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The role of interfacial electron-magnon interaction in a noncollinear magnetic tunnel junction is investigated
using the transfer Hamiltonian method. It is shown that the interfacial electron-magnon scattering modifies the
bias dependence of both components of the spin-transfer torque. In particular, we find that at low temperature,
the magnons emission adds a quadratic contribution and at finite temperature, both quadratic and linear terms
appear. These contributions can explain recent experimental results on the bias dependence of spin-transfer
torque.
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I. INTRODUCTION

Spin-dependent transport in magnetic tunnel junctions1

�MTJs� has attracted much attention for the past fifteen years
from both experimental and theoretical points of view.2

The recent observation of current-induced magnetization
switching3,4 in such devices5–7 has enhanced the already im-
portant interest of MTJs. Up to now, a number of theories
have been proposed to describe spin-transfer torque in tunnel
junctions and especially its bias dependence.8–13 In MTJs,
the spin-transfer torque is on the form

T = T�M � �M � P� + T�M � P �1�

where M �P� refers to the magnetization of the free �fixed�
layer and T� �T�� are usually referred to as in-plane �IP� and
out-of-plane �OP� torque amplitudes. In a symmetric MTJ, in
the absence of defects, impurities, or magnons, these
two components possess well-defined bias dependence:
T� =a1V+a2V2, T�=b0+b2V2. These results have recently
been confirmed by ab initio calculations in a MgO-based
MTJ.14 Note that the introduction of asymmetries in the MTJ
itself12 or at the interfaces9 modifies this bias dependence.

Although recent “spin-diode” type experiments seem to
agree with these theoretical predictions,15–17 other experi-
mental results underline the complexity of this bias
dependence,18–20 showing the presence of either a non-
negligible linear or an antisymmetric quadratic component in
the OP torque.

In Ref. 20, the authors interpret their data considering the
presence of bulk magnons affecting the spin relaxation in the
free layer. Indeed, electron-magnons interactions are known
to influence the electron transport in bulk ferromagnets21 and
to affect the electron spin-diffusion length22 as well as spin-
transfer torque in metallic spin valves.23 In MTJs, the inter-
facial electron-magnon scattering is responsible for the drop
of tunneling magnetoresistance �TMR� at low-bias voltage
and low temperature,24–28 known as the zero-bias anomaly.
This mechanism has been validated by a number of experi-
ments on both AlOx-based29 and MgO-based30 magnetic tun-
nel junctions.

Levy and Fert31 first considered the influence of electron-
magnon scattering on spin-transfer torque. Although focus-
ing on the IP component at zero temperature �only magnon
emission is considered�, this study clearly showed the poten-

tial influence of the magnons on the spin-transfer torque. The
recent measurements of the spin-torque bias dependence15–20

requires a more complete analysis of the role of the interfa-
cial electron-magnon scattering in order to determine their
contribution.

In this article, we study the interfacial electron-magnon
interaction within the transfer Hamiltonian formalism, al-
ready used to derive the elastic8 and zero temperature31 in-
plane torque. This method is very convenient since it gives
straightforward formulae, easy to use to fit experimental
data.29,30

We find that both components of the spin torque, in-plane
and out-of-plane, are affected by the presence of magnons.
At zero temperature, the magnon emission gives rise to a
quadratic component �JV at low bias and to a linear com-
ponent at large bias. At finite temperature, both linear and
quadratic contributions ��JV� arise from the electron-
magnon interaction. In this case, the bias dependence of the
spin torque becomes

T� = a1�T�V + a2V2 + a3J�V� ,

T� = b0 + b2V2 + b1�T��V� + b3JV

at low bias and

T� = a1�T�V + a2V2,

T� = b0 + b2V2 + b1�T��V�

at large bias voltage.
The determination of these temperature-dependent coeffi-

cients �ai ,bj� is our main focus. We organize the paper as
follows: in Sec. II, the transfer Hamiltonian formalism ex-
tended to the spinor form is described. The calculations of
the spin current and spin-transfer torques for elastic and
magnon-assisted tunneling are carried in Sec. III. A brief
comparison with experimental results is given in Sec. IV.
Finally, we outline our results and conclusion in Sec. V.

