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Strong experimental evidences of the formation of quasiequilibrium Bose-Einstein condensation �BEC� of
magnons at room temperature in a film of yttrium iron garnet �YIG� excited by microwave radiation have been
recently reported. Here we present a theory for the dynamics of the magnon gas driven by a microwave field
far out of equilibrium that provides rigorous support for the formation of a BEC of magnons in a YIG film
magnetized in the plane. We show that if the microwave driving power exceeds a threshold value the nonlinear
magnetic interactions create cooperative mechanisms for the onset of a phase transition leading to the sponta-
neous generation of quantum coherence and magnetic dynamic order in a macroscopic scale. The theoretical
results agree with the experimental data for the intensity and the decay rate of the Brillouin light scattering
from the BEC as a function of power and for the microwave emission from the uniform mode generated by the
confluence of BEC magnon pairs.
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I. INTRODUCTION

In a recent series of papers Demokritov and co-workers1–6

reported remarkable experimental evidences of the formation
of Bose-Einstein condensation �BEC� and related phenom-
ena in a magnon gas driven by microwave radiation. Bose-
Einstein condensation, a phenomenon that occurs when a
macroscopic number of bosons occupies the lowest available
quantum energy level,7 has only been unequivocally ob-
served in a few physical systems, such as superfluids,7 exci-
tons and biexcitons in semiconductors,8,9 atomic gases,10 and
certain classes of quantum magnets.11 BEC phenomena usu-
ally take place by cooling the system to very low tempera-
tures. The room-temperature experiments reported in Refs.
1–6 ingeniously materialized earlier proposals for producing
Bose-Einstein condensation of magnons12,13 and demon-
strated powerful techniques for observing its unique proper-
ties.

The experiments were done at room temperature in epi-
taxial crystalline films of yttrium-iron garnet �YIG� magne-
tized by an applied in-plane field. In these films the com-
bined effects of the exchange and magnetic dipolar
interactions among the spins produce a dispersion relation
�frequency �k versus wave vector k� for magnons that has a
minimum �k0 at k0�105 cm−1. In bulk samples the disper-
sion relation has the usual parabolic shape with a minimum
at k=0, where the density of states vanishes. In films the
energy minimum away from the Brillouin-zone center pro-
duces a peak in the density of states at �k0, providing an
important condition for the formation of the condensate.

The experiments reported in Refs. 1–6 employ a micro-
wave magnetic field with pumping frequency fp=8.1 GHz
applied parallel to the static field to drive magnons in YIG
films magnetized in the plane with the so-called parallel-
pumping process.14,15 In some of the latest experiments
reported,4,5 short microwave pulses �30 ns� are used to create
a hot magnon gas, allowing its evolution to be observed with
time-resolved Brillouin light scattering �BLS�. Several im-
portant features are observed with increasing microwave

power. Initially, when the power exceeds a first threshold
value, there is a large increase in the population of the para-
metric magnons with frequency in a narrow range around
fp /2=4.05 GHz. Then the energy of these primary magnons
redistributes in about 50 ns through modes with lower fre-
quencies down to the minimum frequency fmin=�k0 /2�
=2.9 GHz �for H=1.0 kOe� as a result of magnon interac-
tions that conserve the number of magnons. This produces a
hot magnon gas that remains decoupled from the lattice for
over 200 ns due to the long spin-lattice relaxation time. The
BLS spectrum in this time span reflects the shape of the
magnon density of states weighted by the appropriate ther-
mal distribution exhibiting a peak at the frequency fmin.
Thereafter this peak decays exponentially in time in the
range of several hundred ns due to the thermalization with
the crystal lattice. However if the microwave power exceeds
a second threshold value, much larger than the one for par-
allel pumping, two striking features are observed, namely,
the decay rate of the BLS peak at fmin doubles in value while
its intensity increases by 2 orders of magnitude. The behav-
ior of the BLS peak was attributed to a change in the magnon
state from incoherent to coherent, indicating the formation of
a room-temperature BEC of magnons.4

Coherence of photon fields has a formal quantum treat-
ment developed by Glauber16 over 4 decades ago. Coherent
magnon states, introduced in analogy with the photon states,
also have a formal quantum treatment.17,18 In this paper we
show that an interacting magnon system in a YIG film driven
by microwave radiation develops spontaneous coherent
states with frequencies and wave numbers in a very narrow
range in phase space around k0, �k0 when the microwave
power exceeds a critical value. As the microwave power is
increased beyond threshold the number of magnons in these
states approaches the number of primary magnons pumped
into the system. Since the coherent states correspond to a
quantum macroscopic wave function, the theory provides
rigorous support for the existence of Bose-Einstein conden-
sation of magnons in the experiments of Refs. 1–6. Note that
recently it has been argued19 that the intermagnon interac-
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tions in a YIG film magnetized in the plane prevent the con-
ditions for stabilization of the BEC. Contrary to the conclu-
sions of Ref. 19, we show that the magnon-magnon
interactions play an essential role in the formation of the
BEC at room temperature in a YIG film driven by micro-
wave radiation as in the experiments of Demokritov and
co-workers.1–6

In another recent paper of the same group, Dzyapko et al.6

showed that if the applied in-plane static field has a value
such that the frequency of the k�0 magnon is �0=2�k0, a
microwave radiation signal is generated by k�0 magnons
created by pairs of BEC magnons k0, −k0 through a three-
magnon confluent process. The k�0 value is necessary for
emission because the wave number of electromagnetic radia-
tion with frequency 1.5 GHz, as in the experiments,6 is k
=2�f /c�0.3 cm−1. In an earlier paper20 we have shown
that the k�0 magnons created by the BEC are coherent
magnon states, corresponding to a nearly uniform magneti-
zation precessing with frequency �0 and generating a micro-
wave signal. The microwave emission from the collective
action of the spins is identified with superradiance. Here we
present other aspects of the theoretical model for this phe-
nomenon and show that the predicted radiated signal power
agrees with the experimental data.6

The paper is organized as follows. In Sec. II we discuss
the nature of the spin-wave modes in thin films based on the
results of earlier work by several authors in order to establish
the background for the remainder of the paper. Section III is
devoted to a review of the properties of coherent magnon
states. In Sec. IV we discuss the excitation of spin waves in
films by the parallel-pumping technique. Section V is de-
voted to the proposed cooperative mechanism for the forma-
tion of the BEC of magnons. In Sec. VI we show that the
states resulting from the cooperative action have quantum
coherence and that the number of condensate magnons ap-
proaches the number of pumped magnons as the microwave
power increases beyond the critical value for Bose-Einstein
condensation. In Sec. VII we develop the theory for the mi-
crowave emission from the uniform mode generated by BEC
magnon pairs. In Sec. VIII we show that the results of the
model agree with experimental data for the intensity and the
decay rate of the Brillouin light scattering from the BEC and
for the microwave emission from the uniform mode resulting
from the coalescence of a pair of BEC magnons. Section IX
summarizes the main results.

II. SPIN-WAVE MODES IN THIN FILMS

Since the pioneering work of Damon and Eshbach21 �DE�
the theory of spin waves in ferromagnetic films has been
studied and reviewed by many authors.22–31 The theory of
Damon and Eshbach was developed for waves with very
small wave numbers k that have energies with negligible
contribution from the exchange interaction between the
spins. They used a semiclassical approach for the equation of
motion for the magnetization in which the magnetic dipolar
field plays a dominant role. This field was obtained with the
so-called magnetostatic approximation valid for wave num-
bers much larger than the values for the electromagnetic field

�k�1 cm−1� so DE coined the term magnetostatic waves to
the resulting wave solutions. Later several authors included
the exchange interaction in the equations of motion and in
the boundary conditions, used various approaches and ap-
proximations to find the normal modes and introduced other
names to the waves such as dipole-exchange waves. Actually
they are all simply spin waves, pictured classically by the
view of the spins precessing about the equilibrium direction
with a phase that varies along the direction of propagation.
Various results have been successfully applied to explain ex-
perimental observations in thin slabs or films of YIG and
other low loss ferrite materials as well as in ultrathin films of
ferromagnetic metals. In this section we present the back-
ground information on the normal spin-wave modes in a thin
ferromagnetic film necessary for the discussion of the theory
of the interacting spin waves. Initially we employ the DE
theory extended to include exchange in order to obtain exact
dispersion relations for waves in films corresponding to the
nearly uniform transverse mode. Then we develop a quantum
model based on the second quantization of the spin excita-
tions involving magnon creation and annihilation operators
which is the most convenient approach to treat interactions.

