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The ordering of charges on half-filled hypercubic lattices is investigated numerically, where electroneutrality
is ensured by background charges. This system is equivalent to the s=1 /2 Ising lattice model with antiferro-
magnetic 1 /r interaction. The temperature dependences of specific heat, mean staggered occupation, and of a
generalized susceptibility indicate continuous order-disorder phase transitions at finite temperatures in two- and
three-dimensional systems. In contrast, the susceptibility of the one-dimensional system exhibits singular
behavior at vanishing temperature. For the two- and three-dimensional cases, the critical exponents are ob-
tained by means of a finite-size scaling analysis. Their values are consistent with those of the Ising model with
short-range interaction, and they imply that the studied model cannot belong to any other known universality
class. Samples of up to 1400, 1122, and 223 sites are considered for dimensions 1 to 3, respectively.
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I. INTRODUCTION

The long range of electrostatic correlations underlies im-
portant physical effects such as screening, charge renormal-
ization, charge orders, and instabilities of plasmas.1 In Cou-
lomb glasses, disordered systems of localized charges,
electrostatic correlations induce the Coulomb gap in the
single-particle energy spectrum.2 The question under which
conditions these glasses exhibit genuine glass transitions has
been under controversial debate for a long time.3–10,40,41

Lattices partially occupied by charged particles have been
studied as models for ionic fluids, where several phases were
identified and an Ising-type liquid-gas critical point was
observed.11–16 In particular, by means of numerical simula-
tion and finite-size scaling, Luijten et al.12 could clearly rule
out this point to belong to any of several alternative univer-
sality classes. For a recent review on this field see Ref. 17. In
case of full occupancy, such a lattice corresponds to an ionic
crystal and provides the zero-disorder limit of the Coulomb-
glass problem.

Although the ordering of ionic crystals with decreasing
temperature has been studied by several groups, important
questions are still open. Analytical14–16 and simulation
results7,18–20 suggest that, for the case of pure Coulomb in-
teraction, staggered �antiferromagnetic� ordering in three-
dimensional simple-cubic lattices starts with a continuous
phase transition. According to the hierarchical reference
theory study by Brognara et al.13 and the renormalization-
group investigation by Ciach,16 this transition should belong
to the short-range Ising universality class in spite of the long-
range interaction. This hypothesis is suggested by the transi-
tion being the end of a line of Ising transitions in the lattice
restricted primitive model, which is reached for complete
filling.

We remind the reader, however, that in the case of Ising
models with ferromagnetic long-range interactions, the phase
transition depends on dimensionality and decay exponent of
the interactions. The critical indices can vary from mean-
field behavior to that of the short-range Ising universality
class via intermediate values.21,22

The case of antiferromagnetic long-range interactions is
more subtle due to their inherent frustration. From the corre-
sponding field-theoretic approach for a staggered order, one
would expect that the long-distance behavior of the interac-
tions should renormalize to short-range couplings.14 How-
ever, this argument assumes validity of a perturbative expan-
sion around the ground state. Thus, one discounts part of the
couplings between charge or higher-order multipole fluctua-
tions that are associated with the defects of the ordered state.
In the case of Coulomb-glass systems, the interplay of such
fluctuations and quenched disorder is believed to underlie
glassy properties. Recently, three different analytical ap-
proaches for the screening problem in such disordered elec-
tronic systems have been developed, where two of them con-
tain the nondisordered case as natural limit.8–10 In this
context, precise numerical experiments on the phase transi-
tion of lattice models without disorder are called for.

The corroboration of the analytical results on the ordering
of ionic crystals by numerical studies is very difficult due to
the long-range interaction: Studying samples of up to 123

sites, Almarza and Enciso18 observed their data for simple-
cubic lattices to be consistent with the assumption of short-
range Ising universality. However, they could not determine
the critical exponents directly because the samples were still
too small. A considerable progress was reached in Refs. 19
and 20, where samples of up to 183 sites were considered, so
that critical exponents could be obtained by finite-size scal-
ing. The exponent values were found to be very close to the
data for the short-range Ising model, but this work was pre-
sented only in a short form. Moreover, further enlarging of
the sample size and diminishing of the error bars seemed
desirable. Finally, Overlin et al.7 studied the influence of
positional disorder at samples of up to 83 sites and deter-
mined the critical exponent of the localization length. For the
limiting case of vanishing disorder, their numerical result
was consistent with both the short-range Ising and mean-
field universality classes.

