
Propagating, evanescent, and localized states in carbon nanotube–graphene junctions

J. González,1 F. Guinea,2 and J. Herrero1

1Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid, Spain
2Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain

�Received 21 January 2009; published 27 April 2009�

We study the electronic structure of the junctions between a single graphene layer and carbon nanotubes,
using a tight-binding model and the continuum theory based on Dirac fermion fields. The latter provides a
unified description of different lattice structures with curvature, which is always localized at six heptagonal
carbon rings around each junction. When these are evenly spaced, we find that it is possible to curve the planar
lattice into armchair �6n ,6n� as well as zigzag �6n ,0� nanotubes. We show that the junctions fall into two
different classes, regarding the low-energy electronic behavior. One of them, constituted by the junctions made
of the armchair nanotubes and the zigzag �6n ,0� geometries when n is a multiple of 3, is characterized by the
presence of two quasibound states at the Fermi level, which are absent for the rest of the zigzag nanotubes.
These states, localized at the junction, are shown to arise from the effective gauge flux induced by the
heptagonal carbon rings, which has a direct reflection in the local density of states around the junction.
Furthermore, we also analyze the band structure of the arrays of junctions, finding out that they can also be
classified into two different groups according to the low-energy behavior. In this regard, the arrays made of
armchair and �6n ,0� nanotubes with n equal to a multiple of 3 are characterized by the presence of a series of
flat bands, whose number grows with the length of the nanotubes. We show that such flat bands have their
origin in the formation of states confined to the nanotubes, with little overlap in the region between the
junctions. This is explained in the continuum theory from the possibility of forming standing waves in the
mentioned nanotube geometries, as a superposition of modes with opposite momenta and the same quantum
numbers under the C6v symmetry of the junction.
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I. INTRODUCTION

The recent isolation of graphene layers a single atom
thick1–3 has led to a great deal of activity, because of their
novel electronic properties and potential applications. The
lattice structure of graphene is determined by the sp2 coor-
dination between neighboring carbon atoms. Each carbon
atom has three nearest neighbors, leading to planar honey-
comb lattice. With small modifications, the same structure
describes other carbon allotropes, such as the fullerenes and
the carbon nanotubes.

In this paper we study the simplest systems which com-
bine two of these allotropes: the junctions between a single
graphene layer and carbon nanotubes. A regular array of
closely spaced armchair nanotubes attached to a graphene
layer has already been studied,4 and related systems are be-
ing considered for their potential applications.5 We undertake
here the investigation of junctions made of nanotubes with
different chiralities, which have in common a transition from
the planar to the tubular geometry mediated by the presence
of six heptagonal carbon rings. These induce the negative
curvature needed to bend the honeycomb carbon lattice at the
junction, playing a kind of dual role to that of the pentagonal
carbon rings in the fullerene cages.6

We analyze first the electronic properties of a single junc-
tion between a carbon nanotube and a graphene layer. We
discuss the possible structures of this type, concentrating on
geometries where the heptagonal rings are evenly spaced
around the junction. The nanotubes can be then either arm-
chair �6n ,6n� or zigzag with �6n ,0� geometry �that is, with
6n hexagonal rings around the tube�. We calculate their elec-

tronic structure, using the tight-binding model based on the
� orbitals of the carbon atoms widely applied to carbon al-
lotropes with sp2 coordination.

Paying attention to the local density of states, we find that
the junctions fall into two different classes, depending on the
behavior in the low-energy regime. One of the classes, com-
prising the junctions made of armchair and �6n ,0� nanotubes
when n is a multiple of 3, is characterized by the presence of
a peak in the density of states close to the Fermi level. The
peak is absent in the other class, formed by the junctions
made with the rest of zigzag geometries. In general, the den-
sity of states tends to be depleted in the junction at low
energies, with peaks above and below the Fermi level mark-
ing the threshold for the propagation of new states across the
junction.

We present next a continuum description, based on the
formulation of Dirac fermion fields in the curved geometry,
which allows us to characterize the general properties of the
junction, and which is consistent with the previous discrete
analysis. Thus, we see that the peak at the Fermi level in the
local density of states is in general a reflection of the exis-
tence of quasibound states �zero modes� for the Dirac equa-
tion in the curved space of the junction. It is known that the
topological defects of the honeycomb lattice �pentagonal and
heptagonal rings� induce an effective gauge field in the space
of the two Dirac points of the planar graphene lattice.7 It
turns out that the effective magnetic flux is enough to local-
ize two states at the junctions made of armchair or �6n ,0�
nanotubes when n is a multiple of 3. At low energies, how-
ever, the generic behavior is given by evanescent states,
which arise from the matching of modes with nonvanishing
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angular momentum and have exponential decay in the nano-
tube.

