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We discuss the Monte Carlo method of simulating lattice field theories as a means of studying the low-
energy effective theory of graphene. We also report on simulational results obtained using the Metropolis and
Hybrid Monte Carlo methods for the chiral condensate, which is the order parameter for the semimetal-
insulator transition in graphene, induced by the Coulomb interaction between the massless electronic quasi-
particles. The critical coupling and the associated exponents of this transition are determined by means of the
logarithmic derivative of the chiral condensate and an equation-of-state analysis. A thorough discussion of
finite-size effects is given, along with several tests of our calculational framework. These results strengthen the
case for an insulating phase in suspended graphene, and indicate that the semimetal-insulator transition is likely
to be of second order, though exhibiting neither classical critical exponents, nor the predicted phenomenon of
Miransky scaling.
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I. INTRODUCTION

The recent experimental isolation of single atomic layers
of graphite, known as graphene, has provided physicists with
a novel opportunity to study a strongly coupled system with
remarkable many-body and electronic properties, which at
the same time can be easily manipulated experimentally.1,2

Even more recently, the advent of experiments utilizing
samples of suspended graphene, free from the interference of
an underlying substrate,3 has provided unprecedented insight
into the intrinsic properties of graphene. Among other re-
markable discoveries, suspended graphene has been shown
to possess a very high carrier mobility even at room tempera-
ture, as well as a markedly nonmetallic behavior of the con-
ductivity at low temperatures.

A central property of graphene is that the low-energy elec-
tronic spectrum can be described in terms of two flavors of
massless, four-component fermionic quasiparticles with lin-
ear dispersion.4 Indeed, due to the hexagonal honeycomb
arrangement of the carbon atoms in the graphene lattice, the
band structure of graphene exhibits two inequivalent �but
degenerate� “Dirac cones” where the conduction and valence
bands touch, as illustrated in Fig. 1�a�. Since the energy-
momentum relation around a Dirac point is linear as in rela-
tivistic theories, the low-energy description of graphene
bears a certain resemblance to massless quantum electrody-
namics �QED�. Nevertheless, an important difference is that
the Fermi velocity of the quasiparticles in graphene is as low
as v�c /300, whereby the electromagnetic interaction is ren-
dered essentially instantaneous.

Such a description is well known to account for the phys-
ics of graphene on a substrate, where the system exhibits
semimetallic properties due to the absence of a gap in the
electronic spectrum. While suspended graphene has recently
come under intense experimental investigation,3 its spectrum
is yet to be computed in a controlled fashion. From the the-
oretical perspective, the challenging feature of suspended
graphene lies in the fact that the Coulomb interaction be-
tween the quasiparticles is unscreened which, in conjunction

with the small Fermi velocity, results in a graphene analog of
the fine-structure constant �g�1. At such strong coupling, a
dynamical transition into a phase fundamentally different
from the weakly coupled semimetallic phase of graphene is a
strong possibility. In graphene sheets deposited on a sub-
strate, such a transition is effectively inhibited due to the
screening of the Coulomb interaction by the dielectric.

Our recent work in Ref. 5 has demonstrated that graphene
is expected to undergo a semimetal-insulator transition when
the substrate is removed. More specifically, evidence was
found that the low-energy effective theory of graphene un-
dergoes a phase transition involving spontaneous chiral sym-
metry breaking, which takes place at a critical coupling of
�c=0.072�0.005, and within the accuracy of that work the
transition appeared to be consistent with classical mean-field
exponents. The results reported in Ref. 5 are based on the
numerical Monte Carlo simulation of a discretized lattice
formulation of the low-energy effective theory of graphene,
and the calculation of the chiral condensate, which is the
order parameter for excitonic gap formation. In one possible

FIG. 1. �Color online� �a� Dirac cone, joining the upper �red�
conduction band and the lower �blue� valence band. �b� The hex-
agonal arrangement of carbon atoms in graphene, with sublattices A
�red dots, thin dashed lines� and B �green dots, thin solid lines�.
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realization of such an insulating state, the equivalence of the
triangular sublattices A and B, shown in Fig. 1�b�, is broken
by the accumulation of charge carriers of opposite sign on
the respective sublattices.

