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Extensive Monte Carlo simulations of bulk liquid parahydrogen at a temperature T=16.5 K have been
carried out using the continuous-space Worm Algorithm. Results for the momentum distribution, as well as for
the kinetic energy per particle and the pair-correlation function are reported. The static equilibrium thermody-
namic properties of this system can be generally computed by assuming that molecules are distinguishable.
However, the one-body density matrix �and the associated momentum distribution� is affected by particle
indistinguishability and quantum statistics to an extent that lends itself to experimental observation. Compari-
sons with available experimental data and other theoretical and numerical calculations are offered.
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I. INTRODUCTION

The investigation of the condensed phases of molecular
hydrogen is aimed at understanding and characterizing quan-
titatively quantum effects, both in the liquid and in the solid
phases. In many respects, liquid hydrogen displays a physi-
cal behavior that interpolates between that of a classical liq-
uid, and that of superfluid helium, i.e., the most quantum
mechanical of the simple fluids. The most important mani-
festation of quantum mechanics in a fluid of hydrogen mol-
ecules, is the fact that the kinetic energy per particle1 signifi-
cantly exceeds the classically predicted2 value 3T /2. This is
essentially a consequence of zero-point motion, as the excess
kinetic energy arises from the confinement that each mol-
ecule experiences inside the instantaneous “cage” of sur-
rounding particles, owing to the hard core of the intermo-
lecular interaction.

Hardly any signature of quantum statistics �Bose in this
case, as both parahydrogen and orthohydrogen molecules
have integer spin� can be detected on the equilibrium ther-
modynamic properties of liquid hydrogen, as particle ex-
changes are exceedingly rare. For a simple quantitative esti-
mate, one may consider the lightest hydrogen isotope, i.e.,
parahydrogen �p-H2�; under the pressure of its own vapor,
liquid p-H2 crystallizes at a temperature T=13.8 K. At tem-
peratures slightly above that, in the liquid phase, the thermal
wavelength �T of a p-H2 molecule is on the order of 1 Å,
significantly smaller than the mean intermolecular distance
d�3.5 Å. Thus, probability “clouds” associated to different
molecules do not overlap significantly and exchanges are
suppressed3 at least as �exp�−d2 /2�T

2�, which is less than
10−3 �for comparison, it is close to 0.3 in 4He at T=1 K�.

The presence of the above-mentioned hard-core repulsion,
at distances less than �2.2 Å in the interaction between two
molecules, suppresses quantum exchanges even further.4

Consequently, liquid hydrogen has been modeled as a system
of distinguishable quantum particles �“Boltzmannons”�, e.g.,
in all numerical simulation work to date.5–10 Indeed, it is
precisely the impossibility of stabilizing a phase of this sys-
tem, where quantum exchanges may be important,11 that has
so far hampered the experimental observation of superfluid-
ity in bulk parahydrogen.

However, effects of particle indistinguishability and quan-

tum statistics ought to be detectable in the momentum distri-
bution, defined as

n̄�k� = �âk
†âk� , �1�

where �¯� stands for thermal expectation value, and âk
†�âk�

is the creation �annihilation� operator for a particle of mo-
mentum k. The momentum distribution is related, via a Fou-
rier transformation, to the one-body density matrix,

n�r,r�� = ��̂†�r��̂�r��� , �2�

where �̂ and �̂† are Bose field operators. Within the path
integral formulation of quantum statistical mechanics,3

n�r ,r�� describes the distribution of relative positions of the
two dangling ends of a single-particle path that has been “cut
open.”

Due to quantum exchanges �even as rare as they are in
liquid hydrogen� and the ensuing entanglement of single-
particle paths, n��r−r��� extends out to significantly greater
distances than it would if particles were truly distinguishable
�in which case n�r� is very nearly Gaussian�. This in turn
results in a transfer of weight of n̄�k� toward lower momenta,
which can be interpreted as a sign of the incipient Bose-
Einstein condensation that liquid parahydrogen would un-
dergo, at a temperature around 5 K, were it to escape crys-
tallization. It has been suggested12 that this effect ought to be
experimentally measurable.