We finally apply our computational framework to the
analysis of the band structure of the arrays of nanotube-
graphene junctions. Considering the behavior of the low-
energy bands close to the Fermi level, we find that the arrays
also fall into two different classes. The arrays made of arm-
chair nanotubes or �6n ,0� nanotubes with n equal to a mul-
tiple of 3 tend to have a series of flat bands close to the
Fermi level, while the arrays made with the rest of zigzag
nanotubes have all the bands dispersing at low energies.
Such a different behavior has its origin in the existence of
states confined in the nanotube side of the junction. We find
that this feature can also be explained in the context of the
continuum model. The armchair and the �6n ,0� geometries
with n equal to a multiple of 3 allow for the formation of
standing waves between the junction and the other end of the
tube. This is the mechanism responsible for the confinement
of the states in the nanotubes and the consequent develop-
ment of the flat bands, whose number grows at low energies
with the length of the nanotube, in agreement with the pre-
dictions of the continuum theory.

II. TIGHT-BINDING APPROACH TO CARBON
NANOTUBE-GRAPHENE STRUCTURES

A. Lattice structure

Our first aim is to analyze the density of states of a semi-
infinite nanotube attached to a graphene layer in the tight-
binding approximation. The possible setups that we will con-
sider, keeping the threefold coordination of the carbon
atoms, are sketched in Fig. 1. The structures can be wrapped
by the graphene hexagonal lattice, with the exception of the
six points where the sides of the hexagonal prism �which
describes the nanotube� intersect the plane. The threefold
coordination of the carbon atoms requires the existence of
sevenfold rings at those positions.

We describe the electronic states in the structures shown
in Fig. 1 by means of a nearest-neighbor tight-binding
model. In general the relaxation of elastic energy will modify
the bond lengths at the junction, depending on the nanotube
radius. We will assume that this relaxation does not change

significantly the electronic behavior. In this respect, a tight-
binding model based on the � carbon orbitals is well suited
for the purpose of discerning the extended or localized char-
acter of the different electronic states. Our main achievement
will be to assign the different features in the local density of
states to the behavior of the electronic states near the
nanotube-graphene junctions. To this aim, we have actually
checked that slight modulations of the transfer integral t near
the junctions do not produce significant changes in the re-
sults shown in what follows.

B. Electronic densities of states

We concentrate on the analysis of geometries where the
six heptagonal carbon rings are evenly spaced around the
junction as in Fig. 1. This constrains the possible chiralities
of the nanotubes, that can be then either armchair �6n ,6n� or
zigzag �6n ,0�, with the number n running over all the inte-
gers. Nanotubes in which the carbon sheet is wrapped with
helicity can be also attached at the expense of introducing an
irregular distribution of the heptagonal rings. Anyhow, we
expect that the rules explaining the different features in the
density of states are universal enough to hold even in these
more general cases.

We have obtained the spectra of different types of hybrid
structures by diagonalization of the tight-binding Hamil-
tonian for very large lattices, with up to �50 000 carbon
atoms in the graphene part and �40 000 in the nanotube
side. Given that the whole geometry has C6v symmetry, we
have classified the energy eigenstates into six groups accord-
ing to the eigenvalue q under a rotation of � /3. The nature of
each electronic state is given in general by its behavior at the
nanotube-graphene junction. For this reason, we have char-
acterized the hybrid structures in terms of the local density of
states averaged over a circular ring of atoms at the end of the
nanotube close to the junction.

Our computations have covered a number of structures
including armchair and zigzag nanotubes with different radii.
After inspection of all the spectra, it becomes clear that there
are several generic features in the density of states. We have
represented in Fig. 2 the behavior near the junction between
a graphene layer and a �54,0� zigzag nanotube. We observe
that, apart from the peak close to zero energy in the sectors
corresponding to q=e�i�/3, for q�1 there is always a deple-
tion in the density of states at low energies, delimited by two
abrupt upturns. It is remarkable that the pattern in the sectors
corresponding to q=e�2i�/3 reproduces the same observed
for q=e�i�/3, but with a scale that is approximately twice
larger. The density of states in the sector with q=−1 displays
in turn a wider depletion, with the position of the peaks
scaled by an approximate factor of 3 with respect to those in
the q=e�i�/3 sectors.

In the above behavior of the density of states, the appear-
ance of the peak close to zero in the sectors with q=e�i�/3 is
the only feature not generic for all kinds of nanotubes. In the
junctions made with zigzag nanotubes, the peak actually ap-
pears for nanotube geometries of the type �6n ,0� when n is a
multiple of 3. In this series of hybrid structures, the patterns
in the density of states for each value of q are quite similar,

(a) (b) (c)

FIG. 1. �Color online� �a� Sketch of carbon nanotube attached to
a graphene plane. The building blocks of the structure are triangles
which include many carbon atoms. The orientation of the bonds of
the honeycomb lattice in the basic triangle may give rise to �b�
armchair or �c� zigzag nanotubes. The threefold coordination of the
carbon atoms induces the existence of six heptagonal rings, sche-
matically shown in blue at the corners of the hexagonal prism con-
tacting the plane in �a�.

GONZÁLEZ, GUINEA, AND HERRERO PHYSICAL REVIEW B 79, 165434 �2009�

165434-2



with the position of the corresponding peaks scaled in in-
verse proportion to the radius of the nanotube. On the other
hand, the rest of junctions, for which n is not a multiple of 3,
display a different behavior. We have represented in Fig. 3
the local density of states averaged over a ring of atoms at
the end of a �48,0� nanotube close to the junction. It can be
observed the depletion of the density of states at low energies

in all but one of the q-sectors, and the absence of a peak at
zero energy in any of the sectors.

