theory but involves
using the sum rule �Eq. �2.5�� to place a bound on higher
order terms—a technical issue that does not arise in the
single-layer problem.

We continue our analysis by recognizing that the right
side of Eq. �3.9� is a convolution of the couplings. Taking the
Fourier transform, we obtain

d�1/�q2	�k���
d�

= �y2, �3.10�

where 	�k�=�n	ne−ikn and we used the fact that 	m=	−m.
Because the right side is independent of k, we may formally
integrate this equation to obtain

q2	�k,�� =
q2	�k,0�

1 + q2	�k,0�C���
, �3.11�

where C�����0
��y2 is an integration constant that obeys the

flow equation,

dC

d�
= �y2, �3.12�

with the initial condition C�0�=0. Observe that 	�0,��
=�n	n so Eq. �3.11� implies that the sum rule is preserved by
the flow.

Using Eqs. �3.8� and �3.12�, we obtain a differential equa-
tion for the flow trajectories in the �C ,y� plane, which can be
integrated as follows:

y2 = y0
2 +

1

��4C − �
−�

� dk

2�
ln�1 + q2�	�k,0�C�l���� .

�3.13�

Representative trajectories are sketched in Fig. 2 for a given
value of y0 as a function of temperature. As C increases from
0 monotonically during the flow �Eq. �3.12��, the system
moves along these curves from left to right. At high tempera-
tures, the fugacity increases monotonically during the flow.
As the temperature is lowered, the fugacity initially de-

(a)

(b)

(c)

(d)

FIG. 1. �Color online� Pictorial summary of the renormalization
group procedure discussed in Appendixes B and C. If an object and
its antiobject are very closely spaced, then they will cancel upon
coarse graining, but in the process the coupling constants will be
renormalized. �a� shows the simplest such process involving single
pancakes which may be viewed as integrating out the smallest loops
of magnetic flux. �b� is an example of the more complicated object/
antiobject cancellations which correspond to integrating out larger
loops. Nearby objects that are not antiparticles will fuse together.
�c� shows two single strength pancakes fusing into a double strength
pancake. �d� shows a height two stack and a single pancake fusing
into a height three stack.

0.05 0.10 0.15 0.20 C

0.05

0.10

0.15

0.20

y2

FIG. 2. �Color online� Plot of the flow trajectories of Eq. �3.13�
for the case where the initial fugacity y0=0.1. The six curves, from
top to bottom, are for q2=1−6, respectively. Since the flow stops
when y=0, this initial condition implies a phase transition occurring
for q2 between 5 and 6.
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creases before increasing. At a critical temperature, the curve
will intersect the y=0 axis at one point, and at lower tem-
peratures, the curves cross the axis. However, y=0 is a fixed
point of Eqs. �3.8� and �3.9�, which means the system will
“stop” once y=0 is reached. These curves demonstrate the
existence of a low temperature phase, where the fugacity
renormalizes to zero, separated from a high-temperature re-
gion by a transition corresponding to the unbinding of 2d
pancake vortices: this, by definition, is a Kosterlitz-Thouless
transition.30

The most distinguishing characteristic of the single-layer
KT transition is the universal jump in the superfluid
stiffness.36 To see what happens in the layered case, we need
to determine the range of initial conditions for which the
trajectory defined by Eq. �3.13� passes through y=0 at some
C�0. That is, we need to solve

�y0
2 =� dk

2�
ln�1 + q2�	�k,0��C� − 4C . �3.14�

If we begin close to the critical point, and assume the posi-
tion of this point will only be changed by a small amount
relative to the single-layer case, we can expand this expres-
sion treating y0, C, and �q2	0−4� as small parameters.
Then, to leading order, we obtain

�y0
2 � �q2	0�0� − 4�C −

1

4�
m

	m
2 �0�C2, �3.15�

where we have inverted the Fourier transform. In order to
have a y=0 solution where C�0, the following criterion
must be satisfied:

q2	0�0� − 4 � 	�y0
2�

m

	m
2 �0� . �3.16�

Therefore, at temperatures T�q2	0�0� /4, there is no solu-
tion and y will diverge as the flow coordinate �→�. Equa-
tion �3.11� indicates that the couplings �	n� will go to zero in
this same limit. The critical temperature at which a y=0
fixed point exists is T=q2	0�0� /4. This solution represents a
critical surface �y=0, �	n=	n�0��� where the only constraints
on the couplings �	n�0�� are the sum rule �or, more precisely,
that the matrix 	ij �	�i−j� is positive definite—see the discus-
sion in Appendix B� and the values are such that the single
strength pancake is the first fluctuation to become marginal.

To relate this to the universal jump, we need to relate the
quantity 	0�0�, given in Eq. �2.4�, to the in-plane superfluid
stiffness measured in an experiment. The in-plane superfluid
stiffness is defined in terms of the in-plane magnetic penetra-
tion depth ��, which is a directly measurable quantity: �s
=�0

2s / �16�3��
2�=q2 /2� �see the discussion between Eqs.

�A1� and �A2��. As the critical temperature is crossed, the
quantity q2	0��� jumps downward from 4 to 0. In terms of
�s,

��s	0���
T

�
Tc

−

Tc
+

=
2

�
, �3.17�

��s�Tc
−

Tc
+

Tc
=

2

��1 − s
2��

� . �3.18�

Therefore, while the jump described by Eq. �3.17� is a uni-
versal quantity, the jump in the superfluid stiffness �Eq.
�3.18��, which is the quantity that is directly measured, re-
ceives a nonuniversal correction on the order of 1% for
Bi2Sr2CaCu2O8+x.