Consider an unbounded flat ferromagnetic film with thick-
ness d magnetized in the plane by a static magnetic field H.
We use a coordinate Cartesian system with the x and z coor-
dinates in the plane of the film; ẑ along the field direction.
Anisotropy is neglected since it is very small in YIG so that

the magnetization M� in equilibrium lies along ẑ and one can

write M� = ẑMz+ x̂mx+ ŷmy. The DE approach consists of solv-
ing the Landau-Lifshitz equations of motion for the small-
signal time-varying components of the magnetization mx and
my under the action of the magnetic dipolar field they create
added to the static field H.21 Furthermore it is assumed that
mx and my are described by waves with frequency �k and
wave vector k� propagating in the film x-z plane and a
standing-wave pattern in the perpendicular direction. The

corresponding dipolar field h�d can be obtained from Max-

well’s equations in the magnetostatic approximation �xh�d
=0, which allows expressing the field in terms of a magnetic

potential � as h�d=−��. The equation for � follows from

� · �h�d+4�m� �=0 and its solutions are subjected to the elec-
tromagnetic boundary conditions involving the internal and
external fields on the two surfaces of the film. One then
obtains a transcendental equation relating the frequency �k
with the wave vector components21,27–29

2�1 + ���− ��1/2cot�kyd� + ��1 + ��2 − �2 sin2 �k + 1 = 0,

�1�

where �k is the angle between the wave vector k� in the plane
and the z direction, ky is the wave number characterizing the
mode pattern in the direction normal to the film, and the
other parameters are related to the frequency by

� =
�H�M

�H
2 − �k

2 , � =
�k�M

�H
2 − �k

2 , �2�

and
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� =
1 + � sin2 �k

1 + �
, �3�

where �H=�H, �M =�4�M, and �=g	B /
 is the gyromag-
netic ratio �2.8 GHz/kOe for YIG�. Note that the components
of the wave vector k� in the plane enter in Eqs. �1�–�3�
through kx=k sin �k and kz=k cos �k. From the equation for
the potential in the film one can see21,29 that the transverse
wave number ky is related to the wave number k in the plane
by

ky = �− ��1/2k . �4�

It follows that for each pair of values of kx, kz, or equiva-
lently k, �k, Eq. �1� has several solutions for the frequency
�k, each corresponding to a different transverse mode pattern
characterized by a discrete ky. From Eqs. �2�–�4� it is clear
that ky can be real or imaginary, depending on the range of
frequency. Real values of ky correspond to the so-called vol-
ume magnetostatic modes, for which the magnetization com-
ponents have a dependence on the transverse coordinate y of
the type cos kyy, sin kyy. Imaginary values of ky correspond
to the surface modes, which have an exponential dependence
on y decaying away from one of the film surfaces. The sur-
face modes have a unique property of being nonreciprocal in
the sense that the wave associated with one surface propa-
gates only in one direction but not in the opposite.21,22,27–29

From Eqs. �2�–�4� it can be shown27–29 that for each fre-
quency there is a critical angle of propagation �kc above
which � becomes positive so that ky is imaginary and the
mode is a surface wave

sin �kc = ��k
2 − �H

2

�H�M
�1/2

. �5�

For typical numbers appropriate to the experiments of
Refs. 1–6 with YIG films, H=1.0 kOe, 4�M =1.76 kG, f
=�k /2�=4.0 GHz, the critical angle is �kc=50.26°. For the
specific case of the surface wave with �k=90°, Eq. �1� has a
simple solution with an explicit dependence of the frequency
on the wave vector given by29

�k
2 = �H

2 + �H�M +
1

4
�M

2 �1 − e−2kd� . �6�

The introduction of the exchange interaction complicates
considerably the problem of finding the spin-wave normal
modes in films. First of all one can see that in films with
thickness on the order of 1 	m or less, the exchange intro-
duces a sizeable separation in the frequencies of the volume
modes with different transverse patterns because ky �ny� /d
and the exchange energy varies with the square of ky. The
exact solution of the wave equations must involve the match-
ing of mixed electromagnetic and exchange boundary
conditions.24–26 A nearly exact expression for the frequency
of the lowest lying exchange branch can be obtained by sim-
ply introducing the exchange interaction as an effective field
in Eqs. �1�–�4� which is added to the applied field so that the
parameter �H becomes

�H = ��H + Dk2� , �7�

where D=2JSa2 /g	B is the exchange stiffness, J being the
nearest-neighbor exchange constant, and a the lattice param-
eter of the film. The dispersion relations obtained by solving
numerically Eqs. �1�–�4�, with �H as in Eq. �7�, are shown by
the solid lines in Fig. 1 for several angles �k in two YIG films
with thicknesses d=0.1 and 5 	m using H=1.0 kOe,
4�M =1.76 kG, and D=2�10−9 Oe cm2. The main feature
of the dispersion curves is that for propagation angles below
certain values the frequency exhibits a minimum at a k value
that depends on the thickness. This is a consequence of the
fact that the frequency initially decreases with increasing k
due to the role of the dipolar energy but then at larger values
of k it changes slope due to the effect of exchange as in Eq.
�7�.

In the quantum approach which will be used to treat in-
teractions we employ a Hamiltonian in the form

H = H0 + Hint + H��t� , �8�

where H0 is the unperturbed Hamiltonian that describes free
magnons, Hint represents the nonlinear magnetic interactions,

(a)

(b)

FIG. 1. Dispersion relations for spin waves propagating at vari-
ous angles with the in-plane applied field H=1.0 kOe in a YIG film
with thicknesses �a� 0.1 	m and �b� 5 	m. The curves with full
lines represent the calculation with the DE theory including ex-
change, Eq. �1�, while the dotted lines represent the calculation with
the approximate theory, Eq. �26�, for �k=0°, 20°, and 40°.
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and H��t� represents the external microwave driving. The
magnetic Hamiltonian can be written as H=HZ+Hexc+Hdip,
representing, respectively, the Zeeman, exchange and dipolar
contributions. We treat the quantized excitations of the mag-
netic system with the approach of Holstein-Primakoff,32–35

which consists of three transformations that allow the spin
operators to be expressed in terms of boson operators that
create or destroy magnons. In the first transformation the
components of the local spin operator are related to the cre-
ation and annihilation operators of spin deviation at site j,
denoted, respectively, by aj

+ and aj, which satisfy the boson
commutation rules �ai ,aj

+�=�ij and �ai ,aj�=0. Using a coor-
dinate system with ẑ along the equilibrium direction of the
spins, defining Sj

+=Sj
x+ iSj

y and Sj
−=Sj

x− iSj
y, where the factor i

is the imaginary unit, not to be confused with the subscript
denoting lattice site i, it can be shown that the relations that
satisfy the commutation rules for the spin components and
the boson operators are32–34

Sj
+ = �2S�1/2�1 −

aj
+aj

2S
�1/2

aj , �9a�

Sj
− = �2S�1/2aj

+�1 −
aj

+aj

2S
�1/2

, �9b�

Sj
z = S − aj

+aj , �9c�

where S is the spin and aj
+aj 	nj is the operator for the num-

ber of spin deviations at site j. One of the main advantages
of this approach is that the nonlinear interactions are treated
analytically by expanding the square root in Eqs. �9a� and
�9b� in Taylor series. We use only the first two terms of the
expansion so that

Sj
+ 
 �2S�1/2�aj − aj

+ajaj/4S� and �10a�

Sj
− 
 �2S�1/2�aj

+ − aj
+aj

+aj/4S� . �10b�

In order to find the normal modes of the system we use
the linear approximation, whereby only the first terms in Eqs.
�9c� and �10� are kept, i.e., Sj

+
�2S�1/2aj, Sj
−
�2S�1/2aj

+, and
Sj

z
S. With these transformations one can express the mag-
netic Hamiltonian in a quadratic form containing only lattice
sums of products of two-boson operators. The second step is
to introduce a transformation from the localized field opera-
tors to collective boson operators ak

+ and ak using the Fourier
transform

aj =
1

N1/2�
k

eik�·r�ak, �11�

where N is the number of spins in the system. The condition
that the new collective operators satisfy the boson commuta-
tion rules �ak ,ak�

+ �=�k,k� and �ak ,ak��=0 requires that the
transformation coefficients satisfy the usual orthonormality
relations. The contributions from the Zeeman and exchange
energies to the Hamiltonian H0 with quadratic form in boson
operators can be shown to be32–35

HZ + Hexc = 
�
k

��H + Dk2�ak
+ak. �12�

The contribution of the dipolar energy to the Hamiltonian
can be obtained with approximations valid for the nearly
uniform transverse mode, which corresponds to the lowest
lying exchange branch with ky �0. Following Refs. 30 and
31 we neglect the variation of the magnetization on the trans-
verse coordinate and work with the averages over y,

mx,y�x,z;t� = mx,y�r�;t� = �
−d/2

d/2 1

d
mx,y�x,z;t�dy . �13�

The magnetic potential � created by the spatial variation
of the small-signal transverse components of the magnetiza-
tion is written in the form30,31

��x,y,z� =
1

V1/2�
k

�k�y�eik�·r�, �14�

where V is the volume of the film and k� and r� denote the
wave vector and the position vector in the plane. The Fourier
transform of the potential �k�y� can be obtained from the
solution of �2�=4�� ·m� derived from Maxwell’s equations
subject to the electromagnetic boundary conditions at y
= �d /2,31

�k�y� = 4�i�e−kd/2 cosh�ky� − 1�
kx

k2mx�k�

+ 4�e−kd/2 sinh�ky�
1

k
my�k� , �15�

where the Fourier components of the magnetization appear-
ing in Eq. �15� can be expressed in terms of the collective
boson operators using Eq. �11� and the lowest-order terms in
Eq. �10� in the relation mx,y =g	B�N /V�Sx,y,

mx�k� = 
��NS

2V
�1/2

�ak + a−k
+ � , �16a�

my�k� = − i
��NS

2V
�1/2

�ak − a−k
+ � . �16b�

The small-signal transverse components of the dipolar field

can be obtained from the magnetic potential with h�d=−�� so
that the contribution of the dipolar energy to the magnetic
Hamiltonian can be calculated with

Hdip = −
1

2
� dxdydz�mxhx

dip + myhy
dip� . �17�

The integration in Eq. �17� can be performed without dif-
ficulty by expressing the magnetization and the dipolar field
in terms of their Fourier transforms and using the orthonor-
mality relations. One can show that

Hdip = 
�2�M�
k

��1 − Fk� sin2 �k + Fk�ak
+ak

+
1

2
��1 − F�k sin2 �k − Fk�aka−k + H.c.� . �18�

With Eqs. �12� and �18� one can write the total Hamiltonian
for the free magnon system as
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H0 = 
�
k

Akak
+ak +

1

2
Bkaka−k +

1

2
Bkak

+a−k
+ , �19�

where

Ak = ��H + Dk2 + 2�M�1 − Fk� sin2 �k + 2�MFk� ,

�20a�

Bk = ��2�M�1 − Fk�sin2 �k − 2�MFk� , �20b�

Fk = �1 − e−kd�/kd . �20c�

In order to diagonalize the quadratic Hamiltonian it is
necessary to introduce new collective boson operators ck