II. TRANSFER HAMILTONIAN FORMALISM

A. Spin current in spinor form

The transfer Hamiltonian formalism has been widely used
to describe the transport in tunnel junctions.32 The Hamil-
tonian of a tunnel junction is described by
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H = HL + HR + Htr, �2�

where HL�R�=�k�p��k�p�ck�p�
+ ck�p� is the Hamiltonian of the left

�right� electrode, �k�p� is the conduction-electron energy, and
ck�p�

+ �ck�p�� is the creation �annihilation� operator. k�p� refers
to the electron wave vector within the left �right� electrode.
The transfer Hamiltonian may be written as

Htr = �
k,p

�ck
+Tkpcp + cp

+Tpkck� , �3�

where Tkp is the matrix element that transfers particles from
the left electrode to the right electrode. The transfer matrix is
assumed to only depend on the electron wave vectors k and
p, and Tpk= �Tkp�+. The corresponding tunneling current-

density operator is related to the electron density, J=−e�Ṅ	,
where N=�pcp

+cp,

J = − i
e

�
��Htr,N�	 = − i

e

�
�
k,p

�ck
+Tkpcp − cp

+�Tkp�+ck�� ,

�4�

where the brackets �. . .	 refer to quantum-mechanical averag-
ing. Then, assuming that the tunneling probability is small
enough �the barrier is thick and high�, the first-order pertur-
bation gives

�ck
+Tkpcp	 � �ck

+TkpHtrcp	 = �ck
+ck	Tkp�cp

+cp	�Tkp�+. �5�

Consequently, the tunneling current can be expressed as a
function of the unperturbed interfacial densities of states
�ck�p�

+ ck�p�	=2i��k�p� �i.e., in the absence of tunneling� and
yields

J = 2�
e

�
�
k,p

��kTkp�p�Tkp�+fL�1 − fR�

− �p�Tkp�+�kTkpfR�1 − fL�� , �6�

where fL�R� is the Fermi-distribution function for electrons in
reservoir L�R�. Note that the form fL�R��1− fR�L�� accounts for
the unoccupied electron states available after tunneling. This
notation is important in the case of inelastic tunneling, where
the energy of the incoming and outgoing electrons are differ-
ent.

In the present study, we consider a magnetic-tunnel junc-
tion, composed of two ferromagnetic electrodes with magne-
tizations SL�R�, separated by a tunnel barrier �see Fig. 1�. The
left and right electrodes have different spin-quantization
frames, �x� ,y ,z�� and �x ,y ,z�, rotated around the y axis by
an angle �, y being perpendicular to the plane of the layers.
The background magnetizations can be decomposed within a
longitudinal and a transverse part SL�R�=Sl

L�R�+Str
L�R�, with

�Sl
L�R��	 �Str

L�R��. The longitudinal component Sl
L�R� lies along

the z��z� axis whereas the transverse components are
Str

L =Sx�x�+Sy�y� and Str
R=Sxx+Syy.

To account for spin-dependent transport, the transport
quantities �current density, transfer matrix, and densities of
states� are expressed in the spinor form, i.e., within the spin

basis �Î ,��, where Î is the 2�2 unity matrix and � is the
spin Pauli matrix. In the following, all the transport quanti-
ties will be expressed within the quantization frame of the

right layer. The interfacial densities of states �DOS� �̂ and

the transfer-matrix T̂ are now 2�2 matrices, describing the
spin-dependent tunneling. The spin-dependent DOS are

�̂p = �pÎ + 
�p� . z , �7�

�̂k = �kÎ + 
�kR−1� . zR , �8�

where �= ��↑+�↓� /2 is spin-independent part of the DOS,

�= ��↑−�↓� /2 and R is the unitary rotation matrix in the
�x ,z� plane

R =  cos �/2 sin �/2
− sin �/2 cos �/2 � . �9�

The extension of Eq. �6� to the spinor form should be done

carefully since the transfer matrices T̂kp and �T̂kp�+ must be
written in the quantization axis of �̂k and �̂p, respectively.
Consequently, the spinor current takes the form

Ĵ = 2�
e

�
�
k,p

��̂kT̂kp�̂p�T̂kp�+fL�1 − fR�

− �̂p�T̂kp�+�̂kT̂kpfR�1 − fL�� . �10�

In the case of a magnetic-tunnel junction in the presence of

interfacial magnons, the spin-dependent transfer matrix T̂kp
accounts for both elastic and inelastic tunneling

T̂kp = T̂kp
d � Î +�Q

N
�� . Str

R + � . Str
L�� �11�

where T̂kp
d is the direct-tunneling matrix whose matrix ele-

ments will be determined later, Q is the phenomenological
electron-magnon efficiency �see below�, N is the number of
atoms per cell, � is the vector of Pauli-spin matrices, and
Str

L�R� are the transverse part of the magnetizations of the left
and right electrodes. In Eq. �11�, we have assumed that the
transmission probability of the electrons through the barrier
is small enough so that elastic and inelastic tunneling are
additive.