The effects of unscreened interactions and frustration may
become more prominent in dimensions d=1 and 2. However,
only a few numerical studies have been devoted to the be-
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havior of such systems: In a first attempt, Díaz-Sánchez et
al.6 studied samples of up to 26 and 142 sites for d=1 and 2,
respectively, by means of a spin-glass approach. They con-
cluded that a phase transition at finite T exists only for d
=2, but not for d=1. The behavior of considerably larger
samples was simulated in Refs. 19 and 20, where a continu-
ous phase transition at finite T was obtained for d=2, but not
for d=1. In the former case, according to the obtained criti-
cal exponents, short-range Ising universality seems likely.
Moreover, Luo et al.23 considered two-dimensional systems
with logarithmic interaction, corresponding to the interaction
of homogeneously charged lines. They obtained values of the
critical exponents of correlation length and order parameter
which clearly differ from the short-range Ising values.

The aim of the present work is twofold: On the one hand,
for d=3, we numerically investigate the ordering in simple-
cubic systems to check the analytical theories mentioned
above. The critical exponents of correlation length, order pa-
rameter, specific heat, and generalized susceptibility are ob-
tained by finite-size scaling. On the other hand, we extend
these studies to the cases d=1 and 2. For a preliminary and
less detailed version of this work, which was still restricted
to the investigation of smaller systems, see Ref. 20.

This paper is organized as follows. In Sec. II, we intro-
duce the model Hamiltonian including the used boundary
conditions, and we comment on the applied numerical pro-
cedures. Section III presents a qualitative overview of the
simulation results, whereas Sec. IV is devoted to a quantita-
tive evaluation of the data sets by means of finite-size scal-
ing. Finally, in Sec. V, the obtained critical exponent values
are discussed and compared with previous work.

II. MODEL AND NUMERICAL APPROACH

We numerically investigate the nature of the order-
disorder transition in a system of charges considering the
minimal model: simple hypercubic lattices are half-filled
with particles interacting via the Coulomb potential where
background charges −1 /2 are attached at each site for neu-
trality,

H =
1

2�
i�j

f ij �ni − 1/2� �nj − 1/2� �1�

with

f ij = 1 / �ri − r j� . �2�

Here n�� �0,1� denote the occupation numbers of states lo-
calized at sites ri within a d-dimensional hypercube of size
Ld. Elementary charge, lattice spacing, dielectric constant,
and Boltzmann constant are all taken to be 1, so that the
temperature T is dimensionless. Due to particle-hole symme-
try, canonical and grand canonical Hamiltonians equal each
other in this case. When substituting si for ni−1 /2, Eqs. �1�
and �2� take the form of the s=1 /2 Ising lattice model with
Coulomb interaction of antiferromagnetic character.

For reducing finite-size effects, we impose periodic
boundary conditions for d=1 and 2, modifying f ij according
to the minimum image convention.24 For d=3, the same ap-

proach would give rise to an unphysical feature: The ground
state would be a layered arrangement of charges instead of
the expected NaCl structure in case L is a multiple of four.25

Therefore, similar to Ref. 26, we consider the sample to be
surrounded by 26 equally occupied cubes in this case,27

f ij =
1

�ri − r j�
+ �

k=1

26 � 1

�ri − r j − Rk�
−

1

�Rk�
� . �3�

Here, Rk denotes the shift of the neighboring cube k with
respect to the central cube. Similar to the minimum image
convention, the correction terms in Eq. �3� efficiently reduce
the largest finite-size effect, namely, the difference between
the surroundings of sites close to the center of the cube and
of sites close to its surface. Compared to the implementation
of periodic boundary conditions combined with an Ewald
summation, our method has the advantage that it does not
introduce the artificial long-range correlations arising from
the series of periodic images of the cell. However, in the
limit L→�, both approaches should yield the same results
�see the comparison with Ref. 7 in Sec. IV�.

To obtain ensemble averages of various observables, we
follow the Metropolis approach and substitute temporal for
ensemble averaging.24 Since only equilibrium properties are
of interest here, we are free to choose the dynamics so that
the simulation effort is minimized. A cluster Monte Carlo
algorithm seems not to be available for the antiferromagnetic
Coulomb interaction because of frustration. Thus we select
the system modifications to be taken into account by hand:
We include one-electron exchange with the “surroundings,”
one-electron hops over distances below a certain bound, and
two-electron hops changing the occupation of four neighbor-
ing sites. The maximum permitted distance of one-electron
hops is enlarged when T is lowered.