The bulk of the available experimental information on the
structure and dynamics of liquid hydrogen comes from deep
inelastic neutron scattering measurements, which offer �in
some cases direct� access to quantities such as the single-
particle kinetic energy, momentum distribution, and excita-
tion spectrum.13 Such experiments have been pursued by
various groups over the past two decades.12,14–21 On the the-
oretical side, besides the above-mentioned numerical simu-
lations typically based on quantum Monte Carlo �QMC�
techniques, an analytical approach known as correlated den-
sity matrix �CDM� theory4,12 has been shown to provide not
only qualitative insight but also quantitatively reliable pre-
dictions, at least for structural properties �an additional check
on the predictions based on CDM is furnished here�.
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Agreement between theoretical predictions and experi-
mental data has not been of the quality that one would expect
given the availability of fairly well-established simulation
methods and reasonably quantitative microscopic models.
For example, the difference between the kinetic energy per
particle in liquid p-H2 at T=16.5 K, in a range of pressure
between 1 and 80 bars, computed theoretically4 and inferred
from the most recent experimental measurements12 is ap-
proximately 10% �a few K�, which seems large, considering
that the same comparison yields better agreement for the
more quantal helium liquid.22 It is unclear whether such a
discrepancy originates within the microscopic model, or the
computational methodologies, or may lie instead with the
analysis of the experimental data. No results of any first-
principles microscopic calculation of the momentum distri-
bution in liquid p-H2 have been reported so far.

The purpose of this paper is, on the one hand, to provide
independent theoretical estimates for the kinetic energy per
particle, as well as for the pair-correlation function at the
same conditions of temperature and pressure considered in
Refs. 4 and 12, thereby allowing for an extended comparison
between different calculations. More importantly, an unbi-
ased theoretical estimate of the single-particle momentum
distribution is furnished here, enabling a direct and cogent
comparison between theory and experiment. The computa-
tional tool utilized here is numerical; specifically, use is
made of the continuous-space Worm Algorithm �WA�, which
allows for a direct calculation of the one-particle density
matrix connected to the momentum distribution via a
straightforward Fourier transformation.

Our numerical estimates for the kinetic energy are for the
most part in quantitative agreement with those of other
works, and thus retain the same level of disagreement with
experimental data already reported by others. Quantum ef-
fects are clearly seen in the computed one-body density ma-
trix, which can be directly associated to quantum exchanges,
explicitly allowed in our calculation �i.e., no assumption of
distinguishability is made here�. In Sec. II, the microscopic
model underlying the calculation as well as the basic features
of the methodology utilized is reviewed. In Sec. III a thor-
ough illustration of the results obtained in this work is pro-
vided; finally, a general discussion is offered, and conclu-
sions outlined in Sec. IV.

II. MODEL

Consistently with all previous theoretical studies, our sys-
tem of interest is modeled as an ensemble of N p-H2 mol-
ecules, regarded as point particles of spin zero, enclosed in a
cubic vessel of volume � with periodic boundary conditions.
The quantum-mechanical many-body Hamiltonian is the fol-
lowing:

Ĥ = − �	
i=1

N

�i
2 + 	

i�j

V�rij� . �3�

Here, �=12.031 K Å �Ref. 2� for p-H2, while V is the po-
tential describing the interaction between two molecules,
only depending on their relative distance. Most of the results

presented here were obtained using the Silvera-Goldman
model potential.23 This is not the only potential that has been
used in previous work, but it is arguably the most commonly
adopted. It has also been shown24 to afford an accurate quan-
titative description of the thermodynamics of the solid phase
of p-H2. For the sake of comparison, however, we have also
performed a calculation using the Buck25–27 pair potential.
Naturally, in principle a more accurate model would go be-
yond the simple pair decomposition, including, for instance,
also interactions among triplets; however, published numeri-
cal work �e.g., on helium� has given strong indications that
three-body corrections, while significantly affecting the esti-
mation of the pressure, have a relatively small effect on the
structure and dynamics of the system, of interest here.28,29

The thermodynamic properties of the system, as modeled
by the many-body Hamiltonian �3�, were studied by means
of numerical simulations, based on the continuous-space
WA.30,31 This �Monte Carlo� methodology, recently intro-
duced, has several advantages over path integral Monte
Carlo �PIMC�, the technique utilized in most previous many-
body numerical calculations for liquid p-H2. The most im-
portant, in this context, is the fact that it is formulated in an
extended configuration space including an open world line.
This allows one to evaluate, besides all usual thermodynamic
observables, also off-diagonal single-particle correlation
functions not accessible in conventional PIMC, at no added
computational cost. One of these correlation functions is the
single-particle Matsubara Green function,

g�r,r�,�� = �T̂ ��̂�r,���̂†�r�,0��� . �4�

Here, �̂ and �̂† are time-dependent field operators, −���
��, with �=1 /T is commonly referred to as “imaginary

time” and T̂ is the time ordering operator.32 In the limit �
→0, the Matsubara Green function reduces to the one-
particle density matrix n�r ,r��, defined in Eq. �2�.