IV. LOW-TEMPERATURE PHASE

Having established the existence of a critical point and
phase transition, we now turn to the nature of the low-
temperature phase and the way the present case differs from
a stack of decoupled layers. The most direct difference fol-
lows from Eq. �3.11�. As the low-temperature phase is char-
acterized by a finite value of C���, Eq. �3.11� indicates that
the interlayer couplings �	n� will have nonzero fixed point
values. Therefore, interlayer correlations will be present.

Another perspective may be gained by considering the
flow equations for the pair interaction fugacity for single
strength pancakes in layers 1 and m, which we label as w1m,
�Eq. �C25��

dw1m

d�
= − �2 + q2	m−1�w1m − q2	m−1, �4.1�

where we have dropped terms that flow to zero in the low-
temperature phase as �→�. Equation �4.1� has a fixed point
when

w1m��� =
q2�	m−1����

2 + q2�	m−1����
�

q2�	m−1����
2

. �4.2�

In the decoupled limit, w1m��� would be zero. The y=0 fixed
point means that at the longest length scales, the effective
model is equivalent to 1 where the vortices are not present:
i.e., the properties of the superconductor will be governed by
the spin-wave part of the action �Eq. �A11��. However, at
intermediate length scales, which correspond to the points
forming the RG trajectory, the effective model will be one
where the vortices are present, albeit with small fugacity.
w1m flowing to zero means that configurations where vortices
lie on top of one another contribute progressively less to the
partition function, relative to configurations where they do
not as the system is viewed from larger length scales. The
reason is purely entropic.37 Equation �4.2� indicates an en-
hanced probability for such configurations in the coupled
layer case.

At one level, this is not so surprising because at the small-
est length scales, the interlayer couplings �Eq. �2.4�� favor
the formation of stacks. However, it is interesting to discuss
the higher-body terms. For example, we may obtain the
three-body interaction fugacity for single strength pancakes
in layers a, b, and c, which we label as wabc. To obtain this
quantity, it is easiest to start with the flow equation for yn
� yabc where n is a vector with +1 in layers a, b, and c and
0 elsewhere. From Appendix C, it follows, to leading order
in y, that
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dyabc

d�
= �2 −

q2

2
�3	0 + 	ab + 	ac + 	bc��yabc − y�yab�	ac

+ 	bc� + yac�	ab + 	bc� + ybc�	ab + 	ac�� , �4.3�

where yij is the fugacity of the extended object with single
strength pancakes in layers i and j, with the other layers
being empty, and 	ij �	�i−j�. We can determine the low-
temperature fixed point value of yabc by setting the right side
of Eq. �4.3� to zero. By Eq. �3.7�, these fugacities may be
understood as a product of terms associated with the creation
and interaction of the stacked vortices: yab=y2wab and yabc
=y3wabwacwbcwabc � y3vabc. Using Eq. �4.2�, we find

vabc��� = �
q2

2
��	ab + 	ac + 	bc�2 − �	ab

2 + 	ac
2 + 	bc

2 ��

�3q2

2
	0 − 2 +

q2

2
�	ab + 	ac + 	bc� �

�

� �
q2

2
��	ab + 	ac + 	bc�2 − �	ab

2 + 	ac
2 + 	bc

2 ��

�3q2

2
	0 − 2 �

�

.

�4.4�

In terms of the variable wabc, the result is

wabc���

� ��
2

q22

��	ab + 	ac + 	bc�2 − �	ab
2 + 	ac

2 + 	bc
2 ��

	ab	ac	bc�3q2

2
	0 − 2 �

�

.

�4.5�

In decoupled limit, vabc and wabc flow to zero and infinity,
respectively, which again is purely entropic. vabc being non-
zero indicates an enhanced probability for these objects in
the coupled layer case. However, these expressions indicate
that the effective interaction between the vortices within the
stack is no longer a simple pairwise form. Qualitatively, this
is another indication of three-dimensional correlations being
present in the low-temperature phase.

V. HIGH TEMPERATURES

Figure 2 shows that the high-temperature phase has C
→� as �→�. From Eq. �3.11�, we conclude that the new
fixed point model is one where all of the couplings have
renormalized to zero. In the same limit, y also diverges,
which may be interpreted as an unbinding of pancake vorti-
ces. Therefore, the high-temperature phase may be viewed as
a stack of nearly independent planes, each containing a neu-
tral plasma of weakly interacting vortices. However, once y
becomes of order unity, the renormalization group approach
discussed in the previous section no longer applies. The flow
equations �3.8� and �3.9� were obtained by dropping terms
involving higher powers of y, which is no longer valid when
y is order unity. Physically, the RG approach of Appendix C

assumes a dilute gas of vortices, which is no longer true at
high temperatures.