The magnons excitations at the interfaces are contained
in the transverse components Sx�Sx�� and Sy�Sy�� and can

FIG. 1. Schematics of the potential profile of a magnetic-tunnel
junction with noncollinear magnetizations. In our model, the tun-
neling of an electron across the barrier may be accompanied by the
emission or absorption of an interfacial magnon �wavy arrows�.
Note that in this picture, the magnetizations are approximated by
their longitudinal part S�Sl.
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be described using a linearized Holstein-Primakoff
transformation33

S+
R�L� = Sx� �� + iSy� �� = �2SR�L��

q
e−iq.raq

R�L�, �12�

S−
R�L� = Sx� �� − iSy� �� = �2SR�L��

q
eiq.raq

R�L�+. �13�

Note that the magnons coordinates are different for the left
and right interfaces due to the rotation of the spin-
quantization frames. Here, only one-magnon processes are
considered and higher-order interactions are neglected. We
also neglect the influence of the magnon density nq on the
longitudinal part of the magnetization. Note that the
elastic-interfacial s-d exchange interaction ��zSz is not ex-
plicitly taken into account in Eq. �11� since it is already
included in the definition of the interfacial spin-dependent
DOS �see Eq. �7��.

The efficiency of the electron-magnon interaction Q can
be estimated from more complete models �free electron,
tight-binding theory, etc.�. Considering electron-magnon
within a free-electron model �see, e.g., Ref. 28�, the effi-
ciency can be identified with the square of the ratio between
the interfacial s-d exchange energy Jsd and the electron-
kinetic energy p2 /2m. For a usual ferromagnet �Jsd�1 eV
and EF�3 eV�, this yields Q= �Jsd /EF�2�10% consistently
with previous experimental results.29,30 Note however that
this ratio strongly depends on the details of the band struc-
ture and on the quality of the interfaces.

B. Direct tunneling transfer matrix

The determination of the direct-tunneling matrix is the
key point of this section. Our goal is to determine analyti-
cally, from exact models �tight binding, free electron, etc.�,
the spin-dependent form of this matrix.

As we mentioned in the introduction, the transfer
Hamiltonian formalism has been used by Slonczewski8 and
Levy and Fert31 to determine the spin torque in MTJs.

The authors assumed that T̂kp
d is spin-independent, i.e.,

T̂kp
d = �T̂pk

d �+=Tkp
d Î, where Î is the 2�2 unitary matrix. In this

case, the electron spin is not affected by the tunneling pro-
cess and remains in the �Sl

L ,Sl
R� plane defined by the mag-

netizations. Consequently, the spin torque extracted from this
model has only in-plane component and no out-of-plane
component. This result contrasts with free-electron or
tight-binding models that confirm the presence of both in-
plane and out-of-plane components in the spin torque,10–13

indicating that the assumption of a diagonal transfer matrix is
not valid in magnetic tunnel junctions with noncollinear
magnetizations.

Actually, explicit calculations based on the free-electron
model have shown that the electron spin is rotated out of the
�Sl

L ,Sl
R� plane during the tunneling process, due to spin-

dependent reflections and transmissions at the Ferromagnet/
Insulator interfaces.11,34 The angle of rotation can be quite
significant, leading to a sizable out-of-plane component of
the spin current10–13 even at zero bias, known as interlayer

exchange coupling34 �noted b0 here�. This spin rotation is
also present in metallic spin valves but is usually averaged
out after integration over the Fermi surface, yielding to a
vanishing out-of-plane torque.35

To include the above physics in the transfer Hamiltonian
formalism, we must abandon the assumption of a diagonal-
transfer matrix. Instead, one evaluates the spin-dependence
of the transfer matrix by using an exact solution of the free-
electron model. The general expression for the transfer ma-
trix is

T̂kp
d = ��L

↑��R
↑	 ��L

↓��R
↑	

��L
↑��R

↓	 ��L
↓��R

↓	
� , �14�

where ��i
�	 are the spin-dependent electron wave functions

at the interface i�i=L ,R�, � is the spin projection in the right
quantization axis. Using the free-electron wave functions de-
fined in Ref. 11, up to the first order in the barrier thickness,
the transfer matrix takes the form

T̂kp
d

= Td�eiLeiR cos2�

2
+ sin2�

2
� − eiL

sin �

2
�eiR − 1�

−
sin �

2
�eiR − 1� eiR sin2�

2
+ cos2�

2
� � .