The local density of states of the �48,0� nanotube is domi-
nated at the junction by contributions from states with q
=e�2i�/3, and this has to do with the fact that the lowest-
energy subbands of a �6n ,0� zigzag nanotube have a nonva-
nishing angular momentum equal to �4n for the motion
around the tubule.8 This corresponds to a quantum number
q=e�2i�/3 in the case of the �48,0� nanotube, while the low-
energy states have q=1 in the �54,0� nanotube. The present
picture becomes then consistent with the fact that states in
higher subbands may propagate across the junction only
above �or below� some threshold energy. This feature will be
established more precisely in the continuum approach de-
rived below in terms of the Dirac equation.

At this point, the hybrid structures can be classified into
two different groups, depending on whether there is a peak
or not close to zero energy in the local density of states
around the nanotube-graphene junction. The peak comes ac-
tually from the contribution of a doubly degenerated level
with states having q=e�i�/3, and whose probability distribu-
tion decays exponentially in the nanotube. The character of
these states will be established in Sec. III, after developing
the continuum limit in terms of Dirac fermion fields.

The evidence for the two different classes of hybrid struc-
tures is reinforced by the fact that the junctions made with
armchair nanotubes behave in a quite similar way to that
shown by the �6n ,0� nanotubes when n is a multiple of 3.
The local density of states averaged over a circular ring of
atoms around the junction between a �12,12� nanotube and a
graphene layer has been represented in Fig. 4. We observe
the presence of the peak close to zero energy in the sectors
with q=e�i�/3. There is a clear depletion in the local density
of states at low energies except in the sector with q=1,
which is consistent with the fact that the lowest-energy sub-
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FIG. 2. �Color online� Sequence of local densities of states for a
circular ring of atoms at the end of a �54,0� nanotube close to the
junction, for the different sectors corresponding to eigenvalue q
under � /3 rotation equal to �a� 1, �b� e�i�/3, �c� e�2i�/3, and �d� −1.
Energy is measured in units of the transfer integral t.
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FIG. 3. �Color online� Similar sequence as in Fig. 2 for a �48,0�
nanotube close to the junction, for �a� q=1, �b� e�i�/3, �c� e�2i�/3,
and �d� −1.
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FIG. 4. �Color online� Similar sequence as in Fig. 2 for a �12,12�
nanotube close to the junction, for �a� q=1, �b� e�i�/3, �c� e�2i�/3,
and �d� −1.
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bands in the armchair nanotube correspond to zero angular
momentum around the tubule.

The existence of the two different classes of nanotube-
graphene junctions is illustrated in Fig. 5, which shows the
results for the local density of states around the junction
�after summing over the sectors with different values of q�
for the different types of nanotube considered above. It is
remarkable the similarity between the density of states for
the �18,0� and �12,12� nanotube geometries, which have a
very close value of the radius. This suggests that there must
be a universal way of understanding the low-energy elec-
tronic properties of the two different classes of junctions,
independent of the details of the lattice building the junction
within each class.

III. CONTINUUM APPROACH

A. Heptagonal rings, effective flux, and
matching at the junction

We observe that the density of states summed over all
values of q tends to have an approximate linear behavior
away from the very low energy regime. This motivates the
analysis of the junction in terms of the Dirac equation in the
hybrid geometry, as the Dirac fermions provide an appropri-
ate description of the electronic properties in the one-
dimensional �1D� carbon nanotube as well as in the two-
dimensional �2D� graphene layer.

We will then assume that the radius R0 of the nanotube is
much larger than the graphene lattice constant, in order to
obtain the continuum limit of the tight-binding model.
Within this approximation, the analysis of the electronic
structure is reduced to the study of the Dirac equation in a
space with an abrupt change from a planar to a cylindrical
structure. The transition from a geometry to the other takes
place due to the presence of the six heptagonal rings at the
junction. These defects are the source of negative curvature,
playing a role opposite to that of the pentagonal rings in a
fullerene cage.6

The heptagons, as well as the pentagons, also induce frus-
tration in the honeycomb lattice, and lead to the exchange of
the two Dirac valleys of the planar geometry.7 This latter
effect has to be accounted for by means of an effective non-
Abelian gauge field operating in the space of the two inde-
pendent Dirac points of graphene. It can be shown that the
effective flux associated to an individual heptagonal ring is
equal to � /2 �Ref. 7� �in units such that �=1�. The flux
provided by the six heptagons at the junction can reach
therefore a maximum of 3/2 times the flux quantum. In gen-
eral, however, the count of the total flux may not follow an
additive rule, so that it can be lower than the maximum
value, depending on the relative position of the heptagonal
rings.9 We will see that this is actually the origin of the two
different classes of junctions.

Note that the angular momentum around the axis of the
nanotube is conserved and quantized in integer units, in a
continuum description of the geometry analyzed here. On the
other hand, the angular momentum in the plane is quantized
and shifted by 1/2 plus the number of flux quanta of the
effective gauge field induced by the heptagonal rings. The

existence of topological defects which induce an effective
flux at the junction allows us to match wave functions with
different angular momenta at either side of the junction, pro-
vided that the effective flux corresponds to a half-integer
number of quanta.