+ and
ck satisfying the commutation rules �ck ,ck�

+ �=�kk� and
�ck ,ck��=0, which are related to ak

+ and ak through the Bo-
goliubov transformation32–34

ak = ukck + vkc−k
+ , �21a�

ak
+ = ukck

+ + vk
�c−k, �21b�

where uk
2−vk

2=1 as appropriate for a unitary transformation.
The coefficients of this transformation must be such that the
quadratic Hamiltonian acquires the diagonal form

H0 = 
�
k

�kck
+ck �22�

because this leads to the Heisenberg equation of motion

dck

dt
=

1

i

�ck,H0� = − i�kck. �23�

This equation has stationary solutions of the form e−i�kt

which assures that ck is the operator for the normal-mode
excitations of the magnetic system. Hence ck

+ and ck are the
creation and annihilation operators for magnons. It can be
shown32–34 that the coefficients of the transformations �21�
are given,

uk = �Ak + �k

2�k
�1/2

and �24a�

vk = � �uk
2 − 1�1/2 = � �Ak − �k

2�k
�1/2

, �24b�

where the sign of vk in Eq. �24b� is the opposite one of the
parameter Bk and the frequency �k of the eigenmodes is

�k = �Ak
2 − �Bk�2�1/2. �25�

Using the expressions for the parameters in Eq. �20� we
obtain from Eq. �25� an explicit equation for the dependence
of the spin-wave frequency on the wave vector in the plane

�k
2 = �2�H + Dk2 + 4�M�1 − Fk� sin2 �k��H + Dk2 + 4�MFk� .

�26�

This equation is the same as the one obtained for the
lowest lying branch of the “dipole-exchange” modes with
more rigorous treatment of the exchange interaction.24–26 It

also agrees with the results of Refs. 30 and 31 in the limit
kd1. The dispersion curves shown by the dotted lines in
Fig. 1 are obtained with Eq. �26�. The agreement with the
Damon-Eshbach result extended to include exchange is quite
good for any angle �k in the YIG film with d=0.1 	m. In the
case of the film with d=5 	m the agreement is good for
�k�50°. The results in Fig. 1 show that the second quanti-
zation approach just presented describes quite well spin-
wave mode in films with nearly uniform transverse pattern.

To conclude this section we express the components of
the magnetization vector operators in terms of the magnon
creation and annihilation operators using the relations with
the spin operators and the transformations �10�, �11�, and
�21�,

mx�r�� =
M

�2NS�1/2�
k

eik�·r��uk + vk��ck + c−k
� � , �27a�

my�r�� = − i
M

�2NS�1/2�
k

eik�·r��uk − vk��ck − c−k
� � . �27b�

With these equations one can calculate the expectation val-
ues of the magnetization components for any spin excitation
in films expressed in terms of the magnon states.

III. COHERENT MAGNON STATES

If the nonlinear interactions are neglected, the spin-wave
excitations with wave vector k and frequency �k described
by magnon creation and annihilation operators ck

+ and ck
form a system of independent harmonic oscillators, governed
by the unperturbed Hamiltonian H0=
��kck

+ck. The eigen-
states �nk� of this Hamiltonian which are also eigenstates of
the number operator nk=ck

+ck can be obtained by applying
integral powers of the creation operator to the vacuum,

�nk� = ��ck
+�nk/�nk!�1/2��0� , �28�

where the vacuum state is defined by the condition ck�0�=0.
These stationary states describe systems with a precisely de-
fined number of magnons nk and uncertain phase. They form
a complete orthonormal set which can be used as a basis for
the expansion of any state of spin excitation. They are used
in nearly all quantum treatments of thermodynamic proper-
ties, relaxation mechanisms, and other phenomena involving
magnons. However, as can be seen from the expressions in
Eq. �27�, they have zero expectation value for the small-
signal transverse magnetization operators mx and my and thus
do not have a macroscopic wave function. In order to estab-
lish a correspondence between classical and quantum spin
waves one should use the concept of coherent magnon
states,17,18 defined in analogy to the coherent photon states
introduced by Glauber.16 A coherent magnon state is the
eigenket of the circularly polarized magnetization operator
m+=mx+ imy. It can be written as the direct product of single-
mode coherent states, defined as the eigenstates of the anni-
hilation operator

ck��k� = �k��k� , �29�

where the eigenvalue �k is a complex number. Although the
coherent states are not eigenstates of the unperturbed Hamil-
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tonian and as such do not have a well-defined number of
magnons, they have nonzero expectation values for the mag-
netization m+ with a well-defined phase. Here we review a
few important properties of the coherent states. First we re-
call that they can be expanded in terms of the eigenstates of
the unperturbed Hamiltonian16–18

��k� = e−��k�2/2�
nk

��k�nk/�nk!�1/2�nk� . �30�

The probability of finding nk magnons in the coherent state
��k� obtained directly from Eq. �30� is given by

�coh�nk� = ��nk���k��2 = ���k�2nk/nk!�e−��k�2. �31�

This function is a Poisson distribution16 that exhibits a peak
at the expectation value of the occupation number operator
�nk�= ��k�2 in the coherent state. It can be shown that coher-
ent states are not orthogonal to one another, but they form a
complete set, so that they constitute a basis for the expansion
of an arbitrary state. The distribution �31� is very different
from the one prevailing in systems in thermal equilibrium,
which cannot be described by pure quantum states. Instead
they are described by a mixture in which one can find any
number of magnons nk with energy 
�k. The average num-
ber of magnons with energy 
�k in thermal equilibrium at a
temperature T is given by the Bose-Einstein distribution

n̄k =
1

e
�k/kBT − 1
, �32�

where kB is the Boltzmann constant. The probability of find-
ing nk magnons with energy 
�k in the mixture describing
the thermal equilibrium with the average value �32� can be
shown to be16

�th�nk� =
�n̄k�nk

�1 + n̄k�nk+1 . �33�

Note that for large nk Eq. �33� approaches the exponential
function exp�−n̄k�. To stress the difference between the co-
herent state and the mixture describing the thermal equilib-
rium we show in Fig. 2 the distributions �31� and �33� cor-
responding to �nk�=50.

Another important property of a coherent state is that it
can be generated by the application of a displacement opera-
tor to the vacuum16–18

��k� = D��k��0� , �34a�

where

D��k� = exp��kck
+ − �k

�ck� . �34b�

In order to study the coherence properties of a magnon sys-
tem, it is convenient to use the density-matrix operator � and
its representation as a statistical mixture of coherent states,

� =� P��k���k���k�d2�k, �35�

where P��k� is a probability density, called P representation,
satisfying the normalization condition �P��k�d2�k=1 and
d2�k=d�Re �k�d�Im �k�. As shown by Glauber,16 if � corre-

sponds to a coherent state, P��k� is a Dirac � function. On
the other hand, if � represents a thermal Bose-Einstein dis-
tribution, P��k� will be a Gaussian function.

To conclude this section we calculate the expectation val-
ues of the components of the magnetization operators for a
single coherent state with eigenvalue �k= ��k�exp�i�k�. Using
the definition �29� in the expressions �27� it is straightfor-
ward to show that

�mx�r�,t�� =
M

�NS/2�1/2 ��k��uk + vk�cos�k� · r� − �kt + �k� ,

�36a�

�my�r�,t�� =
M

�NS/2�1/2 ��k��uk − vk�sin�k� · r� − �kt + �k� .

�36b�

The transverse components of the magnetization in Eq.
�36� together with ẑMz correspond to the classical view of a
spin wave, namely, the magnetization precesses around the
equilibrium direction with a phase that varies along the di-
rection of propagation and with an ellipticity given by

mx
max

my
max = �uk + vk

uk − vk
� =

Ak + Bk

�k
. �37�

Note that the elliptical precession of the transverse mag-
netization with frequency �k results in an oscillating z com-
ponent with frequency 2�k. As is well known it is this fact
that makes possible to excite spin waves with a microwave
field parallel to the static field.

IV. MICROWAVE EXCITATION OF SPIN WAVES

Spin waves can be nonlinear excited in a magnetic mate-
rial by means of several techniques employing microwave
radiation, with the microwave magnetic field applied either
perpendicular or parallel to the static field. The excitation is

FIG. 2. Distributions of magnons in a system in thermal equi-
librium and in a coherent state with �nk�=50.
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provided by the oscillation in the coupling parameter be-
tween two or more magnon modes, so the processes are
called parametric. As in other nonlinear processes, the exci-
tation occurs when the driving field exceeds a certain thresh-
old value which depends on the rate at which the magnon
mode relaxes to the heat bath. In the parallel-pumping pro-
cess the driving Hamiltonian in Eq. �8� follows from the
Zeeman interaction of the microwave pumping field
ẑh cos��pt� with the magnetic system. One can express the
Zeeman interaction in terms of the magnon operators using
Eqs. �9c�, �11�, and �21�and keeping only terms that conserve
energy and show that the driving Hamiltonian for a ferro-
magnetic film is given by

H��t� =



2 �
k

h�ke
−i�ptck

+c−k
+ + H.c., �38a�

where

�k = �ukvk = ��M��1 − Fk�sin2 �k − Fk�/4�k �38b�

represents the coupling of the pumping field h �frequency
�p� with the k�, −k� magnon pair with frequency �k equal or
close to �p /2. Note that for a thick film, a large wave vector,
or a combination of both such that kd�1 Eq. �20c� gives
Fk1. In this case the coupling coefficient approaches the
value for bulk samples �k=��M sin2 �k /4�k. This is maxi-
mum for waves propagating perpendicularly to the field
since they have the largest ellipticity and vanishes for waves
with k� along the field. However in films with kd on the order
of 1 or less Fk is finite and the parallel-pumping field can
drive waves with any value of �k. This is what happens in the
case of the experiments in Refs. 1–6 with H=1.0 kOe. As
seen in Fig. 1�b� in a YIG film with d=5 	m magnons with
frequency 4.05 GHz and �k=0 can have two values for k,
approximately 2�103 cm−1 and 5�105 cm−1. The first
value corresponds to kd
1 and Fk
0.6 and the second to
kd
250 and Fk�0. This means that magnons with fre-
quency 4.05 GHz and k�2�103 cm−1, with �k=0, have a
finite ellipticity and can be parallel pumped. In fact, as can
be seen in Fig. 1�b�, for H=1.0 kOe only waves with �k in
the range of from 0° to about 50° can be pumped at fp /2
=4.05 GHz. It turns out that as �k increases with fixed fre-
quency the wave vector k increases so Fk decreases. In a film
with thickness d=5 	m this approximately compensates the
increase in the sin2 �k term so that the factor ukvk which
determines the parallel-pumping coupling remains about 0.2
in the whole range of �k from 0° to 50°.