Our results should be compared with those of Refs. 6 and
7 which are based on a gap equation, where a semimetal-
insulator transition was found at critical couplings of �c
�0.06 and �c�0.03, respectively. While the result of Ref. 6
is within the physical range of Coulomb couplings, that of
Ref. 7 is slightly above the largest conceivable value of �g
�2.16, which corresponds to graphene in vacuum. On the
other hand, Refs. 8 and 9 employed an expansion in the
inverse number of fermion flavors Nf, and found that at large
Nf, the Coulomb interaction between the quasiparticles be-
comes irrelevant and therefore unable to induce a gap in the
electronic spectrum.

In this paper, we explain the details of our lattice Monte
Carlo method, which to our knowledge has not been applied
to the low-energy theory of graphene �however, Ref. 10 has
considered a theory related to the strong-coupling limit�. We
also present new calculations supporting the conclusions of
Ref. 5, but extending the previous data set to much larger
lattices. In Sec. II, we discuss the low-energy effective
theory of graphene, the corresponding partition function, and
the computation of observables upon integration of the fer-
mionic degrees of freedom. In Sec. III, we describe the dis-
cretization of the effective theory and discuss a lattice for-
mulation that respects gauge invariance and avoids the
fermion doubling problem while maintaining a certain de-
gree of chiral symmetry at finite lattice spacing. In Sec. V,
the results of our simulations are presented, with emphasis
on the chiral condensate and susceptibility, including a deter-
mination of the critical coupling for the semimetal-insulator
phase transition, and the consequences of our results for the
corresponding critical exponents. In Sec. VI, we outline the
various tests and cross-checks we have performed in order to
validate our results. In Sec. VII we discuss the possibility of
observing the transition experimentally. Finally, in Sec. VIII
we summarize our findings and present a case for continued
study.

II. LOW-ENERGY EFFECTIVE THEORY

The electronic band structure of graphene close to the
Fermi level forms the basis of the low-energy effective
theory of graphene. This band structure is a reflection of the
hexagonal arrangement of the carbon atoms as shown in
Fig. 1�b�, and can be well described by a tight-binding model
of the form

H = − t �
�i,j�,�=↑,↓

�a�,i
† b�,j + H.c.�

− t� �
��i,j��,�=↑,↓

�a�,i
† a�,j + b�,i

† b�,j + H.c.� , �2.1�

as first done by Wallace in Ref. 11. The operators a�,i
† �a�,i�

and b�,i
† �b�,i� create �annihilate� an electron of spin � at

location i on the A and B sublattices, respectively �see
Fig. 1�b�	. The first term �involving t� takes into account

nearest-neighbor interactions, and the second term �involving
t�� the next-to-nearest-neighbor ones. Both terms account for
all spin states. The hopping parameters that give an optimal
fit to the experimentally determined band structure of
graphene are t�2.8 eV and t��0.1 eV.12 Third-nearest
neighbors have also been considered in Ref. 12, yielding an
additional hopping amplitude of t��0.07 eV.

We shall follow a somewhat different route based on an
effective field theory �EFT� treatment of graphene,9,13 which
has the advantage of describing the physics of graphene di-
rectly in terms of the relevant low-energy degrees of free-
dom, namely, charged massless fermionic quasiparticles. The
EFT description of graphene has an additional advantage as
it allows for the direct study of effects due to the unscreened,
long-range Coulomb interactions between the quasiparticles.
In what follows, we shall formulate a continuum Lagrangian
field theory that should be thought of as valid only at low
momenta, much smaller than the inverse of the interatomic
distance in graphene, which is �1.42 Å.