B. Continuum wave functions

By looking at the effect of pairs of heptagonal rings, the
non-Abelian gauge field operating in the space of the two
Dirac points becomes anyhow proportional to a sigma matrix
�3. We may consider then that the effect of the six heptagonal
rings at the junction is described by an effective Abelian
field, standing for either of the eigenvalues of �3.7 We end up
therefore with two different Dirac equations, with effective
magnetic fluxes of opposite sign. By denoting the Dirac
spinors satisfying the two Dirac equations as �+ and �−, we
can write them in the region of the plane with radius r�R0,

ivF� · ��� ieA��� = 	��, �1�

where vF is the Fermi velocity and A is the vector potential
corresponding to a number g of quanta of effective flux felt
by the electrons when making a complete tour around the
junction. In order to match the spinor wave functions at r
=R0 with those from the nanotube side, it is convenient to
use polar coordinates r, 
, for which eAr=0, eA
=g. In
the above equation, � is a covariant derivative which in
curvilinear coordinates includes the spin connection �, so
that �=�+�.10 In polar coordinates we have �r=0,
�
=−i�3 /2, and the Dirac equations for r�R0 take finally
the form,

ivF��r +
i�

r
�

g

r
+

1

2r
��A

��r,
� = 	�B
��r,
� , �2�

ivF��r −
i�

r
�

g

r
+

1

2r
��B

��r,
� = 	�A
��r,
� , �3�

where �A and �B denote the respective amplitudes of the
electron in the two sublattices of the graphene lattice.

In the nanotube side, we use cylindrical coordinates z, 
,
with z0. The Dirac equation for the nanotube is

ivF��z +
i�

R0

��A
��z,
� = 	�B

��z,
� , �4�

ivF��z −
i�

R0

��B
��z,
� = 	�A

��z,
� . �5�

We observe that the form of the Dirac equations in this part
of the space does not depend on the effective magnetic flux,
as the electrons turning around the nanotube cannot feel the
effect of the heptagonal rings placed at the junction.

We note that Eqs. �2� and �3� as well as Eqs. �4� and �5�
are expressions of the Dirac equation in flat space. This is
consistent with the fact that, in the continuum limit, the cur-
vature is localized at the circle connecting graphene and the
nanotube. As an alternative to the coordinate z, we could
make for instance the change in variables r=R0 exp�z /R0�,
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allowing us to map the nanotube into the region of the plane
with r�R0. Using a common radial coordinate r�0 to de-
scribe both graphene and the nanotube, the metric of the
space turns out to be multiplied by the conformal factor
��r�=
�r−R0�+ �R0 /r�2
�R0−r�. The first derivative of the
metric becomes then discontinuous and the curvature scalar,
computed in terms of second derivatives of the metric, is R
=−2r��r−R0�. The integral of this expression corresponds
actually to the total curvature provided by the heptagonal
rings. This makes clear that the effects of the curvature are
implicit in the operation of matching the solutions of Eqs. �2�
and �3� and Eqs. �4� and �5� at the circle r=R0.

The solutions of the Eqs. �2� and �3� are of the form

��A
��r,
�

�B
��r,
�

� � c1� Jn�g−1/2�kr�
− i sgn�	�Jn�g+1/2�kr� �ein


+ c2� Yn�g−1/2�kr�
− i sgn�	�Yn�g+1/2�kr� �ein
, �6�

where c1 and c2 are constants, and Jn�x� and Yn�x� are Bessel
functions. The energy is 	=�vFk.

On the other hand, the resolution of Eqs. �4� and �5�
shows that there are propagating and evanescent waves in the
nanotube, which can be written as

��A
��z,
�

�B
��z,
�

� � �c1�� 1

− sgn�	�ei��k� �eikzein
 + c2�� 1

sgn�	�e−i��k� �e−ikzein
 �	��
vF�n�
R0

c� 1

− sgn�	�ei��−i�� �e�zein
 �	�
vF�n�
R0

,	 �7�

where c1�, c2�, and c are constants, the energy 	 is given by

	 =� �vF
k2 +
n2

R0
2 , �	��

vF�n�
R0

�vF
− �2 +
n2

R0
2 , �	�

vF�n�
R0

,	 �8�

and the phase factor in Eq. �7� is:

ei��k� =

k +
in

R0


k2 +
n2

R0
2

�9�

We note that the evanescent states with longitudinal decay
e�z arise for nonvanishing angular momentum n. Then there
is an energy threshold vF�n� /R0 for the appearance of propa-
gating states in the nanotube. This is perfectly consistent
with the behavior of the local density of states obtained for
the different values of q in the tight-binding approach. The
depletion found in different q sectors for the local density of
states at the end of the nanotube �close to the junction� cor-
responds actually to the range of evanescent states given by
Eq. �8�. As already mentioned, the position of the peaks de-
limiting the depletion in the tight-binding approach scales in
proportion to the value of the angular momentum, which
corresponds in the lattice to the different values of q. More-
over, we have also seen that such a position is inversely
proportional to the nanotube radius R0, with values in the
plots that can be approximately matched with the estimate
vFn /R0 �after using the expression of the Fermi velocity vF

=3ta /2, in terms of the transfer integral t and the C-C dis-
tance a�. We find therefore that the generic features found for
the local density of states in the tight-binding approach are
well captured by the continuum limit based on the Dirac
equation.