The Heisenberg equation of motion for the operators ck
and ck

+ with the Hamiltonian H=H0+H��t� given by Eqs.
�22� and �38� can be easily solved assuming that the pump-
ing field is applied at t=0 to give the evolution of the expec-
tation value of the number of magnons

�nk�t�� = �nk�0��e2�kt, �39a�

where

�k = ��h�k�2 − ��k
2�1/2 − �k, �39b�

where �nk�0�� is assumed to be the thermal number of mag-
nons, ��k=�k−�p /2 is the detuning from the frequency of

maximum pumping strength, and �k is the magnon relaxation
rate which was introduced phenomenologically in the equa-
tions of motion.

Equations �39� express the well-known effect of the
parallel-pumping excitation. Magnon pairs with frequency
�k equal or close to �p /2 and wave vectors k�, −k� determined
by the dispersion relation are driven parametrically and their
populations grow exponentially when the field amplitude ex-
ceeds a critical value hc, given by the condition �k=0 in Eq.
�39b�,

hc = ��k
2 + ��k

2�1/2/�k. �40�

The large increase in the magnon population enhances the
nonlinear interactions causing a reaction that limits its
growth. Due to energy and momentum conservation the im-
portant mechanism in this process is the four-magnon inter-
action, which can be represented by a Hamiltonian of the
form32–36

H�4� = 
�
k,k�

�1

2
Skk�ck

+c−k
+ ck�c−k� + Tkk�ck

+ck�
+ ckck�� , �41�

where the interaction coefficients are determined mainly by
the dipolar and exchange energies. For the k values relevant
in the experiments1–6 the contribution from the exchange en-
ergy is negligible compared to the dipolar.33 The four-
magnon dipolar Hamiltonian can be obtained from Eq. �17�
using for m� and h�dip the first and second terms of the expan-
sions in Eq. �10�, following procedures similar to those in
Sec. II, and keeping only terms with two creation and two
annihilation magnon operators. The result has several terms
with coefficients containing the form factor Fk in Eq. �20c�
and products of the parameters uk and vk in Eq. �24� as given
in Ref. 19. It turns out that for the conditions of the experi-
ments, Fk1, uk�1, and vk1, so that the coefficients in
Eq. �41� are given approximately by Skk�=2Tkk�=2�M /NS.
Using the Hamiltonian �8� with Eq. �41� as the interaction
term one can write the Heisenberg equations for the opera-
tors ck and ck

+ from which several quantities of interest can be
obtained. One of them is the correlation function �k defined
by36

�k = �ckc−k� = nke
i�ke−i2�kt, �42�

where nk is the magnon number operator and �k the phase
between the states of the pair. From the equation of motion
for �k it can be shown that for h�hc, in steady state36–38

�nk�ss =
��h�k�2 − �k

2�1/2 − ���k�
2V�4�

, �43�

where

V�4� = Skk + 2Tkk = 4�M/NS . �44�

It can also be shown that the phase �k varies from −� /2 to �
as h increases from hc to infinity. In the range of pumping
power of the experiments1–6 �k�−� /2. By using methods of
quantum statistical mechanics and the probability density de-
fined in Eq. �35� it has been demonstrated that the magnon
pairs excited by parallel pumping are in coherent magnon
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states but this is so only when the four-magnon interaction is
taken into account.38

Equation �43� shows that magnon pairs with frequency
within a certain range around �p /2 are pumped by the mi-
crowave field when its amplitude exceeds a critical value
given by

hc =
��k

2 + ��k
2�1/2

�k
. �45�

Note that the population of the parametric magnons is maxi-
mum for �k=�p /2 and for the allowed �k that maximizes �k.
The modes with �k=�p /2 are excited when the field ampli-
tude h is larger than a critical value hc=�k /�k. In the reported
experiments the minimum hc corresponds to a critical power
pc in the range of 100 	W to 1 mW determined by the
experimental configuration and the spin-lattice relaxation
rate in YIG, �SL�2�106 s−1. This value is obtained from
�SL= �2�SL�−1, where �SL�250 ns is the spin-lattice decay
time of the magnon number as measured in Ref. 4. However,
when very short microwave pulses are used, much higher
power levels are required to reduce the rise time and to build
up large magnon populations. From the numerical study of
the initial time evolution of nk for a steplike pumping and
from other considerations presented in Sec. VIII, we have
concluded that the relaxation rate that prevails in the dynam-
ics is dominated by magnon-magnon scattering. This mag-
netic relaxation rate can be inferred from the measured decay
time of the BLS peak corresponding to the primary magnons
observed in Ref. 4 �m�10 ns, so that �m�25�SL=5
�107 s−1. Thus one can define a critical field hc1=�m /�k
=hc�m /�SL for driving magnons out of equilibrium from the
heat bath with short pulses. Using the fact that the driving
microwave power p is proportional to h2, we can write from
Eq. �43� an expression for the steady-state number of para-
metric magnons with frequency �k=�p /2 as a function of
power

�nk�ss =
��p − pc1�/pc1�1/2

2V�4�/�m
, �46�

where pc1= pc��m /�SL�2. Using numbers appropriate for the
experiments,4 pc=100 	W, �m=25�SL, pc1=0.0625 W,
V�4�NS=4�M =1.24�1011 s−1, for a driving power p=4 W,
Eq. �46� gives for the normalized number of parametric mag-
nons �nk�ss /NS=1.6�10−3. The number of magnons pumped
by the microwave field is actually larger than this because
many modes with frequency in the vicinity of �p /2 are also
driven. From Eq. �46� one can write an approximate equation
for the total number of magnons pumped into the system as

Np = rpnH��p − pc1�/pc1�1/2, �47a�

where

nH 	 �m/2V�4� = �mNS/8�M �47b�

and rp is a factor that represents the number of pumped
modes weighted by a factor relative to the number of mag-
nons of the mode with maximum coupling.

V. MODEL FOR THE DYNAMICS OF BOSE-EINSTEIN
CONDENSATION IN THE MICROWAVE-DRIVEN

INTERACTING MAGNONS

In the experiments of Refs. 1–6 magnon pairs are para-
metrically driven by parallel pumping in a YIG film at large
numbers compared to the thermal values. The population of
these primary magnons with frequency equal or close to
�p /2 is quickly redistributed over a broad frequency range
down to the minimum frequency fmin=�k0 /2�. This redistri-
bution is caused by four-magnon scattering events which
conserve the total number of magnons so that a quasiequilib-
rium hot magnon gas is formed. Since the spin-lattice relax-
ation time in YIG is much longer than the intermagnon decay
time, the hot magnon gas remains practically decoupled from
the lattice for several hundred ns with an essentially constant
number of magnons. In this situation the occupation number
of the system is given by the Bose-Einstein distribution

nBE��,	,T� =
1

e�
�−	�/kBT − 1
, �48�

where 	 is the associated chemical potential. As is well
known7 in systems with constant number of particles it is Eq.
�48� and not Eq. �32� that determines the distribution of the
number of bosons with energy 
� at a given temperature T,
provided the system is in equilibrium and there is no inter-
action between the bosons. The experiments of Refs. 1–4
were done with 8.1 GHz microwave pumping in two types of
pulsed regimes and the properties of the pumped magnon
system were measured with time-resolved Brillouin light
scattering. In the first one long pulses of duration 1 	s were
employed to ensure that quasiequilibrium was established in
the hot magnon gas while still decoupled from the lattice.
This made possible the observation of the full thermal equi-
librium spectra between fmin and the parametric magnon fre-
quency of 4.05 GHz as a function of the microwave pumping
power. The authors of Refs. 1–4 argued that without external
driving the magnons are in thermal equilibrium with the lat-
tice and have uncertain number so that 	=0. If a microwave
driving is applied and the power exceeds the threshold for
parallel pumping the total number of particles in the magnon
gas increases and can be expressed as

Ntot =� D���nBE��,	,T�d� , �49�

where D��� is the magnon density of states and the integral
in Eq. �49� is carried out over the whole range of magnon
frequencies. Clearly as the microwave power is raised the
total number of magnons increases so that the effective tem-
perature of the magnon gas and the chemical potential in-
crease. Using Eq. �49� and the similar equation for the en-
ergy of the system it is possible to determine the values of 	
and T for a given Ntot. In the experiments with long pulses1–3

the BLS spectra could be fitted with the spectral density
function D���nBE�� ,	 ,T�, allowing the determination of 	
and T for each power value. At a high enough power the
chemical potential reaches the energy corresponding to fmin
resulting in an overpopulation of magnons with that fre-
quency relative to the theoretical fit. It was then necessary to
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add a singularity at fmin to fit the spectrum.2 This was inter-
preted as a signature of the Bose-Einstein condensation of
magnons, namely, when the number of magnons reaches a
critical value defined by the condition 	c=
2�fmin the gas is
spontaneously divided in two parts: one with the magnons
distributed according to Eq. �48� and another one with the
magnons accumulated in the state of minimum energy.