Therefore, to gain insight into the nature of the high-
temperature phase, a different analytical approach is needed.
We study this limit using a Debye-Huckel mean-field analy-
sis where we assume each layer has N positive and N nega-
tive vortices, which we represent via density functions �m

+ �x�
and �m

− �x�, where m is a layer index and x is the in-plane
coordinate. The total charge density in layer m is given by
�m�x�=�m

+ �x�−�m
− �x�. The system is modeled by the mean-

field free-energy functional,

F =
1

2�
mn

�� � d2xd2y�m�x��n�y�Vmn�x − y��
+ T�

m
�� d2x��m

+ �x�ln��m
+ �x�
N

�� + �m
− �x�ln��m

− �x�
N

��
+ �

m
� d2x�m

ext�x��m�x� , �5.1�

where the three terms are the vortex-vortex interaction, sys-
tem entropy, and interaction of the vortices with an external
potential �m

ext�x�. The potential Vmn�x−y� is given by Eq.
�2.3�. The idea is to minimize F with respect to the functions
�m

��x� subject to the constraint: �d2x�m
��x�=N.

The previous paragraph is a natural way of discussing the
high-temperature limit of a layered Coulomb gas interacting
via Eq. �2.3�.38 However, there is a caveat to note when we
relate this model to superconductors. The phase transition
discussed in the previous section describes a loss of super-
conductivity, which is the low-temperature state due to a loss
of long-range order in the phase of the order parameter.
Therefore, in principle, one may have a regime without su-
perconductivity but where the amplitude of the supercon-
ducting order parameter is nonzero.3 It is in such a regime
that our model applies since it is reasonable to assume the
basic degrees of freedom would still be vortices. A nonzero
order parameter amplitude means the effective penetration
depth is finite so we expect the interlayer mechanism of Eq.
�2.3�, which is ultimately due to the screening currents, to
still apply. On the other hand, once the order parameter am-
plitude is zero, we can no longer think of the basic degrees of
freedom as vortices so our model would no longer be rel-
evant. In Ref. 3, it was suggested that for layered supercon-
ductors with small superconducting carrier densities, includ-
ing the high-Tc materials, the energy scale associated with
phase decoherence might be appreciably less than the energy
scale at which the amplitude goes to zero. In such a case,
there would be a temperature range above Tc where our
model would apply.

In the absence of an external potential, the minimum free
energy is obtained when both the positive and negative
charges are uniformly distributed in each layer; i.e., �m

��x�
=N /A��0, where A is the area of a layer. If we perturb the
system about this limit with a small �ext, the corresponding
density fluctuation may be calculated as a linear response,
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��m�x� = − �
n
� d2x��mn�x − x���n

ext�x�� , �5.2�

where the �Fourier transform� of the susceptibility
�mn�x ,x���−���m�x� /��n

ext�x����=0 is given by

��q,k� =
1

T

2�0
+ V�q,k�

, �5.3�

where V�q ,k�=	�k� 2�

q2 is the Fourier transform of Eq. �2.3�
and 	�k� is the Fourier transform of Eq. �2.4�,

	�k� = �
n

	�n�e−ikn

= 	0 + �
n�0

	ne−ikn

=
s

2��
� es/�� + 1

es/�� − 1
�� cos k − 1

cos k − cosh
s

��

� . �5.4�

We choose �ext�x� to be the potential of a unit test charge at
the origin of the n=0 layer: �ext�q ,k�= 2�

q2 	�k�. While this
potential is not small near the origin, our interest is in the
long distance behavior. The corresponding density fluctua-
tion is

���q,k� = − ��q,k��ext�q,k� =
�2

q2 + �2� cos k − 1

cos k − aq
� ,

�5.5�

where �2=
4��0

T
s

2��
� es/��+1

es/��−1
� and aq=

q2 cosh s
��

+�2

q2+�2 . Taking the in-
verse Fourier transform in the layering direction,

��m�q� =
�2

q2 + �2��m,0 − 	aq − 1

aq + 1
�aq − 	aq

2 − 1�m� .

�5.6�

The inverse transform in the q direction is not a simple ex-
pression. However, if we expand in the small parameter s

��
,

and also assume that � is not too large, then to leading order,
we obtain

��m�x� � �2 e−��x�

	��x�
��m,0 −

s

2��

e−�m�s/�� = �2 e−��x�

	��x�
	m.

�5.7�

At large distances, the in- �out-of� plane fluctuation is posi-
tive �negative� which is expected by neutrality since a posi-
tive charge at the origin will attract negative �positive�
charges toward the origin in the same �different� layers. The
in-plane density fluctuation has essentially the same Yukawa
form as the single layer problem. The screening length is

slightly renormalized from the in-plane value of �=	4��0

T to
����1− s

4� �. However, a more striking difference is that if
we form an infinite stack by placing a test vortex at the
origin of every layer, then the sum rule indicates that the

stack will be completely screened while in the case of de-
coupled layers, each test charge will influence a density fluc-
tuation in its own layer of the 2d Yukawa form. In this sense,
the high-temperature phase of the infinite layer model does
not correspond to a complete layer decoupling but retains
some of its three-dimensional features.

VI. CONCLUSION

In conclusion, we have shown that the superconductor-to-
normal phase transition in an infinite-layered, type-II super-
conductor, in the absence of Josephson coupling but in the
presence of electromagnetic coupling, is a Kosterlitz-
Thouless transition. The jump in the in-plane superfluid stiff-
ness, which is a universal quantity in the single layer prob-
lem, acquires a small nonuniversal correction. We find that
the phase transition is driven by the unbinding of two-
dimensional pancake vortices but both the low- and high-
temperature phases show three-dimensional characteristics.