At high T, we use the original Metropolis method.24 But
at low T, we take advantage of the hybrid procedure pro-
posed in Ref. 28, which much accelerates the computations:
Similar to the n-fold way algorithm,29 we deterministically
calculate the rates of the transitions to all multiparticle states,
which are accessible from the current state by means of a
single system modification. Thus the dwelling time at the
current state can be determined directly, and only one Monte
Carlo step is needed per system modification. Moreover, the
hybrid procedure connects the deterministic evaluation of
weighted sums over all states within a low-energy subset of
the configuration space with Monte Carlo sampling of the
complementary high-energy subset. These two ideas had
proved to be very efficient in studying the specific heat of the
Coulomb glass at low temperatures.25

For an efficient error control, we decompose the simula-
tion time considering 100 intervals with integration time �
instead of one interval of length 100�. In detail, we increase
� step by step performing 50 runs for every � value. In each
of these runs, after starting randomly from one multiparticle
state out of a set of previously tabulated low-energy states,
the sample is first equilibrated during a time interval � /3.
Then the evolution over two successive time intervals � is
emulated. The obtained ensembles of 100 measuring data for
each observable are used to estimate mean values and their
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statistical uncertainties, and to check equilibration. Based on
these results, it is decided, whether the iteration process can
be stopped, or whether � has to be increased further.

III. QUALITATIVE RESULTS

We now turn to the qualitative behavior of specific heat,
order parameter, and susceptibility. The specific heat c was
obtained from energy fluctuations utilizing

c = �	H2
 − 	H
2� / �T 2Ld� , �4�

see, e.g., Ref. 30. Figure 1 shows its T and L dependences:
For d=2 and 3, sharp peaks of increasing height evolve
within a small T region as L grows. Away from the peaks,
within the T intervals presented, c is almost independent of
L. However, for d=1, there are only broad rounded peaks

with L-independent height—a logarithmic T scale is used for
d=1, in contrast to the linear scales for d=2 and 3, which
display far smaller T intervals. For d=1, finite-size effects
are restricted to low T where the reliability bound decreases
with increasing L �compare Ref. 25�.

Analogously to an antiferromagnet, the order inherent in a
charge arrangement ni can be characterized by the mean
staggered occupation � relating to a NaCl structure.3 For
d=3,

� =
1

Ld�
i

�− 1�xi+yi+zi �2ni − 1� , �5�

where xi, yi, and zi denote the �integer� components of ri.
Thus we consider the ensemble average of the absolute value
of the mean staggered occupation 	���
 as order parameter. T
and L dependences of 	���
 are shown in Fig. 2. For d=1, a
rapid decrease of 	���
 with increasing T occurs already
clearly below the temperature of maximum c �same T scales
in Figs. 1 and 2�. This marked decrease shifts to lower T with
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FIG. 1. �Color online� Temperature dependences of the specific
heat, c�T�, for dimensions d=1 to 3 as obtained from simulations of
samples of Ld sites. d=1: L=100 �+�, 280 ���, and 700 ���; d=2:
L=20 �+�, 34 ���, and 58 ���; d=3: L=8 �+�, 12 ���, and 18 ���.
Only a part of the data points forming the curves is marked by
symbols, as well as in Figs. 2–4, 6, and 8. The error bars are con-
siderably smaller than the symbol size.
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FIG. 2. �Color online� Temperature dependence of the average
absolute value of the mean staggered occupation, 	���
�T�, which is
defined by Eq. �5� for d=1 to 3. For the meaning of the symbols +,
�, and � see caption of Fig. 1; � marks the extrapolation L→�
explained in the text.
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increasing L. For d=2 and 3, a qualitatively different behav-
ior is found: the order parameter 	���
 decreases rapidly just
in that T region where the peak of c�T� evolves, and the T
interval of rapidly diminishing 	���
 shrinks as L rises. In
these cases, the extrapolation L→� by means of
	���
�T ,L�= 	���
�T ,��+A�T� /Ld/2 seems natural. Based on
the 	���
�T ,L� data for L=34 and 58 in case d=2, and for
L=12 and 18 in case d=3, it yields almost sharp transitions.
However, this extrapolation is of limited accuracy in the im-
mediate vicinity of the transition.