For a translationally invariant system, it is n�r ,r��

n�r−r��, and in three dimensions the momentum distribu-
tion n̄�k� is related to n�r� through

n�r� =
1

�2��3� d3k n̄�k�eik·r. �5�

For a system that is also isotropic, like a liquid, it is n�r�

n�r�. Hence, on inverting the above relationship one ob-
tains

n̄�k� 
 n̄�k� =
4�

k
�

0

	

dr r sin kr n�r� . �6�

For convenience, the following normalization is imposed on
n̄�k�:

1

�2��3� d3k n̄�k� = 1, �7�

which fixes to unity, the value of the one-body density matrix
at r=0. The average kinetic energy per particle Ek is con-
nected to the momentum distribution through
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Ek =
1

�2��3� d3k

2k2

2m
n̄�k� . �8�

Using Eqs. �5�, �7�, and �8�, it is straightforward to show
that, in the limit r→0, it is

n�r� � 1 −
Ek

6�
r2, �9�

which provides a useful consistency check on the computed
Ek and n�r�. We obtain n̄�k� through Eq. �6�, using the nu-
merically computed n�r�.

The reader is referred to Ref. 31 for a thorough descrip-
tion of the continuous-space WA. The specific implementa-
tion utilized in this project is canonical, i.e., we keep the
number N of particles fixed.33 Other technical aspects of the
calculations are common to any other QMC simulation
scheme. Results were obtained by simulating systems com-
prising two different numbers of particles, namely, N=96
and N=256. Within the statistical errors of the calculations,
no significant size dependence can be detected in any of the
quantities considered here, except for the kinetic energy, for
which a systematic difference of approximately 0.1 K exists
for the two system sizes �the larger system yielding the
greater value of Ek�.

The usual fourth-order high-temperature propagator uti-
lized in all previous studies based on the WA was adopted
here; convergence of the estimates was observed for a time
step ��1.89�10−3 K−1, which corresponds to P=32 imagi-
nary time “slices” at the single temperature considered in this
work. Because the computational cost was negligible, all es-
timates reported here were obtained using twice as small a
time step, in order to be on the safe side.

III. RESULTS

The thermodynamic conditions considered in this work
are the same as in Ref. 4. Specifically, the temperature is
fixed at T=16.5 K, and three different densities are consid-
ered, namely, �=0.02235, 0.02372, and 0.02413 Å−3, corre-
sponding to pressures of 1, 40, and 80 bars, respectively.

A. Structure

Static correlation functions are yielded directly by the
simulation. The results obtained here are largely consistent
with those of previous MC calculations,9,12 and shall there-
fore not be discussed any further. The results at the lowest
and highest densities considered here are shown in Fig. 1.
The basic physical features of these functions have already
been extensively described in the literature. Differences be-
tween different calculations, as well as between theory and
experiment, if any, are not easily spotted.9

B. Kinetic energy

Table I summarizes the kinetic energy per p-H2 molecule
computed in this work; results quoted are for a system of
N=256 molecules. For comparison, results of PIMC calcula-
tions published in Refs. 4 and 19 are also shown together

with experimental data from Ref. 18, as well as the more
recent ones from Ref. 12. It should be noted that the kinetic
energy in QMC is not computed through the momentum dis-
tribution, but rather using a direct estimator.

The comparison of theoretical estimates is not completely
satisfactory, even after statistical and possible systematic un-
certainties are properly taken into account. At the lowest
density, the result offered in Ref. 19 is very close to the one
obtained here, and it is almost certain that the small differ-
ence is attributable to a relatively small number of time
slices �P=64� used in Ref. 19, where the primitive approxi-
mation for the high-temperature propagator was utilized.
While such a number is sufficient to obtain reasonably accu-
rate estimate of structural properties �e.g., the pair-
correlation function�, it was found in this work that at least
twice as many slices are needed, in order to achieve conver-
gence of kinetic energy estimates to the precision quoted
here, if the primitive approximation is used �it is worth re-
peating that all results presented here are obtained using a
fourth-order propagator�.