A. Continuum formulation

In the EFT framework, graphene is described by a theory
of Nf Dirac flavors interacting via an instantaneous Coulomb
interaction. The action �in Euclidean space time� of this
theory is

SE = − �
a=1

Nf 
 d2xdt�̄aD�A0	�a +
1

2g2
 d3xdt��iA0�2,

�2.2�

where Nf =2 for graphene monolayers, g2=e2 /�0 for
graphene in vacuum �suspended graphene�, �a is a four-
component Dirac field in 2+1 dimensions, A0 is a Coulomb
field in 3+1 dimensions, and

D�A0	 = 	0��0 + iA0� + v	i�i, i = 1,2, �2.3�

where the Dirac matrices 	
 satisfy the Euclidean Clifford
algebra �	
 ,	��=2�
�. The four-component spinor structure
accounts for quasiparticle excitations of sublattices A and B
around the two Dirac points in the band structure.4,9 The two
Dirac points are identified with the two inequivalent repre-
sentations �with opposite parity� of the Dirac matrices in 2
+1 dimensions. In graphene monolayers, Nf =2 owing to
electronic spin, while Nf =4 is related to the case of two
decoupled graphene layers, interacting solely via the Cou-
lomb interaction. Consideration of arbitrary Nf is also useful,
given that an analytic treatment8 is possible in the limit
Nf →
.

The strength of the Coulomb interaction is controlled by
�g=e2 / �4�v�0�, which is the graphene analog of the fine-
structure constant ��1 /137 of QED. It is straightforward to
show that �g is the only parameter, by rescaling according to

t� = vt ,

A0� = A0/v . �2.4�

The action �2.2� is invariant under spatially uniform gauge
transformations �see Sec. III A�. Notice that since the A0 field
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is 3+1 dimensional, one recovers the four-fermion Coulomb
interaction

�̄a�x�	0�a�x��̄b�x��	0�b�x��

x − x�


, �2.5�

by integrating out A0. Nevertheless, for our purposes the
original form of the action �quadratic in the fermions� as
given in Eq. �2.2� is preferable.

A central property of the low-energy EFT is that Eq. �2.2�
respects a global U�2Nf� chiral symmetry under the transfor-
mations

�a → exp�i� j� j��a, �2.6�

where the matrices � j are the �2Nf�2 Hermitian generators of
U�2Nf�, such that for the case of graphene monolayers, the
group is U�4�. The generators can be constructed by first
choosing a representation for the 	
, such as

	0 = ��3 0

0 − �3
�, 	i = ��i 0

0 − �i
� , �2.7�

where the �i are Pauli matrices. Adding the identity to this
set yields the generators of U�2�, since they form a set of
four linearly independent Hermitian matrices. It should be
noted that the choice of any particular representation for the
	
 is completely arbitrary and is not necessary for any cal-
culational purpose, as all relevant information is provided by
the Clifford algebra. However, the identification of the spinor
degrees of freedom with any particular Dirac point and
graphene sublattice is dependent on the chosen representa-
tion.

In order to arrive at the generators of U�4�, one can take
the direct product of each of the above mentioned generators
of U�2� by �1 ,�1 ,�2 ,�3�, where the latter operate in flavor
space. In this way, one obtains a set of precisely sixteen
linearly independent Hermitian matrices, forming the genera-
tors of U�4�. Significantly, this chiral symmetry can be spon-
taneously broken down to U�2��U�2�, in which case the

excitonic condensate ��̄�� acquires a nonvanishing value,
signaling the formation of quasiparticle-hole bound states.
The same group structure is obtained by adding to Eq. �2.2�
a parity invariant �Dirac� mass term


 d2xdtm0�̄a�a, �2.8�

which breaks chiral symmetry explicitly. The remaining un-
broken generators are then �1 ,�3�, which correspond to uni-
form phase rotations of both flavors with the same phase, and
with equal and opposite phases, respectively. For the ex-
tended theory with Nf flavors, the symmetry-breaking pattern
is U�2Nf�→U�Nf��U�Nf�.

Other symmetry-breaking patterns, particularly involving
the possibility of magnetic as well as Cooper-type pairing
instabilities, have been investigated in Refs. 9 and 14.