The experiments with short microwave pulses �30 ns�
�Refs. 4 and 5� allowed the observation of the dynamics of
the redistribution of energy from the primary magnons to the
modes in the broader energy range and the formation of the
sole BLS peak in a narrow range in phase space centered at
the wave vector k0 along the field and frequency fmin. The
behaviors of the peak intensity and of the relaxation to the
lattice with increasing microwave pumping power revealed
that above a critical power level the magnons accumulated at
the bottom of the spectrum develop a spontaneous emer-
gence of coherence. The coherence of the BEC was further
confirmed in experiments showing the microwave emission
from the k=0 mode generated by the coalition of a pair of
BEC magnons when the applied field has a value for which
its frequency is 2fmin.

6 While the thermodynamic interpreta-
tion of the experiments in Refs. 1–4 is quite satisfactory and
explains qualitatively several observed features, it fails in
providing quantitative results to compare to data and, most
serious, it does not explain the observed spontaneous emer-
gence of quantum coherence in the BEC of magnons. This is
not surprising because a system of free noninteracting mag-
nons cannot possibly evolve spontaneously from quantum
states describing thermal magnons, represented by the distri-
bution �33�, to coherent magnons states corresponding to Eq.
�31�. The theory presented in this section shows that the
cooperative action of the magnon gas through the four-
magnon interaction can provide the mechanism for the ob-
served spontaneous emergence of quantum coherence in the
BEC. The theory relies in part on some assumptions based
on the experimental observations and on some approxima-
tions to allow an analytical treatment of the problem. The
ultimate justification for the assumptions and approximations
is the good agreement of the theoretical results with the ex-
perimental data for the BLS intensity and for the emitted
microwave signal as a function of the microwave pumping
power presented in the next section.

We consider that with microwave pumping the magnon
system can then be decomposed in two subsystems: one with
frequency above �p /2 in thermal equilibrium with the lattice
at room temperature and another one with frequency in the
range �k0−�p /2 in quasiequilibrium at a higher temperature
T. The second subsystem, which we call the magnon reser-
voir, is characterized by an occupation number given by the
Bose-Einstein distribution with its own temperature and
chemical potential. We also assume that after the hot magnon
reservoir is formed by the redistribution of the primary mag-
nons, the correlation between the phases of the magnon pairs
lasts for a time that can be as large as 4 /�m, which is about
100 ns in the experiments.1–6 This is a sufficient time for the
four-magnon interaction to come into play for establishing a
cooperative phenomenon to drive a specific k mode. The
effective driving Hamiltonian for this process is obtained
from Eq. �41� by taking averages of pairs of destruction op-

erators for reservoir magnons to form correlation functions
as defined in Eq. �42�,

H��t� = 
�
kR

1

2
SkkR

nkR
ei�kRe−i2�kR

tck
+c−k

+ + H.c. �50�

Equation �50� has a form that resembles the Hamiltonian
�38� for parallel pumping, revealing that under appropriate
conditions magnon pairs can be pumped out of equilibrium
in the gas. To treat Eq. �50� we note that since the number of
magnons Np pumped into the system is much larger than the
number of thermal magnons in the range �k0−�p /2 one can
write for the magnon reservoir

Np =� D���nBE��,	,T�d� , �51�

where Np is related to the power as in Eq. �47�. Of course the
calculation of the population in each state of the reservoir as
a function of power is a formidable task. So we use some
approximations to treat the problem analytically. Consider
that the population of the primary magnons is distributed
among the NR modes kR in the magnon reservoir, so that with
Eq. �47� we can write an expression for the average popula-
tion of modes kR as a function of pumping power p,

nR = rnH��p − pc1�/pc1�1/2, �52a�

where

r = rp/NR. �52b�

If all the reservoir states had the same magnon number, the
sum in kR in Eq. �50� would reproduce the density of states
D���. Actually the number of magnons in each state kR de-
pends on its energy as given by Eq. �48� and can be written
approximately as nkR

= fBE��kR�nR, where fBE��kR� is a func-
tion proportional to Eq. �48� with a normalization constant so
that its average over the frequency range of the reservoir
modes is unity,

fBE��� = nBE���/CBE, �53a�

CBE =
1

��R
� nBEd� , �53b�

where ��R=�p /2−�k0 being the frequency range of the res-
ervoir modes. Thus the relevant quantity for determining the
frequency dependence of the coefficient in the Hamiltonian
�50� is the density of states weighted by the normalized
Bose-Einstein distribution

G��� = D���fBE��� . �54�

Note that fBE��� and G��� also vary with 	 and T but we
omit them in the functions to simplify the notation. Figure 3
shows plots of Eq. �54� for several values of 	 and the cor-
responding T for a 5 	m thick YIG film. The density of
states was calculated numerically using the approximate dis-
persion relation �26� by counting the number of states with
kx= �nx2� /Lx , kz= �nz2� /Lz having frequencies in dis-
crete intervals ��=2��1.0 MHz in the range 0−�p /2. The
values of 	 were chosen so that their differences to 
�k0 are
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the same as the ones used in Ref. 3 to fit the measured BLS
spectra with varying microwave power. The corresponding
values of T were estimated by the fits to the BLS spectra in
Ref. 3. The dimensions used to calculate the density of states
are Lx=Lz=2 mm. As expected G��� has a peak at the mini-
mum frequency that becomes sharper as the chemical poten-
tial rises and approaches the minimum energy. The conse-
quence of this is that as the microwave pumping power
increases and �
�k0−	� /kBT becomes very small, the peak
in G��� dominates the coefficient in Eq. �50� revealing that it
is possible to establish a cooperative action of the modes
with frequency �kR

close to �k0 so as to drive magnon pairs
nonlinearly as in the parallel-pumping process. Considering
that the pumping is effective for frequencies �kR

in the range
�k0��m, the sum over kR in Eq. �50� can be replaced by
D��k0��m so that one can write an effective Hamiltonian for
driving k�0 , −k�0 magnon pairs as

Hef f� �t� 
 
�h��ef fe
−i2�k0tck0

+ c−k0

+ + H.c., �55a�

where

�h��ef f = − iG��k0��mV�4�nR/2 �55b�

represents an effective field proportional to the average num-
ber of magnons nR in the reservoir. Note that the factor −i in
Eq. �55b� arises from the phase between pairs that is approxi-
mately −� /2 in the range of power of interest. From the
analysis in Sec. IV one can see that there is a critical number
of reservoir modes above which they act cooperatively to
pump the k�0 , −k�0 magnons parametrically. The condition
��h��ef f�=�m gives the critical average number of reservoir
magnons

nc = 2/V�4�G��k0� . �56�

Since the Hamiltonian �55� has the same form as Eq. �38�,
the population of the k0 mode driven by the effective field
and saturated by the effect of the four-magnon interaction is
calculated in the same manner as done for the direct parallel-
pumping process. Thus from Eq. �43�, with ��k=0, we have

nk0 =
���h��ef f�2 − �m

2 �1/2

2V�4�
. �57�

Using Eqs. �47b�, �55b�, and �56� in Eq. �57� one can
write the population of the k0 mode in terms of the average
reservoir number nR,

nk0 =
nH

nc
�nR

2 − nc
2�1/2. �58�

Alternatively nk0 can be written in terms of the pumping
power using Eqs. �52� and �56� in Eq. �58�,

nk0
= nH��p − pc2�/�pc2 − pc1��1/2, �59�

where nH is given by Eq. �47b� and

pc2 = pc11 + 16/�r�mG��k0��2� �60�

is another threshold power level pc2� pc1 which will be
shown to be the critical power for the formation of the BEC.
Note that with Eqs. �52� and �60� the effective driving field
�55b� can be expressed in terms of power as

�h��ef f = − i�m��p − pc2�/�pc2 − pc1��1/2. �61�

Notice that since G��k0� depends on 	 and consequently
on the power, the value of 	 that enters in Eqs. �56� and �60�
is the one for p= pc2. Equations �58� and �59� are valid only
for nR�nc or equivalently p� pc2 and they represent the first
important result of this paper. For nR�nc or p� pc2 the
population of the k0 mode is that of thermal equilibrium with
the reservoir given by

n̄k0 = nRfBE��k0� . �62�

However, for nR�nc or p� pc2 the population of mode k0 is
pumped up out of equilibrium as a result of a spontaneous
cooperative action of the reservoir modes. As it will be
shown in the next section the k0 mode with population given
by Eqs. �57�–�59� above the threshold is in a coherent mag-
non state. This means that when the average reservoir mag-
non number reaches the critical value �56�, the magnon gas
separates in two parts: one in thermal equilibrium with the
reservoir having frequencies in a wide range and one with a
higher magnon number in a narrow range around the mini-
mum frequency. This is one of the characteristic features of a
Bose-Einstein condensate.