�15�

The angles i account for the rotation of the electron spin at
the interface i within the barrier. We straightforwardly see

that T̂d→TdÎ for an infinitely thick or high-barrier �i→0�.
In the following, we assume that i�1, so that
eii �1+ ii.

III. TORQUES AND CURRENTS

The influence of magnons on the tunnel transport is
clearly illustrated by the “zero-bias anomaly,” i.e., the
observation of a sharp-resistance drop at low temperature
��77 K� as a function of the applied bias voltage.24,25 As-
sociated with characteristic peaks around 20 mV in the in-
elastic electron tunneling spectra36 �IETS�, this strongly sug-
gests that interfacial magnons significantly contribute to the
spin transport in MTJs. At low temperature, the magnons
emission opens spin-flip channels for hot minority electrons
that increase with the bias voltage. Consequently, the con-
ductivity in the antiparallel �AP� state increases much faster
than the conductivity in the parallel �P� state, leading to a
drop in TMR. We then expect that these spin-flip channels
strongly affect the spin-torque bias dependence as well.

In this section we evaluate the current-density Je and spin-
currents Js from the spinor current given by Eq. �10�. The
spin-density continuity equation in a magnetic layer gives4

T = − Jsd� m�x�Sdx =� �− � . Js�x� + ��m�x���dx ,

�16�

where m is the spin density and ��m� accounts for spin-flip
processes in the magnetic layer. When no spin relaxation

INFLUENCE OF INTERFACIAL MAGNONS ON SPIN… PHYSICAL REVIEW B 79, 174401 �2009�

174401-3



�due to bulk magnons, for example20� is present in the vol-
ume of the layer ���m�=0�, the torque is directly the inter-
facial spin-current: T=Js. Otherwise, one should directly
calculate the spin density in the free layer and integrate it
over the layer thickness.20 Then, in the case of interfacial
electron-magnon scattering, the spin-transfer torque is re-
lated to the transverse spin current given by the spinor form,

Eq. �10�: T� =R�Tr��xĴ�� and T�=R�Tr��yĴ��, where Tr is
the trace taken on the spin states.

We express the transport quantities in term of the DOS
polarization P=
� / �̄ and of the elastic averaged conduc-
tance G0=2�

e2

� �Tkp
d �2�k�p. We give the explicit expression of

the torques on the right electrode and at positive bias. Sym-
metry considerations will easily lead to the expressions of
the torques on the left electrode and at negative bias.

A. Elastic contribution

The elastic contributions to the current-density Je, in-
plane �T�� and out-of-plane �T�� components of the spin
torque are

Je
0 =� dE

G0

e
�1 + PLPR cos ���fL − fR� , �17�

T�
0 =� dE

G0

e
sin �PL�fL − fR� , �18�

T�
0 =� dE

G0

e
sin ��PRLfL + PLRfR� . �19�

These above expressions are consistent with the previous
studies about elastic spin-transfer torques.8,10–13 The spin
torque possesses two components, acting in the plane and out
of the plane of the magnetization, respectively, the former
vanishing at zero bias. To evaluate the bias dependence of
the elastic torques we assume that the DOS are almost con-

stant on the range of the applied bias voltage �so that
�dE��fL− fR���eV�. The exact form of the out-of-plane
torque is less straightforward, involving the integration over
all the energy range. Nevertheless, symmetry considerations
yield that in a symmetric MTJ �PRL and PLR are equiva-
lent�, only a quadratic bias dependence exists, whereas in an
asymmetric MTJ, a linear term appears. We will not discuss
further the form of the elastic torque since they have already
been widely studied in both symmetric and asymmetric
junctions.8,10–13 Therefore, the general expressions of the
elastic-transport quantities are

Je
0 = G0V�1 + PLPR cos �� , �20�

T�
0 = G0VPL sin � , �21�

T�
0 = �b0 + b2V2�sin � , �22�

where b0 and b2 can be determined by performing the energy
integration of Eq. �19�. Since the general expression of these
coefficients is tedious, we do not give the exact form of b0
and b2 in this paper. Note that the conservative interlayer
exchange coupling b0 �Ref. 34� is generally quenched by the
other magnetic fields involved in the system �anisotropy
field, orange-peel coupling, dipolar field, etc.�. Therefore it is
only of little interest for the present study and will be disre-
garded in the remainder of this article.