C. Zero-energy states

The presence of a peak in the local density of states close
to zero energy �in the sectors q=e�i�/3� is the only feature
not generic for all types of nanotubes, and that can be also
explained within our continuum approach. The rotation
caused by each heptagonal ring in the space of the two Dirac
points corresponds to an effective magnetic flux of � /2,7 but
the way this flux is combined in the case of pairs of hepta-
gons depends on their relative position. This has been studied
in the case of pentagon pairs in Ref. 9, arriving at a conclu-
sion that can be readily generalized to the case of heptagonal
defects. The result is that, when the distance between the
heptagons is given by a vector �N ,M� �using the same nota-
tion to classify the nanotubes� such that N−M is not a mul-
tiple of 3, the effective flux of a pair of heptagons does not
add to �, but to the lower amount � /3. The number N−M
for the distance between heptagons is a multiple of 3 only in
the case of junctions with armchair nanotubes, or with
�6n ,0� nanotubes when n is a multiple of 3. In these in-
stances, the total flux felt around the junction is equal to the
sum of the fluxes provided by the individual heptagons, giv-
ing a value of g=3 /2. In the rest of the cases, the total flux
corresponds instead to g=1 /2.

The number g of flux quanta has a direct correspondence
with the number of zero modes of the Dirac equation. Their
existence rests on the possibility of having localized states at
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the junction, with suitable decay in both the graphene part
and the nanotube side. If we take for instance the maximum
effective flux and g=3 /2, we have an equation for a zero-
energy eigenstate in the region r�R0,

��r +
i�

r

+
2

r
��A�r,
� = 0. �10�

For a wave function with angular momentum n, we obtain
the behavior,

�A�r,
� � rn−2ein
. �11�

This gives rise to modes decaying from the junction for val-
ues n1. The wave function has to be matched at r=R0 with
the appropriate dependence in the nanotube, that is

�A�z,
� � e�n � R0�zein
. �12�

Recalling that z0, we see that only the value n=1 provides
a localized state at the junction. On the graphene side, the
state is not strictly normalizable, in a similar way to other
half-bound states induced by defects.11,12 Anyhow, such a
localized state has a reflection in the peak observed close to
zero energy in the q=e�i�/3 sectors of the tight-binding den-

sity of states. By inverting the direction of the flux and tak-
ing g=−3 /2, it can be seen that the solutions have then a
nonvanishing component �B�r ,
� similar to Eq. �11�, but
with angular momentum −n instead of n. Another localized
state is found therefore with opposite chirality and n=−1.

In the case of the junctions with �6n ,0� nanotubes such
that n is not a multiple of 3, the flux corresponding to g
=1 /2 is not enough to localize states at the junction. It can be
seen that there are no zero-energy solutions of the Dirac
equation decaying simultaneously in the graphene plane and
in the nanotube. This explains why in this type of junctions
there is no low-energy peak within the depleted region of the
local density of states. We complete in this way the corre-
spondence between the tight-binding approach and the con-
tinuum limit based on the Dirac equation, accounting for the
main electronic features and unveiling also the origin of the
different low-energy behavior in the two classes of junctions.

D. Transmission into the nanotube

Equations �6� and �7� allow us to analyze the scattering of
a wave in the plane off the nanotube. We define transmission
as the propagation of an electron from the graphene layer
into the nanotube. The removal of particles from the layer
can be viewed as an inelastic scattering process,13 which
leads to the loss of phase coherence of the wave function of
the layer.

The coefficients c1, c2, c1�, and c2� define the transmission
and reflection by the nanotube. For a wave coming from the
plane, the coefficient c2� is zero, and c1� is proportional to the
transmission coefficient. Using the theory of scattering of
two-dimensional Dirac electrons by an impurity,14–18 the
transmission coefficient is given by

Tn =
�kR0

2

iJn+1�kR0�Yn�kR0� − iJn�kR0�Yn+1�kR0�
iYn�kR0� − Yn+1�kR0�ei��k� .

�13�

At high energies, ��vF /R0 or, alternatively, kR0→�, we
can use the asymptotic expansion,

lim
kR0→�

Jn�kR0� �
 2

�kR0
cos�kR0 −

n�

2
−
�

4
� ,

lim
kR0→�

Yn�kR0� �
 2

�kR0
sin�kR0 −

n�

2
−
�

4
� , �14�

and limkR0→� ei��k�=1. From these expansions, we obtain

lim
kR0→�

Tn �
i

i sin�kR0 −
n�

2
−
�

4
� + cos�kR0 −

n�

2
−
�

4
�ei��k�

→ ei�kR0−�n�/2�−��/4� �15�
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FIG. 5. �Color online� Sequence of local densities of states for a
ring of atoms at the end of the nanotube close to the junction, for
the different geometries �a� �54,0�, �b� �18,0�, �c� �48,0�, and �d�
�12,12�. Energy is measured in units of the transfer integral t.
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so that limkR0→��Tn�2=1. This estimate is valid for angular
momenta n such that n�kR0. We can also obtain the reflec-

tion coefficient in this limit, R̄n, which is also independent of
n for n�kR0. The angular dependence of the scattering cross
section ��
� is

��
� � R0
sin�kR0
/2�

sin�
/2�
, �16�

and the total transport cross section, �tr=�−�
� ��
��1

−cos�
�d
, is proportional to k−1 �see also Ref. 19�. The
total flux of particles propagating inside the nanotube, nor-
malized to the total incoming flux, goes as ��=�−�

� ��
�d
,
and it is proportional to R0.