We now have the necessary elements to interpret the be-
havior of the magnon system with increasing microwave
pumping power. First we note that in the interacting magnon
gas the formation of the BEC occurs at a value of the chemi-
cal potential that is close but not equal to the minimum en-
ergy 
�k0. This is so because as the microwave power in-
creases and 	 approaches 
�k0, the average reservoir
number reaches the critical value �56� corresponding to a
small but finite �
�k0−	�. The value of the chemical poten-
tial satisfying Eq. �56� can be identified as the critical value
	c for the formation of the BEC. Using Eqs. �48�, �53�, �54�,
and �60� one can obtain the following relation between 	c
and the critical power pc2:

FIG. 3. G��� as a function of frequency for spin waves in a
5 	m thick YIG film in a field H=1.0 kOe with the following
parameters: 	=0, T=300 K; 	 /h=2.718 GHz, T=900 K; 	 /h
=2.868 GHz, T=1200 K �h is Plank’s constant; fmin=2.898 GHz�.
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�k0 − 	c =
r�mD��k0�kBT

4CBE
��pc2 − pc1�/pc1�1/2, �63�

where we have considered that �
�k0−	c� /kBT1 to use the
binomial expansion of the exponential function in Eq. �48�.
Of course Eq. �63� is not an explicit expression for the criti-
cal chemical potential in terms of pc2 because CBE and also
the effective temperature T vary with 	. Equation �63� is
important to demonstrate that the difference �
�k0−	c� is
finite in the interacting magnon gas. As the microwave
power p increases above pc1, the average reservoir magnon
number nR increases continuously as given by Eq. �52�. The
variation of nR with power is shown in Fig. 4. Correspond-
ingly the chemical potential increases with power and
reaches the critical value 	c when p reaches pc2, giving rise
to the nonlinear driving of the k0 mode. This process leads to
a sharp increase in the magnon population at the state with
minimum frequency �k0 characteristic of the condensation of
bosons. For p� pc2 the chemical potential locks at the value
	c so that the dependence of �h��ef f on power is entirely
contained in Eq. �61�. Since the four-magnon interaction that
produces the cooperative action conserves the number of
magnons, as p increases further the number of magnons in
the reservoir stays constant and the additional magnons
originating from the primary magnons end up at the conden-
sate state. Figure 4 also shows the variation with power of
the population nk0 for p� pc2.

VI. QUANTUM COHERENCE OF THE BOSE-EINSTEIN
MAGNON CONDENSATE

In order to study the coherence properties of the k0 mode
pumped above threshold one has to use methods of statistical
mechanics appropriate for boson systems interacting with a
heat bath. We follow here the same procedure used by de
Araujo38 to study the direct parallel-pumping process. The
first step is to represent the magnon reservoir and its inter-
actions with a specific k mode by a Hamiltonian that allows
a full description of the thermal and driving processes for the
interacting magnon system

H = H0 + H�4� + Hef f� �t� + HR + HRS, �64�

where the first three terms are given respectively by Eqs.
�22�, �41�, and �55�,

HR = 
�
kR

�kRckR
+ ckR �65�

is the Hamiltonian for the magnon reservoir, assumed to be a
system with large thermal capacity and in thermal equilib-
rium, and

HRS = 
�
k,kR

�k,kR
� ckR

+ ck + �k,kRckRck
+ �66�

represents a linear interaction between the magnons k and the
heat reservoir. Note that Eq. �66� also has its origin in the
four-magnon interaction which provides the main mecha-
nism for the intermagnon relaxation. Using the Heisenberg
equation for the magnon operators for a mode k in the vicin-
ity of k0 with the total Hamiltonian �64� and assuming that
nk=n−k, we obtain

dck

dt
= − �i�k + �m + i2V�4�nk�ck − i�h��ef fe

−i2�k0tc−k
+ + Fk�t� ,

�67�

where

�m = �D��k���k,kR�2, �68a�

Fk�t� = − i�
kR

�k,kRckRe−i�kRt, �68b�

represent, respectively, the magnetic relaxation rate ex-
pressed in terms of the interaction between magnon k and the
heat reservoir and a Langevin random force with correlators
of Markoffian systems type.38–40 Using Eq. �67� and the cor-
responding one for the operator c−k

+ , transforming them to the
representation of coherent magnon states ��k�, and working
with variables in a rotating frame ck��k�=�k�t�e−i�kt��k�, we
obtain an equation of motion for the coherent-state eigen-
value with k�k0,

d�k�t�
dt

−
2V�4�

2

�m
� ��h��ef f�2 − �m

2

4V�4�
2 − ��k�t��4��k�t� = Sk�t� ,

�69a�

where

Sk�t� = Fk�t�ei�kt − i
�h��ef f

�m
F−k

� �t�e−i�kt. �69b�

Equations �69� contain all the information carried by the
equations of motion for the magnon operators. It is a typical
nonlinear Langevin equation which appears in Brownian mo-
tion studies and laser theory.39,40 It shows that the magnon
modes with amplitude �k are driven thermally by the hot
magnon reservoir and also by an effective driving field. The
solutions of Eq. �69� confirm the previous analysis. For nega-
tive values of the driving term ���h��ef f�2−�m

2 � the magnon
amplitudes are essentially the ones of the thermal reservoir.
For positive values they grow exponentially and are limited

FIG. 4. Variation with microwave pumping power of the nor-
malized reservoir average magnon number and of the k0 magnon
population.
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by the effect of the four-magnon interactions. Above the
threshold condition the steady-state solution of Eq. �69�
gives for the number of magnons nk= ��k�2 an expression
identical to Eq. �57�. The final step to obtain information
about the coherence of the excited mode is to find an equa-
tion for the probability density P��k�, defined in Eq. �35�,
that is stochastically equivalent to the Langevin equation.
Using �k=ak exp�i�k� we obtain a Fokker-Plank equation in
the form38

�P

�t�
+

1

x
� �

�x
���A − x4�x2P� =

1

x

�

�x
�x

�P

�x
� +

1

x2� �2P

��k
2� ,

�70�

where

t� = �n̄k0
2 �m

3 /nH
2 �1/3t , �71a�

x = �2/nH
2 n̄k0�1/6ak �71b�

represent normalized time and magnon amplitude and the
parameter A is given by

A = � 2

nH
2 n̄k0

�2/3 ���h��ef f�2 − �m
2 �1/2

2V�4�
	 � 2

nH
2 n̄k0

�2/3
nk0

2 .

�71c�

Note that A can alternatively be written in terms of the av-
erage reservoir number nR or the power p as

A = � 2nH

fBE��k0�nR
�2/3

��nR/nc�2 − 1� , �72a�

A = � 2

rfBE��k0��2/3� pc1

p − pc1
�1/3 �p − pc2�

�pc2 − pc1�
. �72b�

Application of Eq. �70� to describe the full dynamics of
the pulsed experiments1–6 must consider that the factors re-
lating t� to t and x to ak, as well as the parameter A, are all
time dependent. However, for typical numbers appropriate
for the experiments, t�� t�2�106 s−1, so that the dynam-
ics of the pulsed experiments is relatively slow in the renor-
malized time scale. Thus in a first approximation we assume
that all parameters are constant and obtain the stationary so-
lution of Eq. �70� independent of �k in the form

P�x� = C exp�1

2
Ax2 −

1

6
x6� , �73�

where C is a normalization constant such that the integral of
P�x� in the range of x from zero to infinity is equal to unity.
Note that for obtaining Eq. �73� all integration constants
were set to zero to satisfy this condition. Figure 5 shows
plots of P�x� for four values of the parameter A: −1, 0, 80,
and 250. In choosing the positive values we have considered
parameters which enter in Eqs. �72a� and �72b� appropriate
for the experiments:4 pc=100 mW, pc1=0.0625 W, and
pc2=2.8 W; rfBE��k0� �7�10−7 determined from Eq. �60�
and using D��k0��105 /MHz, calculated numerically as de-
scribed earlier, and �m /2�=8 MHz. With these numbers we

obtain A=250 for nR /nc=1.023 or equivalently p / pc2
=1.047.

Equation �72a� shows that for reservoir average popula-
tions below the critical number, nR�nc, the parameter A is
negative. In this case the function P�x� in Eq. �73� behaves
as a Gaussian distribution, characteristic of systems in ther-
mal equilibrium and described by incoherent magnon
states.16 On the other hand for nR�nc or p� pc2, A�0 and
the stationary state consists of two components: a coherent
one convoluted with a much smaller fluctuation with Gauss-
ian distribution. Since the variance of P�x� is proportional to
A−1, for A�1 the function P�x� becomes a deltalike distri-
bution, characteristic of a coherent magnon state.16 Figure 5
shows that in the conditions of the experiments P�x� be-
comes a deltalike function at power levels just above the
critical value. Note that only in the presence of the four-
magnon interaction the magnon state driven collectively by
the reservoir modes is a coherent state.38 Note also that P�x�
has a peak at x0=A1/4 so that it represents a coherent state
with an average number of magnons given by x0

2=A1/2. From
Eqs. �71b� and �71c� we see that this corresponds to a mag-
non number a0

2 which is precisely the value nk0
given by Eqs.

�58� and �59�. This means that the magnon �k0 driven coop-
eratively by the reservoir modes is a quantum coherent state.
This is the second and most important result of this paper
because the coherence implies a macroscopic wave function
indicating that the model satisfies an essential condition for
characterizing the Bose-Einstein condensation.

The calculations presented in this and the previous sec-
tions are valid for magnon pairs with frequencies and wave
vectors in the vicinity of �k0 and k�0 , −k�0. This fact implies
that the magnons in the BEC occupy a number of states in a
narrow range in phase space, which is in complete agreement
with the experimental observations.5 This situation is called
by some authors a fragmented BEC as opposed to simple
BEC occurring when all particles condense in a single-

FIG. 5. Probability density characteristic of a microwave-driven
interacting magnon system for several values of the parameter A:
negative values correspond to nR�nc or p� pc2; A=0 corresponds
to the threshold; A=80 and 250 correspond to nR /nc=1.008 and
1.023, or to p / pc2=1.015 and 1.047 respectively.
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quantum state.10 The full theory of the dynamics for several
modes is not a simple extension of the single-mode calcula-
tion because they are coupled by nonlinear interactions.
However we can treat the system approximately assuming
that the condensate consists of pk0 modes governed by the
single-mode equations. As will be shown in Sec. VIII the
experimental data are well fit by this model with pk0=4.4
�103 which is a very small number compared to the number
of reservoir states NR�109 calculated numerically by count-
ing states in k space. With this approximation we consider
that the number of magnons in the condensate is

N0 = pk0nk0. �74�

Figure 6 shows the variation with microwave driving power
of the total number of magnons pumped into the system
given by Eq. �47� and the population of the BEC magnons
calculated with Eqs. �57� and �74� using parameters obtained
from fit of theory to data, pk0=4.4�103 and rp=5.0�102.
The result of Fig. 6 represents another important feature of
the Bose-Einstein condensation, namely, the number of con-
densate magnons approaches the total number of particles
pumped into the system as the microwave power increases
above the critical value. Note that these numbers represent
very high magnon densities corresponding to about one spin
deviation per site in the region of the condensate.