B. Inelastic contribution

As stated in Sec. II, the spinor form of the current density
is obtained after performing matrix products involving the
DOS matrices and the tunneling matrices defined in Eq. �11�.
After some algebra we obtain the expression of the electrical
current, in-plane and out-of-plane torques, as a function of
terms proportional to �S−

i S+
i 	 and �S+

i S−
i 	. The former accounts

for magnons absorption at the ith interface, whereas the latter
accounts for magnons emission. The general form of the
electrical current flowing through the junction is

Je
sw�E,q� =

G0

e

SQ

N
���1 − PR��1 + PL cos ���S−

RS+
R	 + �1 + PR��1 − PL cos ���S+

RS−
R	 + �1 + PL��1 − PR cos ���S−

LS+
L	

+ �1 − PL��1 + PR cos ���S+
LS−

L	�fL�1 − fR� − ��1 + PR��1 − PL cos ���S−
RS+

R	 + �1 − PR��1 + PL cos ���S+
RS−

R	

+ �1 − PL��1 + PR cos ���S−
LS+

L	 + �1 + PL��1 − PR cos ���S+
LS−

L	�fR�1 − fL�� . �23�

This form extends the results derived in Refs. 24 and 31. For the remainder of this paper, we will only focus on the IP and OP
torques. The general form of the spin transfer torque in the presence of interfacial magnons is then

T�
sw�E,q� =

G0

e
sin �

SQ

N
��PL�1 − PR��S−

RS+
R	 + PL�1 + PR��S+

RS−
R	 + �1 + PL��1 − cos �PR��S−

LS+
L	

− �1 − PL��1 + cos �PR��S+
LS−

L	�fL�1 − fR� − ��1 − PL��S−
LS+

L	 − �1 + PL��S+
LS−

L	�fR�1 − fL�� , �24�

T�
sw�E,q� =

G0

e
sin �

SQ

N
��L��1 − PR��S−

RS+
R	 − �1 + PR��S+

RS−
R	� − R��1 − cos �PR��S−

LS+
L	 − �1 + cos �PR��S+

LS−
L	��fL�1 − fR�

+ �L��1 − cos �PL��S−
RS+

R	 − �1 + cos �PL��S+
RS−

R	� − R��1 − PL��S−
LS+

L	 − �1 + PL��S+
LS−

L	��fR�1 − fL�� . �25�
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Equations �23�–�25� give the electrical current and spin
torques for an electron with energy E interacting with a mag-
non with wave-vector q. The integration over the planar
component of the electron wave-vector k is already assumed
in the definition of the density of states. In the following, we
will consider only incoherent electron-magnon interaction,
so that the integrations over E and q are independent. These
integrations will be described in more details below.

Interestingly, the IP and OP torques possess contributions
from both interfaces, L and R, competing each other. For
example, magnon absorption �terms ��S−

i S+
i 	� increase the IP

torque, whereas magnon emission �terms ��S+
i S−

i 	� decreases
it. Furthermore, contrary to the OP torque, the IP torque is
asymmetric as a function of the bias voltage: only leftward
electrons interacting with the left interface contribute to the
IP torque.

C. Integration considerations

Before going one step further, a few words must be said
about the treatment of the integration of the components
given by Eqs. �23�–�25�. These components have to be inte-
grated over the electron energy and magnon wave vector in

order to obtain the bias dependence: Ĵ=�� ĵ d2q
� dE where � is

the volume of the first Brillouin zone. In the following, we
assume that the DOS are roughly constant over the range of
integration �of the order of eV�, so that one only has to
integrate �S−

i S+
i 	 and �S+

i S−
i 	. Considering electrons emitted by

the ith electrode, we can rewrite these quantities as

�S−
i S+

i 	f j�1 − f j̄� → nq
i f j�E��1 − f j̄�E + ��q�� , �26�

�S+
i S−

i 	f j�1 − f j̄� → �1 + nq
i �f j�E��1 − f j̄�E − ��q�� , �27�

where f j�E� is the Fermi distribution of the jth electrode:
fL�E�= f�E� and fR�E�= f�E+eV�. We also consider that,
even at room temperature, the Fermi energy is much larger
than kBT so that f i�E� is approximated by a step-function
��E�. After integrating over the electron energy E, we obtain

� dE�S−
i S+

i 	fL�1 − fR� = nq
i �eV + ��q� ,

� dE�S+
i S−

i 	fL�1 − fR� = �1 + nq
i ��eV − ��q���eV − ��q� ,

� dE�S−
i S+

i 	fR�1 − fL� = nq
i ���q − eV�����q − eV� ,

� dE�S+
i S−

i 	fR�1 − fL� = 0.