In the low energy limit, kR0�1, we obtain

lim
kR0→0

�Tn�2 � �0, kR0 n − 1

�

n!2� kR0

2
�2n+1

, kR0� n − 1, 	 �17�

In this limit, most of the electrons reaching the junction are
scattered back into the plane.

We consider here the nanotube to be semi-infinite. In this
case, the only structures in the density of states of the nano-
tube are the Van Hove singularities at the edges of the sub-
bands. We expect resonances in the transmission coefficient
at these energies.

The knowledge of the total scattering cross section, �tr,
allows us to obtain the mean-free path, ltr, of electrons in the
graphene layer in the presence of a random distribution of
nanotubes with concentration nnt, ltr�1 / ��trnnt�. The depen-
dence of the graphene conductivity on the electron wave vec-
tor kF is �see also Ref. 19�

��
e2

h
kFltr�

e2

h
� �

1

nntR0
2 , kFR0� 1,

kF
2

nnt
, kFR0� 1 	 �18�

E. Local density of states

We can make use of the continuum equations to analyze
systems of very large sizes. We calculate the electronic
Green’s functions numerically. The Dirac equation in the
plane, in radial coordinates, can be discretized.20 Each radial
equation can be approximated by a nearest-neighbor tight-
binding model with two inequivalent hoppings,

t�1 +
2n + 1

4i
�ai + t�1 −

2n + 1

4i
�ai+1 = �bi,

t�1 +
2n + 1

4i
�bi−1 + t�1 −

2n + 1

4i
�bi = �ai, �19�

where ai and bi give the values of �A
n�r� and �B

n�r� at posi-
tion r= i�a, a being a length scale which defines the dis-
cretization. Equation �19� also include an energy scale, t,
which plays the role of an upper cutoff. The Fermi velocity is
equal to t�a. The Dirac equation is obtained for �� t. We

can write Eq. �19� in a more compact form using a single
index, ci, such that c2j−1=aj and c2j =bj, so that

tici−1 + ti+1ci+1 = �ci, �20�

where, using as new length scale a /2, we have

ti = t�1 − �− 1�i 2n + 1

4�i + N0�� , �21�

where we start at position N0. The diagonal Green’s function
at site i can be written as

Gii��� =
1

� − tiT+
i − ti+1T−

i+1 , �22�

and

T+
i+1 =

ti+1

� − tiT+
i ,

T−
i =

ti

� − ti+1T−
i+1 , �23�

with boundary conditions at i=0 and i=N,

T+
0 =

1

� − �0���
,

T−
N =

1

� − �N���
, �24�

and

�0��� =

t2�1 +
n − 1

2N0
�2

�
+
�̃

2
−


�̃2 − 4t̃2

2
,

�N��� = it , �25�

and

�̃ = � −
t2

�
�1 +

�n − 1�2

4N0
2 � ,

t̃ =
t2

�
�1 −

�n − 1�2

4N0
2 � , �26�

where the radius of the nanotube is R0=N0�a /2. The
boundary conditions in Eq. �25� describe a semi-infinite
nanotube attached at position N0, and also approximate the
boundary of a plane at position N.

The Green’s function deep inside the nanotube can be
calculated analytically,

Gii
nt��� = �

n=−�

n=� 1


�̃2 − 4t̃2

���� −

vFn

R0
� . �27�

The density of states in the plane has been calculated nu-
merically, with N=1600 and summing angular momenta
from n=−100 to n=100. The calculation is equivalent to
analyzing a cluster with �2�100+1��1600=321 600 sites.
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Results for the Green’s function in the nanotube, and at the
position i=100, are shown in Fig. 6. The energy scale is set
by t=1.

The Green’s function for the system built up by the nano-
tube and the graphene sheet is shown in Fig. 7. The param-
eters are the same as the ones used for the calculation shown
in Fig. 6, and the radius of the nanotube is N0=100.

The density of states at distances from the nanotube n
�N0 is similar to those in the unperturbed sheet. Near the
juncture with the nanotube, there is a depletion of states at
low energies, compensated by the existence of a localized
state at �=0.

F. Gauge fields due to elastic strains

We have not analyzed so far the effect on the electronic
structure of strains which may be induced near the junction.
These strains deform the bonds, and induce an additional,
intravalley gauge field acting on the electrons.3,21–23 The
large in-plane stiffness of graphene implies that the bonds
will tend to their equilibrium lengths throughout the system.