VII. THEORY OF MICROWAVE EMISSION FROM THE
BEC OF MAGNONS

As observed by Dzyapko et al.,6 if the static field applied
to a microwave pumped YIG film has a value such that the
frequency of the k�0 magnon is �0=2�k0, a microwave
signal is emitted with frequency �0. They interpret this ra-
diation as due to k�0 magnons created by pairs of BEC
magnons k0 , −k0 through a three-magnon confluent process.
The k�0 value is necessary for emission because the wave
number of electromagnetic radiation with frequency 1.5
GHz, as in the experiments,6 is k=2�f /c�0.3 cm−1. Figure
7 illustrates the three-magnon confluent process in the dis-
persion relation for modes propagating along the field in a
5 	m thick YIG film for H=520 Oe; the field value for

which �0=2�k0. In this section we present a theoretical
model for the microwave emission based on the same con-
cepts and formalism used to explain the formation of the
BEC of magnons.

The first goal of the theory is to show that the k�0 mag-
nons created by the BEC are coherent magnons states. This
can be done using the Langevin equations for the k0 , −k0
and the k=0 magnons from which one obtains the probabil-
ity density P��k� for the k=0 mode, with a calculation simi-
lar to that in Sec. VI. This has been done for the three-
magnon splitting process occurring in the subsidiary
resonance instability.41 Another simpler procedure consists of
neglecting the thermal random forces and calculating the
evolution operator for the k=0 state using the three-magnon
interaction Hamiltonian considering that the BEC magnon
pairs are in coherent states. As shown in a previous paper20

this leads to the displacement operator �34� for coherent
states. The end result is that above the critical microwave
power pc2 the BEC is formed by coherent magnon pairs
which coalesce to generate k=0 coherent magnons. These
magnons correspond to a uniform magnetization precessing
with frequency �0 that emits electromagnetic radiation with
this frequency.42–44 To calculate the power emitted by the
uniform mode as a function of the microwave pumping
power we need to study the process by which this mode is
driven by the BEC magnon pairs. Consider a Hamiltonian as
in Eq. �8� with the magnon interactions including three- and
four-magnon contributions,

H = H0 + H�3� + H�4� + Hef f� �t� , �75�

where Hef f� �t� is the effective Hamiltonian for driving k�0 ,
−k�0 magnon pairs given by Eqs. �55� and �61� and the
Hamiltonian for the three-magnon confluence process is32–34

FIG. 6. Variation with microwave pumping power of the nor-
malized number of primary pumped magnons Np and of the BEC
magnon population N0.

FIG. 7. Dispersion relation for magnons propagating along the
field H=520 Oe applied in the plane of a YIG film with thickness
5 	m with illustration of the three-magnon coalescence process
that generates a k=0 magnon from a pair of BEC magnons.
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H�3� = 
V�3�c0
+ck0c−k0 + H.c., �76�

where the vertex of the interaction for small wave vectors is
dominated by the dipolar interaction between the spins S and
is given approximately by V�3�=�M / �2SN�1/2. To study the
process by which the pairs of BEC coherent magnons k�0 ,
−k�0 are produced and then generate k�0 modes, we use the
Hamiltonian �75� to obtain the Heisenberg equations of mo-
tion for the magnon operators

dc0

dt
= − �i�0 + �0 + iV�4�n0�c0 − iV�3�ck0c−k0, �77�

dck0

dt
= − �i�k0 + �k0 + i2V�4�nk0�ck0

− i�V�3�c0 + �h��ef fe
−i2�k0t�c−k0

+ , �78�

where the relaxation was introduced phenomenologically.
We consider that all states involved are coherent magnon
states as demonstrated earlier and work with the correspond-
ing eigenvalues �k. In addition we assume that there are pk0

pair modes with wave vectors close to k�0 , −k�0 to drive the
k�0 modes and that the resonance condition is satisfied
�0=2�k0, determined by the value of the applied field H.
The equations of motion for the eigenvalue �0 and the cor-
relation function �k0=�k0�−k0 in a frame rotating with fre-
quency �0 become

d�0

dt
= − ��0 + iV�4�n0��0 − ipk0V�3��k0, �79�

d�k0

dt
= − 2��k0 + i2V�4�nk0��k0 − i2�V�3��0/pk0 + �h��ef f�nk0.

�80�

Note that in Eq. �80� the term representing the coupling with
the k=0 mode is divided by the number of modes pk0 as-
sumed in the driving because �k0 represents only one pair
mode k0. The coupling term in Eq. �80� represents a reaction
of the k=0 mode that influences the behavior of the BEC
modes. In steady state d /dt=0, Eq. �79� leads to

�0 =
− ipk0V�3�

�0 + iV�4�n0
�k0. �81�

This result, valid for the resonance condition �0=2�k0,
shows that the BEC magnon pairs drive the uniform mode as
an effective microwave magnetic field by means of the three-
magnon interaction. Note that there is no threshold condition
in this process. BEC magnon pairs with any value of nk0 will
create k=0 magnons. This is in contrast to the so-called sub-
sidiary resonance instability process in which the three-
magnon splitting process occurs only if the microwave field
exceeds a critical value.34,37,41 The presence of the term
iV�4�n0 in the denominator due to the four-magnon interac-
tion represents a detuning from the resonance condition due
to the renormalization of the k=0 mode frequency. In fact,
this term is responsible for the saturation in the growth of the
k=0 mode amplitude with microwave pumping power ob-

served experimentally.6 In order to compare theory to data
we have solved numerically the coupled Eqs. �79� and �80�
with their real and imaginary parts to find the steady-state
values of the magnon populations n0 and nk0 for each value
of the pumping power. The calculations were done consider-
ing that the relaxation of all modes involved is dominated by
the magnetic interactions, �0=�k0=�m. We also use normal-
ized dimensionless variables and parameters: nk�=nk /SN, t�
=�mt, V�3�� =V�3��SN�1/2 /2�m, V�4�� =V�4��SN� /2�m, and
�h��ef f� = �h��ef f /�m. With 4�M =1.76 kG and �m=5
�107 s−1 we have V�3�� =219.0 and V�4�� =1240.0. Figure 8
shows the variation with microwave power of the normalized
steady-state values of the populations of the uniform mode
n0 and the BEC magnon number N0 given by Eq. �74�. No-
tice that they are both nonzero only for pumping power
above the threshold value which is pc2=4.45 W in the ex-
periments of Ref. 6.

The total power radiated by the uniform magnetization
precessing about the static field with frequency �0 is given
by44

P =
2N2�2�0

4

3c3 �mx
2 + my

2� , �82�

where N is the number of spins in the region of emission, �
is the volume of the spin unit cell, c is the speed of light, and
mx and my are the small-signal components of the transverse
magnetization. In Eq. �82� we have written the volume of the
sample as V=N� to stress the dependence of the radiated
power on the square of the number of spins. This character-
izes superradiance, a term introduced in 1954 by Dicke45 to
designate the type of spontaneous emission of radiation from
an assembly of N atoms that has as an intensity proportional
to N2 instead of N as in usual situations. This emission re-
quires some kind of quantum coherence in the atomic states,
a topic which became understood many years after Dicke’s
paper was published. The observation of macroscopic super-
radiance of microwaves in ferromagnetic resonance in YIG
was achieved only in the 1970s.43 The recent experiments of

FIG. 8. Variation with microwave pumping power of the nor-
malized steady-state magnon numbers of the uniform mode n0 and
the BEC mode N0= pk0nk0 for pk0=4.4�103.
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Dzyapko et al.6 constitute the first observation of superradi-
ance originating from a Bose-Einstein condensate.

VIII. COMPARISON TO EXPERIMENTAL DATA

In this section we use the model proposed for the forma-
tion of the BEC of magnons in an interacting magnon gas in
a YIG film driven by microwave radiation to interpret the
experimental results of Demokritov and co-workers1–6 ob-
tained with two very different techniques: Brillouin light
scattering from magnons and microwave emission from the
uniform mode driven by BEC magnon pairs. In both cases
the theory developed here allows the calculation of quantities
of interest as a function of microwave pumping power ex-
hibiting very good agreement with experimental data.

A. Brillouin light scattering

In the experiments of Refs. 4 and 5 with short microwave
pulse driving the coherence properties of the excited mag-
nons states emerge clearly in the behavior of the intensity of
the BLS peak at fmin. As argued in Ref. 4, for incoherent
scatterers the BLS intensity is proportional to their number,
whereas for coherent scatterers it is proportional to the num-
ber squared. Thus to compare theory to data we express the
BLS intensity in terms of the microwave power p in two
regimes: p� pc2 and p� pc2. For p� pc2 the measured inten-
sity results from the light scattered by thermal magnons with
frequencies around fmin in a narrow range �f determined by
the instrumental resolution. Considering that there are pth
states in this frequency range each with a thermal magnon
population n̄k0 given by Eqs. �52� and �62�, we can write the
BLS intensity for p� pc2 as

Iinc = b� pthn̄k0

N
� = brfBE��k0�� pthnH

N
�� p − pc1

pc1
�1/2

,

�83�

where we have considered that the relevant number of scat-
terers is the number of magnons per spin site and b is a scale
factor proportional to the magneto-optical constant involving
electromagnetic, magnetic, and geometrical quantities. For
p� pc2 the condensate is formed by coherent magnon states
with total number given by Eqs. �59� and �74� so that

Icoh = b�N0

N
�2

= b� pk0nH

N
�2� p − pc2

pc2 − pc1
� . �84�

Figure 9 shows a fit of Eqs. �83� and �84� to data using
Iinc=c1�p− pc1�1/2 and Icoh=c2�p− pc2�, with c1=6.7, c2
=370.0, and pc2=2.8 W. Using Eqs. �47b�, �83�, and �84�
one can obtain a relation that allows the calculation of the
factor rfBE��k0� at the critical chemical potential from the
material and fitting parameters

rfBE��k0� =
c1

c2

pk0
2

pth

�m

8�M

pc1
1/2

pc2
. �85�

To calculate the factor in Eq. �85� one needs to have the
number of states of the thermal magnons contributing to the
BLS. For this we use pth=NR�f /�f , where �f =50 MHz is

the instrument resolution and NR�109 is the number of res-
ervoir states calculated numerically by counting states in k
space in the frequency range �f = fp /2− fmin=1.15 GHz.
This gives pth �4�107. Using this number and the other
parameter values we obtain rfBE��k0� �4�10−7 which is
quite close to the value rfBE��k0� �7�10−7 obtained from
Eq. �60� for the critical power level for BEC using pc2
=2.8 W.