D. Torques at zero temperature

At zero temperature, nq
i =0. Following Ref. 24, the mag-

non energy in the ith electrode is written ��q=Em
i q2 /�, and

Em
i =3kBTc

i / �Si+1�. Em
i corresponds to the maximum-magnon

energy, Tc
i is the Curie temperature. In this case, the only

magnons present in the system are emitted by spin flip �no
thermal magnons�, with energy ��q�max�eV,Em

i �. Then

�
0

eV d2q

�
dE�S+

i S−
i 	fL�1 − fR� =

e2V2

2Em
i , eV � Em

i , �28�

�
0

Em
i d2q

�
dE�S+

i S−
i 	fL�1 − fR� =

1

2
eV −

Em
i

2
�, eV � Em

i .

�29�

All the other integrals involved in Eqs. �23�–�25� are zero.
As a consequence, at T=0 K, the electron-magnon interac-
tion adds a quadratic component to the torques at low-bias
voltage �eV�Em

i � and a linear-bias dependence at large volt-
age �eV�Em

i �. Because Eqs. �23� and �24� change their sign
for negative-bias voltage, the quadratic part changes its sign
with the bias, consistently with the results obtained on zero-
bias anomaly.24 Then, in a symmetric MTJ, the spin transfer
torque is

T�
sw = G0

eV�V�
2Em

SQ

N
sin ��P�1 + P� − �1 − P��1 + cos �P�� ,

�30�

T�
sw = − G0

eV2

2Em

SQ

N
sin ��1 − cos ��P , �31�

where e�V� /Em
i has to be replaced by �1−Em

i /2e�V�� when
eV�Em

i . The IP torque is similar to the one derived by Levy
and Fert.31 Note also that the electron-magnon interaction
modifies the angular dependence of the torque. Assuming
Q=10%, N=1, S=3 /2, Em=0.12 eV, P=0.5, and =0.5 we
find that the ratio of the magnon contribution of the IP �OP�
torque to the elastic IP torque is on the order of 4% �3%�
when eV=Em.

E. Torques at finite temperature

The case of finite temperature is more complex since it
involves both magnons emission and absorption. In this case,
the integration for large-bias voltage �eV	Em� can be ap-
proximated by

� d2q

�
dE�S−

i S+
i 	fL�1 − fR� �

eV

2
1 −

Em

2 eV
�

+
kBT

2Em
eV ln

kBT

Ec
,

� d2q

�
dE�S+

i S−
i 	fL�1 − fR� �

eV + kBT

2Em
kBT ln

kBT

Ec
,

where Ec is a cutoff energy due to the magnetic anisotropy or
to the finite coherence length of the magnons.29 At low-bias
voltage �eV�Em ,kBT�, we find
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� d2q

�
dE�S−

i S+
i 	fL�1 − fR�

�
�eV − Ec�2

4Em
−

eVkBT

2Em
ln

�eV�
Ec

−
kBT

2Em
�eV − Ec� .

These approximation have been numerically checked and re-
mains within 5% of the exact value even at large-bias volt-
age. Both magnon emission and absorption give rise to a
linear dependence at large bias. In the case of a symmetric
MTJ, for low-bias voltage we find �disregarding the terms
independent of the bias voltage�

T�
sw � G0

V

2Em

SQ

N
kBT sin ��2Pln

kBT�eV�
Ec

2 − 1�
− �1 − P2�1 + cos ���ln

�eV�
kBT

− 1�� , �32�

T�
sw � − G0

�V�
2Em

SQ

N
kBTP sin ��1 − cos ��ln

kBT�eV�
Ec

2 − 1� .

�33�

In contrast, for high-bias voltage we have �disregarding the
terms independent of the bias voltage and those in 1/eV�

T�
sw � − G0

V

2Em

SQ

N
sin ���1 − 2P − P2�1 + cos ���Em

− 4PkBT ln
kBT

Ec
� , �34�

T�
sw � − PG0

�V�
2Em

SQ

N
sin ��1 − cos ��Em + 2kBT ln

kBT

Ec
� .