The bending at the junction will be localized within a

length scale l�
� / �̄, where ��1 eV is the bending rigid-

ity of graphene, and �̄�10 eV Å−2 is an average of the
Lamé coefficients of graphene. This length is comparable to
the lattice spacing.

The mismatch between the diameter of the nanotube and
the lattice constant of the graphene layer induces additional

strains, with a long-range decay into the bulk of the graphene
plane and the nanotube, which can be calculated using the
continuum theory of elasticity.24 We expect, however, the
interatomic distance in graphene to be very close to the dis-
tance between carbon atoms along the radial direction of the
nanotube, so that the strains induced by this effect will be
small. The strains will decay as r−1 or z−1 as function of the
distance to the junction.

Using dimensional analysis, the strain near the junction is
of order �R0 /R0, where �R0 is the change in the equilibrium
radius of the nanotube induced by the plane or, alternatively,
of order �a /a, where a is the interatomic distance. We ex-
pect the value of �a /a to be similar on the plane side of the
junction. The associated gauge field is A���a /a2, where
��� log�t� /� log�a��2–3 gives the change of the tight-
binding hopping t with a. Thus, we expect that the elastic
strains will induce changes on the electronic structure on
energy scales of order vFA near the junction.

IV. LOW-ENERGY BANDS IN ARRAYS OF
NANOTUBE-GRAPHENE JUNCTIONS

Our computational framework allows us also to address
the electronic properties of arrays of nanotube-graphene
junctions. We consider the case in which the unit cell of the
array has a hexagonal shape in the base, of the type shown in
Fig. 1. The periodic arrangement of junctions is formed then
by translating the unit cell by two independent vectors of the
triangular array, in such a way that the 2D base is fully
covered with the hexagonal patches. The Brillouin zone of
the superlattice is a hexagon, and the main electronic prop-
erties are encoded in the form of the bands from the center to
the M and K points at the boundary of the zone. As long as
the states in momentum space have well-defined transforma-
tion properties under translations by the lattice vectors of the
triangular array, we can obtain the bands of the array of
junctions by solving a tight-binding model in the unit cell,
with appropriate momentum-dependent boundary conditions
between opposite sides of its hexagonal base.

The band structure of the array of junctions depends on
the geometry of the nanotubes, as well as on their length and
the distance between them. For simplicity, we are going to
consider arrays where all the nanotubes have the same chiral-
ity. Then, it can be checked that the arrays fall into two main
classes, regarding the behavior of the bands close to the
Fermi level. The distinctive feature of one class with respect
to the other is the presence of flat bands in the low-energy
part of the spectrum. The arrays of junctions made of arm-
chair nanotubes, for instance, always have a number of these
flat bands, as illustrated by the representative in Fig. 8�a�.
The appearance of flat bands in a particular array of junctions
was noticed in Ref. 4. We have found that the flat bands are
actually generic in arrays made of armchair nanotubes,
which display a series of them as one moves from the Fermi
level to higher �or lower� energies. The spacing in energy
between the flat bands becomes inversely proportional to the
length of the nanotubes. The bands dispersing at low ener-
gies in Fig. 8�a� are not affected however by variations in
that variable, while they move instead closer to the Fermi

�0.1 �0.05 0.05 0.1
Ω

Ρ�Ω�

FIG. 6. �Color online� Density of states at the bulk of the nano-
tube �blue, hexagons�, and at the graphene plane �red, diamonds�,
obtained using the numerical method discussed in the text.

�0.1 �0.05 0.05 0.1
Ω

Ρ�Ω�

FIG. 7. �Color online� Density of states at a graphene plane
attached to a nanotube. The radius of the nanotube is N0=100. The
density of states is shown at position n=10 from the junction �red,
diamonds�, and n=100 �blue, hexagons�.
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level as the distance between the nanotubes in the array is
increased.

On the other hand, the presence of flat bands at low en-
ergies is not generic in arrays made of zigzag nanotubes. In
general, we may expect a number of bands dispersing above
and below the Fermi level, as shown in Figs. 8�b� and 8�d�,
which represent the low-energy bands of arrays made, re-
spectively, of �12,0� and �24,0� nanotubes. In the case of the
zigzag nanotubes, flat bands only appear close to the Fermi
level when the junctions are formed with �6n ,0� geometries
such that n is a multiple of 3. This distinctive behavior can
be appreciated in Fig. 8�c�, which displays the low-energy
bands in the case of an array made of �18,0� nanotubes. The
shape of the bands resembles there the typical appearance of
the spectra of arrays made of armchair nanotubes, as shown
in Fig. 8�a�.

The mentioned flat bands have their origin in the exis-
tence of localized states in the arrays of junctions. We have
checked that the junctions made of armchair nanotubes and
�6n ,0� nanotubes with n equal to a multiple of 3 have in
common the formation of electron states confined mostly in
the nanotube side. These are the states responsible for the
development of the flat bands shown in Fig. 8, as the wave
functions with most of their weight in the nanotubes show
little overlap in the graphene part of the lattice. This also
explains in a natural way the proliferation of flat bands at
low energies as the nanotube length is increased, by thinking
of the confined modes as standing waves in the tube. On the
other hand, the states that are preferentially localized at the
junctions �corresponding to the quasibound states of the
Dirac equation� may be identified here as the pairs of
branches degenerated at the � point. These states may have
in general a significant overlap between nearest junctions,
which is reflected in the appreciable dispersion of the corre-
sponding bands.