To obtain a value for fBE��k0� at the critical chemical
potential we use the definition �53a� and consider that the
difference between the minimum energy 
�k0 and 	c is, in
frequency units, in the range �10–20� MHz. The normaliza-
tion constant CBE is calculated by the integration of Eq.
�53b� in the frequency range �2.9–4.05� GHz using the bino-
mial expansion of the exponential in Eq. �48� and assuming
T=103 K. We obtain CBE= �0.8–0.9��105 and fBE��k0�
��10–25� for the range of 	c above. With these values we
have an order of magnitude estimate for r=rp /NR�10−7.
Considering the number of reservoir states NR�109 obtained
numerically, we find for the pumping factor rp�102 which is
of the same order of magnitude of the value used to fit the
data for the BLS decay rate.

With knowledge of the number of states in the condensate
it is possible to calculate its distribution in phase space. By
counting the states in �−k space concentrated in the bottom
of the magnon dispersion relation we find that pk0=4.4
�103 is the number of states in a frequency range of 0.07
MHz above fmin. This turns out to be the frequency linewidth
of the BEC of magnons, which is 2 orders of magnitude
smaller than the magnon linewidth. To obtain a pictorial
view of the condensate in k space we assume that the small-
signal transverse magnetization m+ is described by a Gauss-
ian function in frequency with a peak at fmin and linewidth
0.07 MHz. Using the dispersion relation we can express the

FIG. 9. Fit of the theoretical result �solid line� to the experimen-
tal data �symbols� of Demidov and co-workers �Ref. 4� for the BLS
peak intensity at fmin as a function of microwave pumping power.
Inset shows a pictorial view of the condensate at fmin represented by
the distribution in k space of the square of the amplitude of the
transverse magnetization.

THEORY OF COHERENCE IN BOSE-EINSTEIN… PHYSICAL REVIEW B 79, 174411 �2009�

174411-15



frequency in terms of the wave vector components kx and kz
to obtain the distribution of the BEC magnetization in k
space. The square of the magnetization amplitude, shown in
the inset of Fig. 9, represents the BEC magnon distribution.
Note that the distribution is highly asymmetric due to the
anisotropy of the dispersion relation. This is consistent with
the experimental results of Ref. 5 obtained with a BLS setup
with wave vector resolution. However while the calculated
width �kz�103 cm−1 is in order of magnitude agreement
with the measured value 5.6�103 cm−1, the calculated �kx
�102 cm−1 is much smaller than the measured �kx�3
�103 cm−1. This discrepancy may be due to the limited k
resolution of the experimental setup. From the widths of the
magnon distribution in k space we can obtain the theoretical
correlation lengths of the BEC of magnons, �x�� /�kx�3
�10−2 cm and �z�� /�kz�3�10−3 cm.

One of the most important results of the BLS experiments
with the YIG film driven by short microwave pulses was
obtained from the measurements of the time decay of the
BLS peak at fmin due to the relaxation of the magnon exci-
tations to the lattice. The measurements reported4 reveal that
as the microwave power increases above the critical value
pc2=2.8 W, the decay rate doubles in a stepwise manner.
This fact was interpreted as an indication of the emergence
of coherence of the magnons in the condensed state. The
argument is that if the nk magnons causing the scattering are
incoherent the intensity of the BLS peak falls exponentially
in time with the same rate of the magnons. However if the
magnons are coherent the BLS intensity should follow nk

2 so
that its decay rate is twice the one of the magnons. As shown
in Fig. 6 the number N0 of coherent magnons in the BEC
increases with increasing microwave power above the
threshold of 2.8 W and approaches the total number Np of
magnons pumped in the system at p�6 W. At any given
power level the difference Np−N0 represents the number of
incoherent magnons which, as Fig. 3 indicates, are concen-
trated in a narrow range of frequencies around fmin thus con-
tributing to the BLS intensity. Assuming that the decay rate
�BLS of the BLS peak is a linear combination of the rates for
incoherent and coherent scatterers we can write

�BLS = �Np − N0

Np
�2�SL +

N0

Np
4�SL, �86�

where �SL is the spin-lattice relaxation rate of the magneti-
zation and 2�SL�4�106 s−1 is the relaxation rate of the
magnon number. With Eqs. �47�, �59�, and �74� we can ex-
press the BLS decay rate in Eq. �86� in terms of the micro-
wave power. The solid line in Fig. 10 represents the theoret-
ical fit to the experimental data of Ref. 4 obtained with pk0
=4.4�103 and rp=5.0�102.

B. Microwave emission from the BEC of magnons

Since the microwave signal power is a fraction of the total
radiated power given by Eq. �82�, we use the expression ps
=Cn0� to fit the data of Dzyapko et al.6 In Fig. 11 the symbols
represent the data of Ref. 6 and the solid line represents the
theoretical fit with using C=14.3 	W, pk0=4.4�103, and
pc2=4.45 W. Note that the values of C and pk0 are slightly

different from the ones used in Ref. 20 but the fit is equally
good. It is important to check if the values of the fitting
parameters bear connection to reality. To calculate the emit-
ted microwave signal we use in Eq. �82� the expressions for
the magnetization components of a coherent state �37� ob-
taining

�P� 

V2�0

4M2

c3 n0�. �87�

Using �0=2��3.0 GHz, M =300 G, c=3�1010 cm /s,
and an estimated emission volume V=1 mm�0.5 mm
�5 	m=2.5�10−6 cm3, we obtain for the factor of n0� in
Eq. �87� approximately 400 	W. This is 2 orders of magni-
tude larger than the value of C obtained from the fit of theory
to experiment, which is quite reasonable considering that the
measured signal power is only a very small fraction of the
total radiated power given by Eq. �82�. It is important to note
that if Eqs. �79� and �80� are solved considering pk0=1, the
calculated n0� is smaller than the value obtained with pk0

FIG. 10. Fit of the theoretical result �solid line� to the experi-
mental data �symbols� of Demidov and co-workers �Ref. 4� for the
decay rate of the BLS peak at fmin as a function of microwave
pumping power.

FIG. 11. Microwave emission signal power vs pumping power.
Symbols represent the experimental data of Dzyapko et al. �Ref. 6�
and solid line is the fit with theory.
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=4.4�103 by a factor 107. This means that with pk0=1 the
total emitted power calculated with Eq. �87� would be
smaller than the measured signal power by a factor 105,
which is completely unrealistic.

Note that this model is also consistent with the 6 MHz
linewidth of the microwave emission spectrum observed in
Ref. 6. This value was considered too large by the authors of
Ref. 6 who expected a linewidth 1 order of magnitude
smaller corresponding to the spin-lattice relaxation rate. In
fact the linewidth is close to the value determined by the
magnetic relaxation rate, �m /2�=8 MHz, which in our
theory dominates decay process. In closing this section we
note that the fact that the theoretical results fit quite well
several different experimental data with similar values for
the various fitting parameters strongly indicates that the
model is very consistent.

IX. SUMMARY AND CONCLUSIONS

We have presented a theoretical model for the dynamics
of magnons in a YIG film driven by microwave radiation far
out of equilibrium that provides rigorous support for the for-
mation of Bose-Einstein condensation of magnons in the ex-
periments of Demokritov and co-workers.1–6 The model re-
lies on the cooperative action of magnons with frequencies
close to the minimum of the dispersion relation that is made
possible by the nonlinear four-magnon interactions. The
theory provides the basic requirements for the characteriza-
tion of a BEC. When short microwave pulses are applied to
the YIG film, magnons are pumped in large numbers and
remain practically decoupled from the lattice forming a qua-
siequilibrium hot magnon gas. As the microwave power p is
increased, the chemical potential rises and approaches the

energy of fmin producing an overpopulation around that fre-
quency. If the power p exceeds a threshold value pc2 the
magnon density exceeds a critical value and modes in a nar-
row frequency range around fmin are driven nonlinearly with
magnetic quantum states that change from incoherent to co-
herent magnon states. Correspondingly, the small-signal
magnetization changes from zero to m+� �p− pc2�1/4. Since
the magnetization represents the order parameter of the dy-
namic magnetic system, this characterizes a second-order
phase transition with critical exponent 1/4. The spontaneous
emergence of quantum coherence with the associated mag-
netic dynamic order in a macroscopic scale following a
phase transition is one of the features of a BEC.46 For
p� pc2 the magnon system separates in two parts: one in
thermal equilibrium with the reservoir and one with N0 mag-
nons in coherent states having frequencies and wave vectors
in a very narrow region of phase space. As the microwave
power increases further N0 approaches the total number of
magnons pumped into the system characterizing unequivo-
cally a Bose-Einstein condensation. The theoretical results fit
quite well the experimental data obtained with Brillouin light
scattering and with microwave emission with consistent val-
ues for the various material and fitting parameters.
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