The generalized susceptibility �, which is related to the
response of 	���
 to a staggered field, is given by

� = Ld �	�2
 − 	���
2� / T �6�

�see Ref. 31�. Figure 3 shows T and L dependences of �. On
the one hand, for d=1, a broad peak of ��T� evolves with
increasing L, where Tmax, the temperature of maximum �,
decreases. On the other hand, for d=2 and 3, as L rises,

a narrow peak grows in just that T region where c�T ,L� has
such a feature.

Hence, according to the described behavior of c�T ,L�,
	���
�T ,L�, and ��T ,L�, a phase transition likely occurs for
d=2 and 3, for d=3 in agreement with Refs. 7, 11, and 12.
However, for d=1, in spite of the long-range interaction,
there seems to be no phase transition at finite T.

This conclusion is confirmed by the behavior of the
Binder parameter, the fourth-moment ratio,

Q = 	�2
2 / 	�4
 , �7�

which is shown in Fig. 4.12 This quantity is directly derived
from the Binder cumulant 1− 	�4
 / �3	�2
2� and exhibits
similar features: In the ordered phase, where � has a bimodal
probability distribution, Q=1, whereas, in case of a normal
distribution of � in the disordered phase, Q=1 /3. A common
intersection point of the Q�T� curves for various system sizes
indicates a phase transition. According to Fig. 4, such points
seem to exist for d=2 and 3, but not for d=1.
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FIG. 3. �Color online� Temperature dependence of the suscepti-
bility, ��T�, which is related to the mean staggered occupation � by
Eq. �6�, for d=1 to 3. For the meaning of the symbols see caption of
Fig. 1.
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FIG. 4. �Color online� Temperature dependence of the Binder
parameter, Q�T�, which is related to the mean staggered occupation
� by Eq. �7�, for d=1 to 3. For the meaning of the symbols see
caption of Fig. 1.
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IV. QUANTITATIVE ANALYSIS BY MEANS OF FINITE-
SIZE SCALING

Consider first the one-dimensional case: Careful inspec-
tion of Fig. 4 leads to the conclusion that, although there
seems to be no common intersection point of the Q�T�
curves, simple scaling Q�T ,L�=Q�T /Lp� is unlikely because
of the L dependence of the slope in this graph. Thus, to
perform a detailed analysis, we numerically solved
Q�TA ,L�=A for A=0.45, 0.60, 0.75, and 0.90. The resulting
TA�L� are presented in a 1 /TA versus ln L plot in Fig. 5.

Figure 5 shows that, with high precision, 1 /TA is a linear
function of ln L for all considered A values. �The tiny devia-
tion at L=70 arises from a small systematic shift of the
Q�T ,L� curves for L=4n, where n is integer, in comparison
to the curves with L=4n+2. This shift vanishes as n→�.�
Moreover, it is remarkable that the slope of the linear func-
tion is independent of A within the accuracy of the simula-
tions. Finally, with increasing L, the L dependence of the
maximum temperature Tmax of the susceptibility seems to
tend to the same behavior as TA�L�.

Due to the linear dependences in Fig. 5, TA�L� and
Tmax�L� likely vanish as L→�. This is confirmed by the
parallelism of the regression lines, a second argument against
the intersection of Q�T ,L=const� curves at finite T. As a
consequence of these two observations, Q�T ,L� is expected
to depend only on the composed quantity z=T0 /T−ln L with
T0=0.2484�8�, where the uncertainty denotes the 3� bound
of the random deviation. This reduction is confirmed by Fig.
6, which shows the corresponding master curve made up of
Q�T ,L=const� curves with L=40, 100, 280, 700, and 1400.

Thus, in the limit L=�, long-range order should be de-
stroyed by thermal excitations at arbitrarily small, but finite

T although the considered model exhibits a long-range inter-
action.

One may ask whether the logarithmic relation indicates
that the antiferromagnetic Coulomb interaction is a marginal
case for d=1. Thus we performed additional simulations for
the antiferromagnetic 1 /r1/2 interaction which decays more
slowly. These studies yielded similar results: Considering
samples of up to 1000 sites, we could not find a clue of a
phase transition at finite T. However, on the one hand, 1 /TA
rises with increasing L slightly faster than as a linear func-
tion of ln L, and, on the other hand, small deviations from
the parallelism of the dependences of 1 /TA on ln L for dif-
ferent A are present.