TABLE I. Kinetic energy per p-H2 molecule Ek �in K� at T
=16.5 K, computed in this work �first two rows� and in Refs. 4 and
19 as well as recently determined experimentally �Refs. 12 and 18�.
Statistical errors �in parentheses� are on the last digit. Theoretical
estimates are obtained using the Silvera-Goldmann potential, except
for that in the second row, which is based on the Buck potential.
Experimental value from Ref. 18 is obtained as an interpolation of
data at T=15.7 K ��=0.022 52 Å−3� and T=17.2 K ��
=0.022 10 Å−3�.

Density �Å−3� 0.02235 0.02373 0.02413

Silvera-Goldman 61.78�2� 64.99�5� 67.93�4�
Buck 62.61�3�

PIMC �Ref. 4� 62.7�4� 65.5�5� 69.6�5�
PIMC �Ref. 19� 61.4�1�
Expt. �Ref. 18� 60.3�6�
Expt. �Ref. 12� 67.8�3� 73.5�4� 77.5�4�
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FIG. 1. �Color online� Pair-correlation function g�r� in liquid
p-H2 at T=16.5 K and �=0.022 35 Å−3 �1 bar, solid line� and �
=0.02413 Å−3 �80 bars, dashed line�. Statistical errors are not vis-
ible on the scale used here.
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On the other hand, the discrepancy between our estimates
and those of Ref. 4 is definitely outside statistical errors at
the highest density, and possibly at the lowest one as well, in
spite of the relatively large errors quoted therein; in general,
the estimates offered in Ref. 4 appear to be above ours, by
almost 1.5–2 K at the highest density. Details of the calcula-
tion carried out in Ref. 4 are not available to us at this time,
and therefore it is unclear what the source of such a disagree-
ment might be, given that the model potential utilized is the
same and differences in system sizes seem unlikely to gen-
erate a disaccord of this magnitude.

In order to carry out a comparison of the numerical results
obtained here with those obtained by other methods, we have
also performed a simulation at a density �=0.021 Å−3 for a
temperature T=16 K. For this thermodynamic condition, an
estimate of the kinetic energy per particle of 58.6 K was
provided in Ref. 12, based on the CDM theory. Our result is
57.40.1 K, which seems in reasonable agreement.

A much more significant discrepancy exists between the
theoretical and some of the available experimental estimates
for kinetic energy, namely, those reported in Ref. 4, all of
which are above the theoretical ones by approximately 6 K at
the lowest density, up to almost 9 K at the highest. Such
disagreement is puzzling, considering the quantitative agree-
ment between theoretically computed and experimentally
measured kinetic energy per particle in liquid helium,22 in
which deviations from the classical behavior are much more
pronounced than in liquid hydrogen. In light of the substan-
tial closeness �if not downright agreement� of the various
independent theoretical estimates, one may look at the inter-
molecular potential as one of the possible sources of the
discrepancy with experiment. The Silvera-Goldman potential
has been shown to provide a rather accurate description of
the crystalline phase of p-H2 at low temperature,24 and there-
fore it seems unlikely that it would not be at least as ad-
equate in the liquid phase in which the consequences of the
pair-wise spherical approximation should be even less impor-
tant than in the crystal.

For comparison purposes, the same calculation was car-
ried out in this work based on a different model potential as
well, namely, the Buck potential, at the lowest density con-
sidered here; the value is shown in Table I. The Buck poten-
tial gives a slightly higher kinetic energy, by about 1 K, a
considerably smaller difference than that between theory and
experiment. It should be noted that both these potentials
yield a theoretical value of the kinetic energy per particle in
the solid phase within �1–2 K of the experimentally deter-
mined one.18,34 It seems therefore unlikely that the choice of
pair potential may account for the observed difference be-
tween the theoretical estimates and the experimental data of
Ref. 12.