�35�

Interestingly, the electron-magnon interaction modifies the
angular dependence of the spin-transfer torque. These ex-
pressions show that the interfacial electron-magnon interac-
tion at finite temperature gives rise to a linear contribution to
the spin-transfer torque. The quadratic contribution should be
detectable for intermediate bias voltages kBT�eV�Em.

IV. COMPARISON WITH EXPERIMENTS

A. Influence of the interfacial magnons

The results obtained above may qualitatively explain the
recent results of Petit et al.19 and Li et al.20 In their experi-
ment, Petit et al.19 proposed an estimation of the linear con-
tribution of the OP torque in AlOx-based MTJ, at room tem-
perature for V�300 mV. During their analysis, all the
quadratic contributions where regarded as due to the Joule
effect and removed. In this case, the authors found that the
linear component of the OP torque is about 20% of the IP
torque.

Since the experiment is performed at room temperature it
is difficult to deduce the electron-magnon efficiency from
their data. However, from the discussion given in Sec. II,
since the TMR is of the order of 20%, the corresponding

effective polarization is about P=40% and the electron-
magnon interaction efficiency should be around Q�15%
�this is also consistent with Ref. 6�. Assuming that the junc-
tion is at T=350 K �Ref. 19�, the IP torque is of the form
T� =�G0VP sin � �see Eq. �34�� where ��1.5. The spin-
rotation angle can be estimated from the free-electron model
and is of the order of �0.3. In this case, the ratio between
the OP torque and the IP torque is 
T�

sw /T� �7%. This value
is consistent with the one measured by Petit et al.19 The
discrepancy may be due to uncertainty in the estimation of
the critical current in Ref. 19 and to an underestimation of
the spin rotation angle .

In contrast, Li et al.20 studied the stability phase diagram
of MgO-based MTJ applying large-current pulses. The junc-
tion consists of MgO-based MTJ, with TMR=146%, and a
corresponding effective polarization of P=77%. Assuming a
linear IP torque, the authors find that the OP torque is anti-
symmetric in bias voltage, of the form bj �J�V�. The authors
argued that this form may arise from electron-magnon scat-
tering present in the volume of the free layer.

Electron-magnon interaction at the interfaces does not
generate such an antisymmetric quadratic bias dependence
but rather a linear bias dependence ��V�. The ratio 
T�

sw /T�

has been measured to be of the order of 100% at V=1 V.20

Assuming that the electron-magnon interaction efficiency is
about Q� P2=50%, we find that ��3. Assuming a spin-
rotation angle of =0.5, we find that the ratio between the
OP torque and the IP torque is 
T�

sw /T� �20%.
These two estimations are approximative since we do not

exactly know the magnitude of the electron-magnon interac-
tion efficiency Q. The evaluation of the angle  and the
effective polarization P, which are crucial to estimate the
effect of electron-magnon interaction on the OP torque, is
convenient in the case of amorphous AlOx-based MTJs
�large-barrier height� but questionable in the case of
crystalline transport occurring in MgO-based MTJs
�low-barrier height�. For example, assuming �2, one ob-
tain 
T�

sw /T� �80%, in agreement with Li et al.20 measure-
ments. In order to account for such large-angle , the present
model should be extended to lower-barrier heights, using the
general form of Eq. �14�.

In spin-diode experiments,15,16 the authors found that the
out-of-plane torque follows the elastic quadratic bias depen-
dence. Actually, as discussed above, at low-bias voltage, the
linear contribution coming from the electron-magnon inter-
action is of the order of 5%–10% of the in-plane torque. This
linear contribution may not be easily detectable using “spin-
diode” experiments.37

Finally, the spin-transfer torque is a superposition be-
tween elastic and inelastic tunneling, and the resulting bias
dependence should reflect the presence of both tunneling
processes.

B. Interplay with other scattering sources

It is important to mention that the magnon bandwidth is
usually on the order of 0.1 eV.36 Thus, at higher bias volt-
ages, multiple magnons scattering and other effects that we
did not consider in the model, like the energy dependence of
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the interfacial densities of states, become important and
should be taken into account for a comprehensive under-
standing and modeling of the spin transport in tunnel junc-
tions.