A natural topic for future work is to find more connections
with experiment, including ways to distinguish the electro-
magnetically coupled problem from the single layer case. A
more pressing issue would be to explore how these conclu-
sions are affected by having a small but nonzero Josephson
coupling and/or other mechanisms of coupling the layers.
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APPENDIX A: RELATION OF GINZBURG-LANDAU AND
COULOMB GAS MODELS

In this section, we review how the Coulomb gas descrip-
tion of a layered superconductor arises from a phenomeno-
logical free-energy functional of the Ginzburg-Landau type.
Variants of this derivation may be found in a number of
references, including the original paper of Efetov.2 Our pre-
sentation closely follows Ref. 20.

Our starting point is the Lawrence-Doniach model of lay-
ered superconductors39 where the system is modeled as a
discrete set of superconducting layers stacked in the z direc-
tion. The layers are assumed to have the same thickness d
and are uniformly spaced with interlayer separation s. With
each layer n, we associate a superconducting order parameter
�n= ��n�ei�n which we assume does not vary in the z direc-
tion within a layer. The Lawrence-Doniach free-energy func-
tional is then given by

F��n,A� = d�
n
� d3r��z − zn��	��n�2 +



2
��n�4

+
1

2m�
���− i��� −

e�

c
A��n�2

+
�2

2mz
�s2��n+1 exp�− i

e�

c
�

ns

�n+1�s

dzAz
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− �n�2� +
1

8�
� � d3r�� � A�2, �A1�

where the subscripts � and z refer to the two in-plane and one
out-of-plane coordinates, respectively, and e�=2e and m�,z

�

=2m�,z are, respectively, the charge and effective masses of a
Cooper pair. The difference between Eq. �A1� and the usual
Ginzburg-Landau functional is that the order parameter fields
are only defined within the layers so that the kinetic energy
associated with the z direction is discretized. Note, however,
that the magnetic field is defined everywhere in space. This
approach differs from anisotropic Ginzburg-Landau theory,
where the order parameter is defined everywhere and the z
direction still has a continuum description. We expect Eq.
�A1� to accurately describe highly anisotropic superconduct-
ors, such as the high-Tc compounds, but we are not aware of
a precise way in which to derive Eq. �A1� as the limit of an
anisotropic Ginzburg-Landau model.

Next, we assume that the amplitude of the order param-
eter is constant in each layer, i.e., ��n�2=ns

�=
ns

2 , where ns is
the number of superconducting electrons per unit volume in
a layer. This assumption clearly breaks down within the core
of a vortex, which is a region with a radius of order ��

� �2

2m�
��	� , the in-plane coherence length. For the type-II super-

conductors of interest in the present work, �� is small com-
pared to the in-plane magnetic penetration depth ��

��
m�c2

4��ns�e2 �1/2, which is the other in-plane length scale of in-

terest; here �ns�=ns
d
s is the average number density of super-

conducting electrons over the whole sample volume.1 There-
fore, if the smallest length scale we are interested in is of
order �� and if we further assume that the concentration of
vortices is dilute, it seems reasonable to neglect amplitude
fluctuations.

The term in Eq. �A1� involving mz may then be viewed as
a Josephson coupling between the phase variables in adja-
cent layers. For the highly anisotropic materials which moti-
vate the present work, mz�m� so we expect the Josephson
coupling to be very small. In this paper, we assume the Jo-
sephson coupling is identically zero and hence ignore this
term.

With these simplifications, Eq. �A1� leads to the following
effective action:

F��n,A� =
�s

2
� d3r�

n

��z − ns�����n −
2�

�0
A�2

+
1

8�
� d3r�� � A�2, �A2�

where �n is the phase of the order parameter in layer n; �s

=
�2ns

�d

m�
� is the 2D superfluid stiffness of a layer; and �0= hc

2e .
The interaction between layers is implicit in the second term.

The next step is to determine the A which minimizes
functional �A2�. Once this is obtained, we can rewrite Eq.
�A2� solely in terms of the order parameter. Taking the func-
tional derivatives and imposing Coulomb gauge �� ·A=0�
gives the following equations:

�2Az = 0, �A3�

�2A� =
1

�
�

n

��z − ns��A� −
�0

2�
���n , �A4�

where 1
� =4��s�

2�
�0

�2= s
��

2 . Taking the Fourier transform of Eq.
�A4� gives

A��q,k� = −
	��q,k� − ���q,k�

��q2 + k2�
, �A5�

where q and k are the momenta conjugate to the in-plane �x��
and out-of-plane �z� coordinates and

	��q,k� � �
n

e−iknsA��q,ns� =
1

s
�
m

A��q,k +
2�m

s
 ,

�A6�

���q,k� � �
n

e−ikns �0

2�
���n�q� , �A7�

where A��q ,ns� means that the Fourier transform is only in
the in-plane direction. We can write the analog of Eq. �A5�
with k replaced by k+ �2�m� /s, where m is an integer. Notice
that 	��q ,k+ �2�m� /s�=	��q ,k� and ���q ,k+ �2�m� /s�
=���q ,k�. Therefore, summing both sides over m, and using
Eq. �A6�, we obtain the minimizing A as follows:

A��q,k� =
���q,k�

�q2 + k2��� + L�q,k��
, �A8�

Az�q,k� = −
q · ���q,k�

k�q2 + k2��� + L�q,k��
, �A9�

where the last expression follows from the gauge constraint
and

L�q,k� �
1

s
�
m

1

q2 + �k + 2�m
s �2 =

1

2q

sinh qs

cos ks − cosh qs
,

�A10�

where the last identity is obtained by �standard� complex
analysis methods. Substituting Eqs. �A8� and �A9� into Eq.
�A2� will give an effective action in terms of the order pa-
rameter itself. After some tedious but straightforward alge-
bra, one obtains

F =
�0

2

32�3�
�
m,n
� d2q

�2��2���m,n�q � ���n�q��2

q2

−� dk

2�

�q � ���m�q���q � ���n�q��eik�m−n�s

q2�q2 + k2��� + L�q,k��
 

+ ��m,n�q · ���n�q��2

q2

−� dk

2�

�q · ���m�q���q · ���n�q��eik�m−n�s

q2�q2 + k2��� + L�q,k��

��1 −
q2�

k2�� + L�q,k���� . �A11�
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The two sets of large “��” parentheses indicate that the free-
energy functional decouples into two parts which depend,
respectively, on the divergence-free and irrotational parts of
the fields ����n�. These correspond, respectively, to the “vor-
tex” and “spin-wave” excitations of the order parameter
field, which appear in the conventional analysis of the 2dXY
model.30 We make the usual assumption that the phase dia-
gram is determined by the vortex part, so we will ignore the
spin waves from now on.

We make the identification 2��v�q ,n��q����n�q�
where �v�x ,n� is the vortex number density per unit area in
layer n.40 After performing the k integration,41 the vortex part
of the free energy is given by

Fv =
1

2�
m,n
� d2xd2y�v�x,m��v�y,n�Vmn�x − y� ,

�A12�

where the vortex-vortex interaction is given by

Vmn�x� =
�0

2s

4���
2� d2q

�2��2

eiq·x

q2 ��mn − Wmn�q�� �A13�

and

Wmn�q� =
s sinh�qs�

2��
2q

�Gq − �Gq
2 − 1�1/2��m−n�

�Gq
2 − 1�1/2 , �A14�

where Gq=cosh�qs�+ s sinh�qs�
2��

2q
. While this interaction has a

complicated appearance, our interest is primarily in its long
distance �relative to ��� behavior, which was obtained in Ref.
24,

Vmn��x�� ! −
�0

2s

8�2��
2	�m−n� ln�x� , �A15�

where

	n ! �n,0 −
s

2��

e−s/���n� �A16�

and the “!” sign indicates that this result is to leading order
in s

��
, which is assumed to be a small parameter. For a dis-

crete set of vortices, �v�x ,n�=�imi��x−xi� where mi
= �1, �2, . . . and xi are the strength and position, respec-
tively, of the ith vortex in layer n. If, in addition to the
interaction energy in Eq. �A15�, we also assume that each
vortex has a self-energy associated with its core, which we
may represent through a fugacity, we arrive at the partition
function given by Eq. �3.1�.

APPENDIX B: RELATION OF COULOMB GAS AND SINE-
GORDON MODELS

The generalized Coulomb gas model discussed in the text
may be formulated as a sine-Gordon field theory, as in the
two-dimensional case:42

S��zn�,�� = − �
i,j

gij

2
� d2x � �i · �� j

+ �
n

zn


2� d2x cos�n · ��x�� . �B1�

In this appendix, we establish the equivalence of this expres-
sion with Eqs. �3.3� and �3.6�. In Appendix C, we analyze the
phase diagram of this action using the renormalization group.
Here i , j are layer indices and 
 is a short distance cutoff on
the order of the in-plane penetration depth ��. The matrix g is
defined so its inverse g−1 is related to the coupling matrix for
the layered Coulomb gas, as given in Eq. �2.4�: gij

−1 /2�
=q2	�i−j�. The factor zn=2yn, where yn is the fugacity of an
extended object indexed by the occupation vector n as dis-
cussed in the text. The vector �= �. . . ,�1 ,�2 , . . .� where �i is
a sine-Gordon field corresponding to layer i.

We begin by writing Eq. �B1� as a partition function Z
=�D�eS��zn�,�� and expanding the cosine terms as follows:

Z = Z0"�
n
�1 +

zn


2� d2x cos�n · ��x��

+
zn

2

2 ! 
4� � d2xd2y cos�n · ��x��cos�n · ��y��

+ ¯�#
0

. �B2�

Here Z0=�D�eS0��� where S0���=−�i,j
gij

2 ���i ·�� j and
� . . . �0 denotes an average over the full Gaussian measure.
The Coulomb gas partition function follows from calculating
these averages. We begin by writing the cosine terms as

cos�n · ��x�� =
1

2 �
n�x�=�n

ein�x�·��x�. �B3�

The averages involve calculating expressions such as
�exp�i�a=1

N na�xa���xa���0. Performing the Gaussian integral,

�e�i�a=1
N na�xa�·��xa���0 = exp�−

1

2�
kl

NkNl��k�0��l�0��

−
1

2 �
abkl

nak�xa�nbl�xb����k�xa��l�xb��

− ��k�0��l�0���� , �B4�

where k , l are layer indices; a ,b are indices denoting the N
objects �na� entering the average; Nk=�anka is the total vor-
ticity in layer k due to these N objects; and the two-point
function is