Another possibility is that the finite size of the simulated
system may result in an underestimation of the kinetic en-
ergy. However, as mentioned above calculations performed
in this work on a system of N=96 particles, yield essentially
the same estimate obtained with N=256, the difference being
on the order of 0.1 K at the most. Therefore, it seems safe to
exclude the possibility of a significant size dependence.
Based on these considerations, we surmise that the discrep-
ancy likely originates with some of the assumptions under-

lying the analysis of the experimental data carried out in Ref.
4, which may have to be reconsidered. On this point, it is
worth noting the substantial disaccord between the experi-
mental estimates for the same quantity provided in Refs. 12
and 18 �about eight times the combined uncertainties quoted
by the two groups�. The value given in Ref. 18, while not in
perfect agreement with theoretical estimates, is nonetheless
much closer to them than that furnished in Ref. 12.

C. Momentum distribution

Figure 2 shows the computed �spherically averaged� one-
body density matrix n�r� for liquid p-H2 at the lowest density
considered here, namely, �=0.022 35 Å−3. Deviations from
the classical �Gaussian� behavior are clear �at the same time,
the logarithmic scale gives an idea of their magnitude�. In
particular, n�r� extends beyond the first coordination shell,
whose radius is �4 Å, i.e., a molecule has a nonzero prob-
ability amplitude of exiting the cage formed by the surround-
ing molecules. This is due to quantum-mechanical ex-
changes, which have indeed been observed in all of the
simulation carried out in this work �in the so-called G
sector—see Ref. 30 for details�, and which allow the two
dangling ends of the open path to drift further away from
each other than if particles were distinguishable, by virtue of
entanglement among different paths.

In order to establish this fact more quantitatively, we have
performed a simulation in which particles were assumed
truly distinguishable. In technical terms, this means that the
so-called “swap” move,30 which allows for entanglement of
single-particle paths in the presence of a single open world
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FIG. 2. �Color online� Theoretically computed one-body density
matrix n�r� in liquid p-H2 at T=16.5 K and �=0.022 35 Å−3

�circles�. When not shown, statistical errors are smaller than symbol
sizes. Straight line is an exponential fit to the curve for r�6 Å.
Boxes show the result for n�r� for distinguishable quantum par-
ticles; it is essentially identical with the one for Bosons for r less
than �4 Å, but deviates significantly from it for larger distances, as
a result of quantum exchanges.
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line, is inhibited. The result that one obtains in this case for
n�r� is virtually identical with the one shown in Fig. 2 for
distances less than �4 Å; for greater distances, on the other
hand, it is qualitatively sketched by the dotted line shown in
Fig. 2. The one-body density matrix continues to decay in
that case. On the scale of Fig. 2, no signal appears for r
�5 Å in such a simulation. This establishes that the struc-
ture of n�r� above 4 Å is a genuine consequence of quantum
�Bose� statistics.

From the numerically computed n�r�, one can obtain the
experimentally observable momentum distribution n�k�
based on Eq. �6� by means of a straightforward numerical
integration. Obtaining good statistics for values of n�r� at
distances greater than �6 Å becomes quickly impractical,
due to the rapid decay of the function, which requires an
exceedingly long simulation time in order to achieve a mean-
ingfully small statistical uncertainty. This could in principle
be an issue when trying to evaluate Eq. �6�. However, the
contribution to n�k� coming from distances greater than 6 Å
can be easily estimated by fitting the portion of the curve for
r�6 Å, for example, to an exponentially decaying function
�as shown in Fig. 2�. As it turns out, such contribution
�which is greatest at k=0� is barely worth 0.1% of the total
value of n�k�, regardless on the particular fitting function that
one chooses, and therefore an accurate evaluation of Eq. �6�
can be obtained by integrating only up to r=6 Å.

Figure 3 shows the momentum distribution n̄�k� resulting
from the numerical integration of Eq. �6� based on the data
for n�r� shown in Fig. 2. Although the system studied is not
a classical liquid, the overall shape of n̄�k� remains close to a
Gaussian,35 albeit one corresponding to a different effective
temperature, given by 2Ek /3 �shown for comparison in Fig.
2�. Such a Gaussian is essentially indistinguishable from the
momentum distribution that one obtains on Fourier trans-

forming the one-body density matrix computed for distin-
guishable quantum particles. There is some strength trans-
ferred to both lower and higher momenta, compared to what
one would find if the momentum distribution was indeed
such a “renormalized” Gaussian; more quantitatively, nu-
merical integration of Eq. �8� up to momentum ko=4 Å−1,
using the data for n̄�k� shown in Fig. 3, yields approximately
85% of the overall kinetic energy �as opposed to 92.8% if
n̄�k� were a Gaussian�, the rest coming from momenta higher
than ko. This underscores the delicacy of extracting the
single-particle kinetic energy from the experimentally mea-
sured momentum distribution, as an accurate determination
of the tail is required, a fact which might help account some
of the differences reported in the literature between the nu-
merically computed and experimentally determined kinetic
energy.36