In the previous section, we showed that the electron-
magnon interaction at the interfaces of a magnetic tunnel
junction can modify the bias dependence of the spin torque,
and more specifically, induce an asymmetry in the torque as
a function of the bias polarity. Note that other sources of
such an asymmetry have been proposed. Within the frame-
work of the transfer Hamiltonian formalism, Slonczewski
and Sun9 discussed the influence of an asymmetric concen-
tration of defects or dopants at the interfaces of the barrier, as
well as the presence of inelastic spin-conserving mechanisms
within the barrier or within the electrodes. The author
showed that these elastic and inelastic interactions may also
lead to an asymmetry in the torque with the bias polarity.
Wilczynski et al.12 studied the case of ferromagnetic elec-
trodes with different s-d exchange coupling. Similarly, they
found that this asymmetry in the junction structure implies
an asymmetry in the bias dependence of the spin torque with
the voltage polarity.

At finite temperature, in addition to the magnon absorp-
tion at the interfaces of the barrier, we also expect an absorp-
tion of the magnons present in the bulk of the ferromagnet.
This contribution has two major consequences on the spin
transport. First, the spin torque is no more equal to the ab-
sorption of the interfacial transverse spin current, since a spin
relaxation exists in the volume of the ferromagnet
���m��0�. One should then calculate the resulting spin
density and integrate it over the layer thickness. Second,
the temperature dependence of this contribution will be
different from the case of interfacial electron-magnon
interaction, since their densities of states are different
��nqd2q→�nqd3q�. The absorption mechanism of bulk mag-
nons will be proportional to T3/2.

The electron-phonon interaction should also influence the
spin-dependent transport.27,38 Since this process is spin-
independent, both majority and minority spin are scattered
and relax their energy: this is equivalent to effectively de-
crease the bias voltage �eV−��p, ��p being the phonon en-
ergy� and therefore affects the electron-magnon scattering.
Interestingly, in the presence of spin-orbit scattering the
electron-phonon interaction becomes spin dependent and can
contribute to spin relaxation, similarly to the electron-
magnon interaction.39 However, this is a second-order con-
tribution �combination of spin-orbit and electron-phonon in-
teraction� and the relaxation rate associated with this
interaction ��s−ph�100 ps� is several orders of magnitude
smaller than the electron-magnon interaction22 ��e−m�1 fs�.

Temperature-dependent measurements of the amplitude of
both components of the spin-transfer torque would be of

great interest in order to determine the relative contribution
of elastic and inelastic spin torque at low and high bias, as
well as to distinguish magnons contributions from impuri-
ties, disorder or structural asymmetries. An effective tem-
perature of the order of 400–600 K, attributed to a self-
heating in the junction, is often assumed to interpret the
experimental data40 and should significantly enhance the in-
fluence of interfacial magnons. Furthermore, as shown by
Eqs. �34� and �35�, at large-bias voltage, the IP torque in-
creases with the temperature, whereas the OP torque de-
creases with it. These temperature-dependent measurements
would bring new insights to estimate the actual influence of
such effective temperature compared to the inelastic OP
torque in the magnetization dynamics.

V. CONCLUSION

Based on the transfer-matrix approach, we analyzed the
tunneling transport in a magnetic-tunnel junction in the pres-
ence of interfacial electron-magnon scattering. We first found
that the previous assumed diagonal tunneling matrix must be
modified in the noncollinear magnetization structure. Due to
rotation of the reflected spin at the tunneling barrier, the spin
direction in the barrier possesses a perpendicular component
that must be described by a 2�2 spinor-transfer matrix. We
have determined this matrix within a free-electron model.

We then showed that at zero temperature, the contribution
of magnon scattering is essentially an antisymmetric qua-
dratic component to the spin torque at low bias and a linear
component at large bias. At finite temperature, this scattering
adds both a linear and a quadratic component at low bias and
a linear component a high-bias voltage. These components
are antisymmetric as a function of the bias voltage for the
in-plane torque and symmetric for the out-of-plane torque.

This inelastic contribution to the bias dependence of the
spin-transfer torque can interpret the results obtained by Petit
et al.19 and by Li et al.20 at large-bias voltage. The actual
bias dependence of the spin-transfer torque in a magnetic-
tunnel junction is then a superposition between elastic and
temperature-dependent and independent inelastic tunnelings
�impurities, disorder, interfacial, and bulk magnons,
phonons�. Finally, we suggest that temperature studies could
provide interesting elements to better understand the role of
electron-magnon scattering and the ratio between elastic and
inelastic contributions.
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