We turn now to the two- and three-dimensional cases:
Here, the quantitative evaluation of our simulation data con-
sists in a finite-size scaling analysis.32,33 However, for nu-
merical convenience, we consider the quantities

q2 = − ln�1 − Q� �8�

and

q3 = − tan�� �1 − 1.5Q�� �9�

for d=2 and 3, respectively, instead of Q. The qd�T� have
small curvature in the vicinity of the transition. This behavior
alleviates a precise interpolation.

Figure 7 shows qd�T� for various L values. For d=2, there
clearly is a common intersection point of the curves for dif-
ferent L at the critical temperature Tc,2. However, for d=3,
only a tendency toward such a behavior is seen although the
widths of the T intervals for both cases as well as the ranges
of numbers of sites Ld are comparable.

The corresponding corrections to scaling can be taken into
account to a large extent in a simple way: Following Ref. 34,
we define a size-dependent critical temperature Tc,d�L� by the
demand qd�Tc,d�L� ,L�=q0,d, where the q0,d are appropriate
constants, which are fixed below. Scaling of qd�T� curves for
different L with respect to T−Tc,d�L� yields very good data
collapse. Figure 8 demonstrates this observation, showing
plots of Q�T ,L� versus t=ad�L��T−Tc,d�L�� based on the pa-
rameter values obtained below. In our study, referring to
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FIG. 5. �Color online� Size dependence of the solution TA of
Q�TA ,L�=A for d=1 in a 1 /TA versus ln L plot. From top to bot-
tom, the crosses are related to A=0.90, 0.75, 0.60, and 0.45. The
maximum temperatures Tmax of ��T ,L� are included as circles for
comparison. Error bars are omitted since they are considerably
smaller than the symbol size. The straight lines correspond to linear
regression in this representation for L	100 in case of TA, and for
L	700 in case of Tmax.

-2 -1 0 1 2

T0 /T - ln L

0.4

0.6

0.8

1

Q

d = 1

FIG. 6. �Color online� Check for d=1 whether Q�T ,L� depends
only on the composed quantity z=T0 /T−ln L where T0=0.2484.
The symbols � , + , � , � , and � stand for L=40, 100, 280, 700,
and 1400, respectively.
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Tc,d�L� instead of Tc,d��� proved to considerably reduce the
influence of deviations from scaling on the values of the
critical exponents, which are numerically obtained from
samples of finite size.

Figure 8 simultaneously shows that Q�t� has a substantial
curvature within the crucial region—our finite-size scaling
analysis is based on the Q intervals �0.75,0.91� and
�0.45,0.80� for d=2 and 3, respectively. However, to reach a
high accuracy of the critical exponents, very precise ad�L�
values are needed so that a broad t range has to be taken into
account. We approach this nonlinearity problem by consider-
ing qd�t� instead of Q on the one hand, and by approximating
qd�t� by polynomials of third degree, q0,d+ t+bdt2+cdt3, on
the other hand.

We evaluated our qd�T ,L� data by a series of regression
studies of the T and L dependences: First, the only weakly
L-dependent parameters bd and cd of the polynomial ansatz
were adjusted, after this the ad�L� and Tc,d�L� values were
determined.

Both for the cases d=2 and 3, the relations ad�L� only
weakly deviate from power laws, ad�L�
Lp, so that they are
not graphically depicted here. Based on the ad�L� data, the
value of the critical exponent of the correlation length, �
=1 / p, can be obtained in two ways. First, it can be directly
calculated by numerical differentiation by means of the mid-
point formula utilizing �= �d ln�ad� /d ln L�−1. The advantage
of this approach is a meaningful control of convergence with

increasing L. Figure 9 shows such results from the consider-
ation of pairs of sixth-next and next-nearest neighbors in the
sequence of sample sizes for d=2 and 3, respectively. Sec-
ond, � can be determined by means of power-law fits, taking
into account various L intervals. This method yields more
precise estimates of the exponents. For consistency, the
mean-square deviation of these fits must be understandable
as resulting from random errors alone. Table I presents the
most precise results for �, which were obtained from the fits
safely fulfilling this requirement. Additionally, these values
are included in Fig. 9.