We can reach in the continuum limit a qualitative under-
standing of the similar behavior of the arrays made of arm-
chair and �6n ,0� nanotubes when n is a multiple of 3, by
noticing that these are the only geometries that support low-
energy standing waves between the junction and the other
end of the tube. This requires the superposition of two modes
with opposite momenta along the tube, which is possible at
low energies in the armchair nanotubes as the modes at op-
posite Dirac points have then vanishing angular momentum.
In general, this is not the case for the �6n ,0� geometries,
since in the zigzag nanotubes the Dirac points correspond to
large momenta in the transverse direction. Yet the formation
of standing waves is possible when n is a multiple of 3, as
the low-energy states about the two Dirac points fall then in
the same sector with quantum number q=1 regarding the C6v
symmetry. Thus, it is possible to form a state confined in the
nanotube by superposition of two modes with opposite lon-
gitudinal momenta and the same quantum number q. This is
consistent with the fact that the confined states are actually
found in the q=1 sector in the diagonalization of very large
lattices of individual nanotube-graphene junctions. In the
real lattice of the array, the confinement of the electrons in
the nanotubes is only approximate, but the decay of the wave
functions in the graphene part away from the junctions is
strong enough to account for the development of the flat
bands shown above.

V. CONCLUSIONS

In this paper we have studied the electronic structure of
the hybrid material made of carbon nanotubes attached to a
graphene sheet. By analyzing individual nanotube-graphene
junctions, we have found the following features:

�i� Low-energy electrons in the graphene layer, with �	�
 vF /R0, are scattered by the nanotube, and the probability
of propagating into the tube is small.

�ii� High-energy electrons reaching the nanotube junction,
with �	��vF /R0, are mostly transmitted into the nanotube.

�iii� At low energies, �	� vF /R0, and in the vicinity of the
junction, r�R0, there is in general a depletion of the density
of states.

�iv� In certain nanotube geometries �armchair and �6n ,0�
with n equal to a multiple of 3, there are quasibound states
near 	=0, partially localized at the junction.

We have shown that these features can be accounted for in
a continuum model of the hybrid geometry. This is based on
the Dirac fermion fields describing the electronic excitations,
interacting with the curvature and the effective gauge field
arising from the six heptagonal carbon rings at the junction.
Thus, properties �i�, �ii�, and �iii� are intrinsic to the con-
tinuum Dirac equation and universal for all nanotube geom-
etries, while �iv� depends on the relative position of the six
heptagonal rings and the consequent effective magnetic flux
at the junction. While we have focused on the case of arm-
chair and zigzag nanotubes, it becomes clear that the con-
tinuum theory may account as well for the properties of junc-
tions with other geometries. In this respect, it is likely that,
by allowing for less regular distributions of the heptagonal
rings, nanotubes with nontrivial helicity can also be attached

(b)(a)

(c) (d)

FIG. 8. �Color online� Low-energy bands of arrays of junctions
with nanotube geometries �a� �12,12�, �b� �12,0�, �c� �18,0�, and �d�
�24,0�. In all the cases the unit cell of the array is of the type shown
in Fig. 1, with a side of the hexagon in the basal plane equivalent to
ten carbon rings of the graphene sheet, and a nanotube height
equivalent to ten unit cells of the nanotube for �a�, �b�, �c�, and 20
nanotube unit cells for �d�.
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to the graphene sheet. In a more general theoretical perspec-
tive, it may be interesting to analyze other discrete realiza-
tions of the 2D Dirac equation, like the geometry of a square
lattice with one half magnetic flux per plaquette.

We have also shown that the arrays of nanotube-graphene
junctions fall into two main classes, depending on whether
their spectra exhibit or not flat bands close to the Fermi level.
The flat bands only appear in arrays made of armchair nano-
tubes or �6n ,0� nanotubes when n is a multiple of 3. On the
other hand, the semiconducting behavior seems to be a con-
stant in the class characterized by the presence of the flat
bands, as no dispersive bands cross then the Fermi level.
Metallic behavior of the array of junctions is possible in the
other class, as shown in Fig. 8�b�, though that behavior does
not appear to be a generic trend, as illustrated by the absence
of low-energy bands crossing the Fermi level in the other
representative of the class shown in Fig. 8�d�.

In real experimental samples, it is quite likely that the
arrays may be formed by junctions with nanotubes of differ-
ent helicities. In this case, we can expect that the electronic
structure of these arrays will be a mixture of the features

already present in Figs. 8�a�–8�d�. In particular, part of the
electronic states will be still confined in some of the nano-
tubes, and other states will be partially localized at some of
the junctions. The feasibility of using the arrays of nanotube-
graphene junctions may depend on the possibility to tailor
these hybrid structures to get specific functions. At this point,
more input from experimental measurements on these arrays
would be required, while the remarkable behavior predicted
for these systems �localization and confinement of states, flat
bands� opens good perspectives in the investigation of novel
electronic devices.
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