��k�x��l�y�� = gkl
−1� d2q

�2��2

eiq·�x−y�

q2 . �B5�

Notice that ��k�0��l�0��=
gkl

−1

2� lnL

 +¯. Hence the first sum in

the exponential i,
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−
1

2�
kl

NkNl��k�0��l�0�� = −
1

2
ln

L



NTg−1N + ¯ �B6�

where “¯” are terms subleading in L. The form of the inter-
action �Eq. �2.4�� and the sum rule �Eq. �2.5�� ensure that the
coupling matrix g−1 is positive definite.43 Therefore,
NTg−1N�0, implying the average in Eq. �B4� will be zero as
L→� unless N=0. Therefore, the only configurations of ob-
jects �na , . . . ,nN� with nonzero expectation value are those
that satisfy vortex neutrality in each layer, a stronger condi-
tion than overall vortex neutrality. If this constraint is met,
then Eq. �B4� becomes

exp�−
1

2 �
a,b,k,l

nak�xa�nbl�xb�Vkl�xa − xb�� , �B7�

where k and l indicate the planes where pancakes with
strengths nak and nbl and in-plane coordinates xa and xb re-
side and

Vkl�xa − xb� = ��k�xa��l�xb�� − ��k�0��l�0��

= −
gkl

−1

2�
ln

�xa − xb�



+ ¯ , �B8�

where “¯” are terms that are subleading for large �xi−xj�.
The term we are considering will also have a prefactor.

Suppose the N objects entering the average in Eq. �B4� in-
clude Nna

objects of type na for a=1, . . . ,N. There will then
be a factor of �a=1

N �zna

Nna / �Nna
�!� from the Taylor expansion

and a factor of 1 /2N from writing the N cosines as exponen-
tials. Equation �B4� is the integrand of a 2N-dimensional
spatial integral, which may be viewed as summing over dif-
ferent spatial configurations of these N objects. If we choose
to write this as a sum over indistinguishable configurations,
then there will also be a factor �a=1

N �Nna
�! for the number of

configurations �contained in the integral� identical to having
the objects �na� at spatial positions �xa�. Combining every-
thing �and dropping the unimportant factor Z0�, we may re-
write Eq. �B1� as

Z = �
�n�

�
n

�zn/2�Nn�
�c�

exp�− �
i�j

Vni,nj , �B9�

where the first sum is over sets of objects �n� satisfying
vortex neutrality in each layer and the second is over indis-
tinguishable spatial configurations �c� of these objects. Com-
paring Eqs. �B7�–�B9� with Eq. �3.3�, we see that the sine-
Gordon theory is equivalent to our generalized Coulomb gas
if we make the following identifications:

yn = zn/2, �B10�

q2	�i−j� = gij
−1/2� , �B11�

as asserted. Using Eq. �3.7� to expand the fugacities, we see
that the sine-Gordon model of Eq. �B1� is also identical to
the partition function in Eq. �3.6�.

The final point to note is that Eq. �B7� takes the logarith-
mic form at distances large compared to 
 but will vanish as
�xa−xb�→0. In contrast, the interaction that enters Eqs. �3.3�
and �3.6� is a hard-core interaction �the particles are assumed

to be at least a distance 
 laterally apart�. As discussed in
Ref. 28, this is not actually a problem as a sine-Gordon
model literally equivalent to a hard-core Coulomb gas is pos-
sible with a slight renormalization of the coupling constants
gij that will not affect our calculations �since these correc-
tions will manifest as higher order terms in the RG analysis�.

APPENDIX C: DERIVATION OF FLOW EQUATIONS

In this section, we derive the RG flow equations presented
in the main text. Our starting point is the action for the lay-
ered sine-Gordon model �Eq. �B1�� which, as shown in Ap-
pendix B, is equivalent to the layered Coulomb gas �Eq.
�3.3�� discussed in the text. We analyze this action using an
extension of the momentum shell renormalizaton group ap-
proach discussed in Ref. 28. The calculation applies in the
small fugacity limit.

The first step is to write action �B1� as S��zn� ,��
=S0���+S1��zn� ,��, where S0 is the Gaussian term. The
fields ��i� are written as a sum of fast and slow modes, i.e.,
�i=�i,�+�i,�, where

�i,��x� = �
�q���0,�/s�

d2q

�2��2eiq·x�i�q� , �C1�

�i,��x� = �
�q����/s,��

d2q

�2��2eiq·x�i�q� . �C2�

Here �i�q� is the Fourier transform of �i�x�, �
 1

 is an

ultraviolet cutoff, and s=1+� is a rescaling parameter. The
idea is to integrate over the fast modes to get an effective
action for ���x�. The Gaussian term separates to give: Z
=�D��eS0�����D��eS0����eS1��zn�,��,���

=A�D��eS0�����eS1��zn�,��,�����, where the constant A
=�D��eS0���� will be dropped because it does not affect the
critical properties of the model. The subscript �� � on the
average, which we will also drop, denotes that the Gaussian
average is over the fast modes only.