This graph implies several conclusions: The � values con-
verge rapidly with increasing sample size so that for d=3,
already the study of samples with L12 yields � values,
which are very close to the results for L20. Thus the good
agreement between our result of a power-law fit, 0.633�4�,
and the known Ising value 0.630, suggests that the consid-
ered model may belong to the Ising universality class. This
hypothesis is supported by our result 0.633�4� clearly differ-
ing from the mean-field value 0.5, from the Heisenberg value
0.71, and from exponents of the alternative “nearby” models
XY, �=0.670, and self-avoiding walks, �=0.588 �compare
Ref. 12�. Also for d=2, our � value supports Ising universal-
ity and clearly excludes mean-field behavior. Finally, accord-
ing to Fig. 9, it is not surprising that for d=3, Overlin et al.7

got the somewhat lower value 0.55�0.1 from simulations
for L=4, 6, and 8.
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FIG. 7. �Color online� Temperature dependence of qd, related to
the Binder parameter Q by Eqs. �8� and �9�, in the close vicinity of
the transition for d=2 and 3. According to increasing modulus of
the slope, the curves refer to L=16, 24, 34, 48, 68, 88, and 112 for
d=2, and to L=8, 10, 12, 14, 16, 18, 20, and 22 for d=3. The error
bars denote the 1� region. For clarity, data points in the intersection
regions are omitted.
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FIG. 8. �Color online� Scaling check for Q�T ,L�: The adjust-
ment of the parameters ad�L� and Tc,d�L� is described in the text.
Scaling is indicated by the agreement of the nonlinear contributions
to Q�T ,L=const� for various L in these plots. For the meaning of
the symbols +, �, and � see caption of Fig. 1; � refers to L
=112 and 22 for d=2 and 3, respectively.
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In obtaining Tc,d�L� from qd�Tc,d�L� ,L�=q0,d, a deviation
 of q0,d from the L→� limit of the solution of qd�T ,2L�
=qd�T ,L� gives rise to a contribution  /ad�L� to Tc,d�L�. We

fix q0,d by the demand that this term vanishes: q0,2
=1.892�8� and q0,3=−0.200�19�, corresponding to the Q val-
ues 0.8492�12� and 0.625�4�, respectively. For d=2, the criti-
cal Q value slightly, but significantly deviates from the ana-
lytical result for the L=� limit of the short-range Ising
model with periodic boundary conditions 0.856 216.35 But
this is not a strong counterargument to the considered model
belonging to the Ising universality class, as it is suggested by
the value of �: It is known that the critical Q value is a very
sensitive quantity which depends on the boundary condi-
tions, and that “universality of the critical cumulant holds in
a rather restricted sense, when compared to universality of
critical exponents.”36 Nevertheless, for d=3, our critical Q
value perfectly agrees with the value for the Ising model
with short-range interaction and periodic boundary condi-
tions, 0.6233�4�.37 This supports the hypothetical Ising criti-
cality inferred from the value of �.

The remaining higher-order corrections in Tc,d�L� origi-
nate from imperfection of finite-size scaling. Comparing sev-
eral empirical approximations, we observed that over a wide
L range, they are almost proportional to ad�L�−2 �see Fig. 10�.
Corresponding extrapolations yield the following values of
Tc,d���: 0.103 082�9� and 0.128 838�17� for d=2 and 3, re-
spectively. The confidence intervals include the 3� random
errors and cautious estimates for the systematic uncertainty
of the extrapolation L→�.

Our Tc,3 value is consistent with the result 0.128�0.005
in Ref. 7, which was obtained for considerably smaller
samples. This coincidence, together with the approximate
agreement of the values of �, confirms an assumption from
Sec. II. It shows that, within the accuracy of the simulation,
our treatment of the surroundings of the sample yields the
same results as the Ewald summation performed in Ref. 7.
Moreover, comparing with analytical theories, we mention
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0.66

ν
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d = 3

FIG. 9. �Color online� Approximations of the critical exponent �
versus sample size. The symbols � denote values which were ob-
tained by numerical differentiation �see text�. The corresponding
error bars denote the 1� regions. The thick red �gray� lines repre-
sent results of power-law fits, where their extension visualizes the
evaluated L interval. The thin red �gray� lines give upper and lower
bounds of the corresponding 3� intervals. For comparison, the
green �gray� symbols � mark the known values of the Ising model
with short-range interactions for L=� �see Table I�.

TABLE I. Finite-size scaling results for the critical exponents of specific heat, mean staggered occupation,
susceptibility, and correlation length, �, �, �, and �, respectively. To retain numerical precision, we mostly
present exponent ratios instead of the exponents themselves. The data were obtained by two alternative
methods, either directly �marked as d� by power-law fits �modified by a constant term in the case of � /��, or
indirectly �marked as i� via Widom and hyperscaling relations from power-law fits yielding other exponents
or exponent ratios, see text. Values for the Ising model with short-range interaction �Refs. 33 and 38� are
included for comparison. Parentheses and brackets give 3� random errors and total errors, respectively,
referring to the last given digit of the value.