The difference between the computed momentum distri-
bution and the model Gaussian, which can be attributed en-
tirely to quantum statistics, is altogether rather small, and is
most noticeable for momenta between 1.5 and 2.5 Å−1, cor-
responding to interparticle distances between 2.5 and 4 Å.
This conclusion was already stated in Ref. 12, based on an
analysis of experimental data for n̄�k�. In Fig. 4 the kinetic-
energy distribution is shown, namely, the quantity k2n̄�k�, for
which experimental data are reported in Ref. 12 �the same
units utilized therein are used�. Within the statistical uncer-
tainties of the calculation carried out here, there appears to
be broad agreement between the results obtained in this work
and the experimental data, but with some noticeable differ-
ences. In particular, the computed k2n̄�k� attains its maxi-
mum in correspondence of the momentum k
=1.7350.005 Å−1, in excellent agreement with the value
1.736 Å−1 reported in Ref. 12. On the other hand, around
k�4 Å−1 the curve calculated here falls below the experi-
mental one, approximately by a factor 2.5. This is consistent
with the fact that the experimentally determined kinetic en-
ergy is above that obtained here by approximately 10%.
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FIG. 3. �Color online� Momentum distribution n̄�k� in liquid
p-H2 at T=16.5 K and �=0.022 35 Å−3. Solid line is the estimate
obtained by numerical integration of Eq. �6�, using the results for
n�r� shown in Fig. 2, as explained in the text. Statistical and sys-
tematic errors are too small to show on the scale of the figure.
Dashed line is a Gaussian function whose width is chosen so as to
yield the kinetic energy per particle computed in the simulation,
namely, 61.780.02 K.
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FIG. 4. �Color online� Momentum distribution n̄�k� in liquid
p-H2 at T=16.5 K and �=0.022 35 Å−3 �1 bar, solid line�, �
=0.023 27 Å−3 �40 bars, dashed line�, and �=0.024 13 Å−3 �80
bars, dotted line�. Statistical errors are not visible on the scale used
here.
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The momentum distribution at higher density �pressure�
does not qualitatively change, with respect to that shown in
Fig. 2. This is shown in Fig. 5, where the momentum distri-
bution computed at the three different densities considered
here is displayed. The most important change that occurs on
raising the pressure is the loss of weight at low momenta, as
the system becomes increasingly classical. Correspondingly,
the tail of the one-body density matrix at long distances is
suppressed, as exchanges are rarer, even if one single-
particle world line is open.

IV. CONCLUSIONS

We have carried out first-principle calculations of the mo-
mentum distribution of liquid parahydrogen at T=16.5 K, at
three different densities corresponding to pressures ranging
between 1 and 80 bars. The results for the one-particle den-

sity matrix show that quantum-mechanical exchanges result
in a longer tail of the one-body density matrix than one
would predict based on distinguishability of molecules. Con-
sequently, this has an effect on the momentum distribution,
which features clear and measurable deviations from a
Gaussian. These conclusions are in broad qualitative and
quantitative agreement with considerations made in Ref. 12.
On increasing the pressure, exchanges are suppressed, and
the most significant change in the momentum distribution
occurs precisely at low k.

For the thermodynamic conditions explored here, experi-
mental measurements have been recently carried out. The
agreement between theoretical estimates and experimental
data continues to be less than satisfactory, certainly of much
lesser quality than that found for liquid and solid helium. The
deviation between theoretical and experimental data appears
to be systematic. At the time of this writing, it is unclear to
us where the origin of the disagreement lies, but perhaps an
independent check of the analysis of the data of Ref. 12 is in
order.

As mentioned above, the discrepancy could also be attrib-
uted to an inaccurate determination of the tail of the momen-
tum distribution. However, another aspect worth revisiting is
the effect of multiple inelastic scattering that a neutron suf-
fers in a liquid. An example of the impact of multiple scat-
tering is discussed in Ref. 37, where it is shown that it can
indeed lead to an overestimation of the value of the center-
of-mass kinetic energy per particle.
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