B. Effective action and probability measure

The partition function corresponding to Eq. �2.2� is given
by

Z =
 DA0D�D�̄ exp�− SE��̄a,�a,A0	� , �2.9�

where it is possible to integrate out the fermionic degrees of
freedom, as SE is quadratic in the �a. We thus obtain

Z =
 DA0 exp�− SE
g�A0	�det�D�A0	�Nf , �2.10�

where

SE
g =

1

2g2
 d3xdt��iA0�2 �2.11�

is the pure gauge part of the action. It is of central impor-
tance for the convergence of the Monte Carlo algorithm that
the above determinant has a definite sign, independently of
any particular configuration of the gauge field A0. One way
to prove that this property is satisfied is to choose a specific
representation of the Dirac matrices, such as Eq. �2.7�, in
terms of which D�A0	 can be written as

D�A0	 = �M�A0	 0

0 − M�A0	
� = �M�A0	 0

0 M†�A0	
� ,

�2.12�

where

M�A0	 = �0��0 + iA0� + v�i�i, i = 1,2, �2.13�

and use the facts that A0 is real, and that the Pauli matrices
and the momentum operator are Hermitian. The latter im-
plies �


† =−�
, and therefore

det�D� = det�M�det�M†� = 
det�M�
2 � 0, �2.14�

which, furthermore, is not affected by the introduction of a
parity invariant-mass term such as Eq. �2.8�. However, the
positivity of det�D� breaks down in the presence of a chemi-
cal potential, which can be thought of as a uniform, imagi-
nary contribution to the A0 field.

The fact that det�D� is positive definite allows for the
definition of an effective gauge action that is purely real,
given by

Seff�A0	 = − Nf ln det�D�A0	� + SE
g�A0	 , �2.15�

so that the partition function becomes

Z =
 DA0 exp�− Seff�A0	� , �2.16�

where P�A0	=exp�−Seff�A0	��0 can be interpreted as a
positive-definite probability measure for a Monte Carlo cal-
culation, as outlined in Sec. III.

C. Operator expectation values

The expectation value of a given operator O��̄ ,�	 depen-
dent on the fermion fields can be calculated by taking func-
tional derivatives of the generating functional,
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Z��̄,�	 =
 DA0D�D�̄ exp�− SE�A0,�̄,�,�̄,�	� ,

�2.17�

where source terms have been added to the original action
according to

SE�A0,�̄,�,�̄,�	 = SE�A0,�̄,�	 +
 d2xdt��̄� + H.c.� ,

�2.18�

such that the modified effective gauge action is a functional
of A0 as well as of the sources � , �̄. It is again possible to
integrate out the fermionic degrees of freedom and take func-
tional derivatives with respect to the sources in the resulting
expression,

Z��̄,�	 �
 DA0 exp�− Seff�A0	�

� exp�−
 d2xdt�̄D−1�A0	�� , �2.19�

which makes it possible to obtain expectation values in terms
of a path integral over A0 only. While this procedure is com-
pletely general, it is possible to employ a slightly different
approach in order to facilitate the computation of the chiral
condensate and susceptibility.

The chiral condensate �, which is the order parameter of
the semimetal-insulator phase transition in graphene, is de-
fined by

� � ��̄b�b� , �2.20�

where the fermion fields are evaluated at the same space-
time point. It is useful to note that the mass m0 plays the role

of a source, coupled to �̄b�b. The expectation value of this
operator can therefore be obtained by first differentiating the
partition function with respect to m0 and dividing by the
volume, giving

� =
1

VZ
 DA0D�D�̄
 dx�̄b�x��b�x�exp�− SE� =
1

V

� ln Z
�m0

,

�2.21�

where we have used the fact that space is homogeneous and

therefore the volume average of �̄b�x��b�x� can be replaced
by its value at an arbitrary point x. On the other hand, once
the fermions have been integrated out, the derivative with
respect to m0 yields

� =
1

VZ
 DA0Tr�D−1�A0	�exp�− Seff�A0	� =
1

V
�Tr�D−1�A0	�� ,

�2.22�

where the identities

det�D���	 = expTr�log�D���	� , �2.23�

� det�D��	�
��

= det�D��	�Tr�D−1��	
�D

��
� �2.24�

have been used. The chiral susceptibility �l may be found by
taking one more derivative with respect to m0, giving

�l �
��

�m0
=

1

V
��Tr2�D−1�� − �Tr�D−2�� − �Tr�D−1��2	 ,

�2.25�

which is expected to diverge at a second-order phase transi-
tion, and may also yield constraining information on the uni-
versal critical exponents of the transition.