Quantity d L region Method Coulomb Short-range Ising

� /� 2 28–112 d −0.02�4� 0 �ln�
� /� 2 34–112 i −0.03�5� 0 �ln�
� /� 2 48–112 d 0.1318�21� 1/8

� /� 2 48–112 i 0.129�8� 1/8

� /� 2 48–112 d 1.742�15� 7/4

� 2 34–112 d 1.013�25� 1

� /� 3 10–22 d 0.09�9� 0.1740 �8�
� /� 3 8–22 i 0.158�21� 0.1740 �8�
� /� 3 14–22 d 0.506�7� 0.51820 �8�
� /� 3 14–22 i 0.514�5� 0.51820 �8�
� /� 3 14–22 d 1.973�10� 1.96361 �15�
� 3 8–22 d 0.633�4� 0.63012 �16�
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that the nonlinear screening theory by Pankov and
Dobrosavljević8 underestimates our “exact” Tc,3 value by
26%, whereas a study by Malik and Kumar,10 which utilizes
the replica method, overestimates Tc,3 by roughly a factor 1.5
when using the random-phase approximation, and by more
than a factor 3 for the Hartree approximation.

The analysis of ��T ,L�, 	���
�T ,L�, and c�T ,L� was per-
formed similarly to the evaluation of qd�T ,L�: We considered
ln �, ln	���
, and ln c as functions of t and L. For not too
large �t�, as L→�, scaling implies that each of these quanti-
ties is decomposable into a sum of two functions depending
only on t and L, respectively. However, for the L regions
considered here, this hypothesis proved to be well fulfilled
only for ln �. In the cases of ln c and ln	���
, there is a clear
tendency toward such a behavior, but small deviations cannot
be neglected. Thus we approximated ln �, ln	���
, and ln c by
polynomials in t of third order, taking advantage of univer-
salities in the coefficients as far as possible. This regression
provides precise values for the observables at t=0. Simulta-
neously, we obtained the confidence intervals taking into ac-
count the uncertainties in the individual measurements of the
observables and in the Tc,d�L� values.

The interpolated ��Tc,d�L� ,L� and 	���
�Tc,d�L� ,L� were
analyzed by means of power-law fits, where proportionality
to L�/� and L−�/�, respectively, was presumed. These studies
were performed analogously to the determination of �. How-
ever, while the effective � /� converges quite rapidly with
increasing L, see Fig. 11, the determination of the limit of
� /� as L→� in Fig. 12 is hindered by slow convergence:
Within a fixed L interval, the relative change of the effective
� is considerably larger than the variations in the effective �
and �. The reason of this slow convergence is understood by
inspection of Fig. 13. Although this graph shows high-
quality power-law behavior above L30 and L10 for d
=2 and 3, respectively, the uncertainty of the slope is rather
large since, due to the small relative change of 	���
, small
deviations from the power law may considerably shift the
exponent value.

Alternatively, the value of � /� can be obtained from the
value of � /� utilizing the Widom relation, 2=�+2�+�, and
the hyperscaling relation, 2−�=d�. These equations imply

� /�= �d−� /�� /2. Corresponding results are included in Fig.
12, as well as in Table I, additionally to the results of the
power-law fits.

Table I shows that our � /� data are very close to the
exponent ratios for the short-range Ising model, where the
results of the indirect approach deviate somewhat less from
the Ising values than the data obtained directly by means of
power-law fits.

Compared to the study of 	���
 and �, the analysis of c is
more difficult: Exponent values obtained by means of nu-
merical differentiation converge only very slowly with in-
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(1000/a3)
2

0.1288

0.1292

0.1296

Tc,3

d = 3

FIG. 10. �Color online� Relation between a3�L� and Tc,3�L� for
q0,3=−0.200. With increasing a3, the data points refer to L=8, 10,
12, 14, 16, 18, 20, and 22. The error bar represents our extrapola-
tion L→�, where the 3� interval is marked.
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FIG. 11. �Color online� Approximations of the critical exponent
ratios � /� versus sample size. For the meaning of the symbols see
caption of Fig. 9.
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FIG. 12. �Color online� Approximations of the critical exponent
ratios � /� versus sample size. The meaning of most symbols is
defined in the caption of Fig. 9. Here, additionally, the symbols �
denote values, which were obtained by means of the Widom and
hyperscaling relations from � /� data in Fig. 11, marked by � there.