We can write the average as �eS1��zn�,���=eS1���zn��,��� where
the relation between S1 and S1� may be expressed as a cumu-
lant expansion,

S1� = �S1� +
1

2
��S1

2� − �S1�2� + ¯

= �
n

zn


2� d2x�cos�n · ��x���

+ �
m,n

zmzn

2
4 � � d2xd2y��cos�m · ��x��cos�n · ��y���

− �cos�m · ��x����cos�n · ��y���� + ¯ . �C3�

A convenient way to obtain these averages is with the useful
fact,
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�e�d2xJ�x���x�� = e�d2xJ�x����x�exp��
k,l

1

2
� � d2xd2yJk�x�

���k,��x��l,��y��Jl�y�� , �C4�

where the two-point function is

��k,��x��l,��y�� = gkl
−1�

�q����/s,��

d2q

�2��2

eiq�x−y�

q2 . �C5�

Using these relations with J�x��= in��x�−x�, we readily ob-
tain:

�cos�n · ��x��� = s−1/4��klgkl
−1nknl cos�n · ���x�� , �C6�

and with J�x��= in��x�−x�� im��x�−y�,

�cos�m · ��x��cos�n · ��y��� − �cos�m · ��x����cos�n · ��y���

=
1

2
s−1/4��klgkl

−1�mkml+nknl���e−1/2�kl�mknl+mlnk���k,��x��l,��y�� − 1�cos�m · ���x� + n · ���y��

+ �e1/2�kl�mknl+mlnk���k,��x��l,��y�� − 1�cos�m · ���x� − n · ���y���

�
1

2�1

2�
kl

�mknl + mlnk���k,��x��l,��y����cos�m · ���x� − n · ���y�� − cos�m · ���x� + n · ���y��� , �C7�

Where, in the last line, we retained terms to linear order in �.
As the ultraviolet cutoff �→�, integral �C5� becomes

arbitrarily small except when x� y. Therefore, we make the
approximation: ��i,��x�� j,��y���
2��x−y���i,��0�� j,��0��
�
2��x−y�

gij
−1

2� � and replace the cosine operators with the
leading term in their operator product expansions.44 For m
�n, this implies the replacement,

cos�m · ���x� � n · ���y�� � cos��m � n� · ���x�� .

�C8�

Physically, this means that two closely spaced vortex stacks,
when viewed from a distance, appear as a single stack com-
posed of pancakes that are fusions of those in the two stacks.
When m=n, one of the terms in Eq. �C7� is of this fusion
type,

cos�m · ����x� + ���y��� � cos�2m · ���x�� , �C9�

while the other involves a nontrivial operator identification,

cos�m · ����x� − ���y��� � −
1

4�
ij

mimj � �i · �� j .

�C10�

Physically, this latter term means that two identical closely
spaced vortex stacks of opposite sign, to leading order,
screen one another at long distances. However, the effect of
this screening is a renormalization of the interlayer cou-
plings.

Using these expressions, we may write an equation for
S1���zn��� to second order in the fugacities as follows:

S1���zn��,��� = − �
i,j

��ij

2
� d2x � �i,� · �� j,�

+ �
n

zn�


2� d2x cos�n · ���x�� , �C11�

where

�ij =
1

16�
�
m

zm
2 ��

kl

mkmlgkl
−1mimj , �C12�

and

zn� = �zn −
�

8�
�
m

zn−mzm��
kl

�nk − mk�mlgkl
−1

+
�

8�
�
m

zn+mzm��
kl

�nk + mk�mlgkl
−1�

��1 −
�

4�
�
kl

nknlgkl
−1 . �C13�

The final step is to restore the ultraviolet cutoff of the origi-
nal problem by rescaling the length. The net effect of doing
this, to leading order in �, is an additional multiplicative
factor �1+2�� on the right side of Eq. �C13�. Combining Eq.
�C11� with the Gaussian term S0, we obtain an action similar
to Eq. �B1� but with renormalized parameters. We can use
Eqs. �C11�–�C13� to write flow equations for these param-
eters as
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dzn

d�
= �2 −

1

4�
�
kl

nknlgkl
−1zn −

1

8�
�
m

zn−mzm��
kl

�nk

− mk�mlgkl
−1 +

1

8�
�
m

zn+mzm��
kl

�nk + mk�mlgkl
−1
�C14�

and

dgij

d�
=

1

16�
�
m

zm
2 ��

kl

mkmlgkl
−1mimj . �C15�

It is more convenient to write the latter in terms of the in-
verse coupling matrix,45

dgij
−1

d�
= −

1

16�
�
m

zm
2 ��

kl

mkmlgkl
−1��

pq

gip
−1mpmqgqj

−1 .

�C16�

Equations �C14�–�C16� are natural generalizations of the
usual Coulomb gas flow equations.35 However, as mentioned
in the text, the fugacity zn of an extended object n can be
expressed in terms of the creation and interaction energies of
the pancakes forming the stack. This latter formulation is
convenient because in this picture, the fundamental degrees
of freedom are individual pancakes, which have finite en-
ergy, as opposed to extended objects, which have �formally�
infinite energy. The content of Eqs. �C14�–�C16� can be re-
cast in this language via the following relation which follows
from Eq. �3.7�:

zn

2�
= �

i

yni;i�
i�j

wni,nj;i,j �
i�j�k

wni,nj,nk;i,j,k ¯ . �C17�

where i , j ,k are layer indices and the y and w variables were
defined in the text. This implies that

dzn

zn
= �

i

dyni;i

yni;i
+ �

i�j

dwni,nj;i,j

wni,nj;i,j
+ �

i�j�k

dwni,nj,nk;i,j,k

wni,nj,nk;i,j,k
+ ¯ .