A. MÖBIUS AND U. K. RÖSSLER PHYSICAL REVIEW B 79, 174206 �2009�

174206-8



creasing L, see Fig. 14, and the mean-square deviations of
the power-law fits remain too large. Therefore we took into
account a background contribution presuming c�Tc,d�L� ,L�
=a+bLp with p=� /� similar to Ref. 39. Moreover, in order
to avoid numerical problems, we approximated c�Tc,d�L� ,L�
by ā+ b̄�Lp−1� / p instead of by a+bLp. Results for � /�,

which were determined in this way, are included in Table I
and Fig. 14.

Alternatively, � /� was calculated by means of the hyper-
scaling relation utilizing the � results, which were obtained
by numerical differentiation. These � /� values exhibit a far
better convergence than the directly obtained � /� data; this
is demonstrated Fig. 14. They agree nicely not only with the
results of the modified power-law fits but also with the
known values for short-range Ising universality �see Fig. 14
and Table I�.

V. DISCUSSION

Summarizing, we have presented a detailed Monte Carlo
study of the ordering of charges on a half-filled hypercubic
lattice. For one-dimensional systems, the order seems to be
destroyed already at arbitrarily small but finite temperature
in spite of the long-range character of the interaction. How-
ever, for two- and three-dimensional systems, continuous
phase transitions occur at finite temperatures. We have deter-
mined the critical exponents not only for the correlation
length, but also for the specific heat, for the order parameter
staggered occupation, as well as for the related susceptibility.

A survey of the exponent values, which we obtained by
finite-size scaling, is given in Table I. These data have to be
regarded as effective exponents. Due to the finiteness of L,
tiny systematic errors are certainly present, presumably the
more relevant the smaller the exponent value. Unfortunately,
our data set is not sufficient for a convincing estimate of
them. Nevertheless, the exponents which we obtained di-
rectly by means of power-law fits �modified by a background
constant in case of the specific heat� obey the Widom rela-
tion, according to which the term 2 /�− �� /�+2� /�+� /��
has to vanish: Presuming the errors in Table I to be indepen-
dent and random, one obtains −0.01�6� and 0.08�9� for d
=2 and 3, respectively, where the errors are given as 3�
bounds. Simultaneously, our data satisfy the hyperscaling re-
lation, which implies the quantity 2 /�−� /�−d to equal zero:
In this case, Table I yields −0.01�6� and 0.07�9� for d=2 and
3, respectively. Together, Widom and hyperscaling relations
imply that the expression 2� /�+� /�−d vanishes what can
be checked with higher precision since � is not included
here. For this expression, one obtains the values 0.006�16�
and −0.015�17� for d=2 and 3, respectively, from Table I.
Thus our set of the critical exponent values satisfies all con-
sistency criteria.

Among the critical exponents, � exhibits the best conver-
gence with increasing sample size. The values given in Table
I are consistent with the assumption that the studied phase
transition belongs to the short-range Ising universality class,
in spite of the long-range Coulomb interaction, both for the
cases d=2 and 3. All other well-known universality classes
could clearly be ruled out according to the values of �. More-
over, the supposed Ising universality is supported by the val-
ues of the critical exponents �, �, and � being likewise con-
sistent with the corresponding critical indices of the Ising
model, as well as by the critical values of the Binder param-
eter Q.

Concluding, in spite of the long-range interaction, the
Coulomb system described by Eqs. �1� and �2� seems to be-
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FIG. 13. �Color online� Size dependence of the value of 	���
 at
the critical temperature Tc,d�L� defined in the text. The error bars are
considerably smaller than the symbol size, thus they are omitted.
The dashed lines represent the fits given in Table I.
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FIG. 14. �Color online� Approximations of the critical exponent
ratios � /� versus sample size. The meaning of most symbols is
defined in the caption of Fig. 9. However, in this case, the power-
law fit is modified by a background constant �see text�. Addition-
ally, the symbols � denote values, which were obtained by means
of the hyperscaling relation from � data in Fig. 9, marked by �

there. The dashed lines are included only as guide to the eye in
order to demonstrate the considerable L dependence of the exponent
ratio � /� obtained by numerical differentiation.
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long to the same universality class as the Ising model with
short-range interaction. This suggests that screening should
be highly effective in the ordering process and that the lattice
Coulomb-glass model might have the same critical properties
as the random-field short-range Ising model.
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