�C18�

The flow equation for the y variables is obtained by consid-
ering Eq. �C14� for the occupation vector na;i which has only
one nonzero entry: a strength a vortex in layer i. For a trans-
lationally invariant system, the fugacity variable will not de-
pend on our choice of layer i so ya;i=ya and

dya

ya
=

dzna;i

zna;i

= 2 −
a2

4�
g00

−1 +
1

8�
�
m

zna;i−mzm

zna;i
��

kl

�a�k,0 − mk�mlgkl
−1 .

�C19�

Using Eq. �C19�, we can obtain the flow equations for the
two-body fugacities wab;ij by considering Eq. �C14� with oc-
cupation vector nab;ij which has only two nonzero entries
corresponding to vortices of strengths a and b in layers i and
j;

dwab;ij

wab;ij
=

dznab;ij

znab;ij

− �dya

ya
+

dyb

yb


= − �2 +
ab

2�
gij

−1 −
1

8�
�
m

zm�� znab;ij−m

znab;ij

−
znab;ij+m

znab;ij

−
zna;i−m

zna;i

+
zna;i+m

zna;i

�a�
l

mlgil
−1 + � znab;ij−m

znab;ij

−
znab;ij+m

znab;ij

−
znb;j−m

znb;j

+
znb;j+m

znb;j

�b�
l

mlgjl
−1

− � znab;ij−m

znab;ij

−
znab;ij+m

znab;ij

−
zna;i−m

zna;i

+
zna;i+m

zna;i

−
znb;j−m

znb;j

+
znb;j+m

znb;j

��
kl

mkmlgkl
−1� . �C20�

In this manner, we can systematically obtain the flow equa-
tions for each of the many-body fugacities, though the for-
mal expressions become increasingly complicated.

From Eqs. �C14�–�C16�, we see that the system has a
fixed point when all of the zn’s are equal 0. To probe the
stability of this fixed point, we consider Eq. �C14�, keeping
only the linear term for the moment. Converting to the vari-
ables in the main text via Eqs. �B10� and �B11�, we have

dyn

d�
= �2 −



2 �q2�
kl

nknl	�k−l��yn, �C21�

where the term in square brackets is the coefficient of the
logarithmic interaction energy between two stacks of pan-
cake vortices characterized by the same occupation vector n.
From Eq. �2.4�, it may be shown that this quantity is always
non-negative and strictly positive for occupation vectors n
that are “compact,” i.e., whose nonzero entries all occur in a
region of finite extent. For compact vectors, Eq. �C21� indi-
cates that the corresponding fugacities will be irrelevant at
zero temperature. As the temperature is raised, the first
fugacities to become marginal correspond to the vectors
�n1;i�, which have a unit strength pancake in one layer, with
the other layers being empty. Similar considerations apply
for noncompact vectors that are sparsely filled. The magni-
tude of the square bracket term can, in principle, be lowered
by considering noncompact vectors that are densely filled.
For example, in the case where we have a unit strength pan-
cake in every layer of an infinite system, the square bracket
term will vanish by the sum rule. However, in a dilute sys-
tem, such objects will not be present in the initial model.

Therefore, in the case which concerns us, the stability of
the fixed point is determined by the �yn1;i

�, which via Eq.
�C17� is equivalent to the single strength pancake fugacity
y1 � y governed by the equation,

dy

d�
= �2 −

q2

2
	0y + O�y3� . �C22�
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We can similarly approximate the other flow equations by
keeping only the leading powers in y. Because we are inter-
ested in the critical behavior, we take the “distance to mar-
ginality” x��q2	0−4� as an additional small parameter. In
such an expansion, Eq. �C16� becomes

d�q2	n�
d�

= − �y2�
p

�q2	n−p��q2	p� . �C23�

The simplest composite object is a pair of single strength
vortices: the first in layer 1 and the second directly above in
layer m. The flow equation for the corresponding fugacity
yn11;1m

� y1m simplifies to

dy1m

d�
= �2 − q2�	0 + 	m−1��y1m − q2	m−1y2. �C24�

The only fusion term surviving the expansion is the simplest
one: single strength pancakes in layers 1 and m combining to
form the object y1m. The equation for the two-body fugacity
w11;1m �w1m becomes

dw1m

d�
= − �2 + q2	m−1�w1m − q2	m−1. �C25�

In this manner, we can obtain simplified versions of the full
flow equations appropriate for the physical limit that inter-
ests us.

There is an important technical point implicit in this pro-
cedure. In Eq. �C22�, we have asserted that the terms we
have ignored are O�y3�. From Eq. �C14�, we can see that an
example of such a term is g11

−1y1my. This arises from the fu-
sion of the extended object composed of two unit strength
positive pancakes in layers 1 and m with a unit strength
negative pancake in layer m. Since we expect y1m 
 y2, this
term will be of order y3. However, there are an infinite num-
ber of such terms which, in total, could potentially over-
whelm the “leading term” whenever y is nonzero. This dif-
fers from the usual single plane Coulomb gas where there are
only a finite number of O�y3� processes �such as, for ex-
ample, the fusion of a +2 and −1 pancake as well as terms
related to the cutoff procedure35�. To see that this is not a
problem, note that in the low-temperature phase, Eq. �C24�
implies that y1m 
�	m�y2 /2. The infinite sum converges due
to the sum rule: �m�1y1my 
 y3�m�1�	m�=	0y3. The argu-
ment is similar for higher order processes. In the absence of
such a sum rule, the pileup of an infinite number of higher
order terms can overwhelm the leading term and hence in-
validate the analysis.46
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