III. GRAPHENE ON THE LATTICE

In this section we formulate the lattice version of Eq.
�2.2�. We begin by discretizing the pure gauge sector, where
the requirement of gauge invariance implies the use of “link
variables” to represent the gauge degrees of freedom. The
“staggered” discretization of the fermionic sector is then out-
lined, as it is the preferred choice to represent fermions with
chiral symmetry at finite lattice spacing.

A. Gauge invariance and link variables

Recall that the pure gauge part of the Euclidean action is
given by

SE
g =

1

2g2
 d3xdt��iA0�2, �3.1�

which can be thought of as the nonrelativistic limit of the
Lorentz-invariant form 1

4F
�F
� where F
�=�
A�−��A
,
such that

F
�F
� = F0jF
0j + FijF

ij + Fi0Fi0 = 2F0jF
0j = 2�� jA0�2,

�3.2�

where we have used Fij =0 �no magnetic field� and �0Aj =0
�no electric field induction by a magnetic field�, valid in the
nonrelativistic limit �v�c�. Thus, for graphene the only non-
vanishing contribution is the electric field Ej =−� jA0, which
represents the instantaneous Coulomb interaction between
the quasiparticles.

The action �3.1� is invariant under the time dependent,
spatially uniform gauge transformations

A0 → A0 + ��t� ,

� → exp�i

0

t

dt���t���� , �3.3�

where ��t� is a function of time only. Thus, in spite of its
apparent simplicity, the effective theory of graphene pos-
sesses a truly local gauge invariance, which should be re-
spected by the lattice action. To this end, one introduces
temporal link variables

U0,n = Un � exp�i�n� , �3.4�

where �n is the dimensionless lattice gauge field evaluated at
the lattice point n= �n0 ,n1 ,n2 ,n3�. The spatial link variables
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Ui,n = 1, �3.5�

are set to unity. It is convenient to express the discretized
version of Eq. �3.1� in terms of “plaquette” variables, defined
by

U
�,n = U
,nU�,n+e

U
,n+e�

† U�,n
† , �3.6�

where, in the present case of a pure Coulomb interaction, the
only nontrivial components are U0i and Ui0. Those plaquette
components then correspond to the discretized formulation
of the electric field. The remaining components correspond-
ing to the magnetic field are equal to unity. These statements
can be summarized in the expression

U
�,n = �
0��iUnUn+ei

† + ��0�
iUn
†Un+ei

+ �
0��0 + �
i��j .

�3.7�

In terms of the gauge link variables and plaquettes, the
discretized gauge action corresponding to Eq. �3.1� is given
by15

SE
g = ��

n
�

��

�1 −
1

2
�U
�,n + U
�,n

† �� , �3.8�

where �=1 /g2, such that �→v /g2 when the rescaling of
Eq. �2.4� is applied. In Eq. �3.8�, the only nonvanishing
contributions arise from the terms with �
 ,��
= �1,0� , �2,0� , �3,0� , �2,1� , �3,1�, and �3,2�. Equation �3.8�
may be simplified to

SE,C
g = ��

n
�3 − �

i=1

3

R�UnUn+ei

† �� , �3.9�

where R�x� denotes the real part of x. Equation �3.9� is re-
ferred to as the compact formulation of the discretized gauge
action. This formulation is known16 to be suboptimal, as
compared to the noncompact formulation, for lattice simula-
tions of QED and related theories. However, the noncompact
formulation may be obtained from Eq. �3.9� by expanding
R�UnUn+ei

† � to second order in �,

R�UnUn+ei

† � = 1 −
1

2
��n+ei

− �n�2 + ¯ , �3.10�

whereupon the noncompact lattice gauge action is given by

SE,N
g =

�

2 �
n

�
i=1

3

��n+ei
− �n�2. �3.11�

Here, and throughout the rest of this paper, we have set the
lattice spacing to equal unity, and it is thus dropped from all
expressions. All dimensionful quantities should therefore be
regarded as expressed in units of the lattice spacing.

B. Staggered fermions

While the discretization of the gauge sector is relatively
straightforward, the inclusion of dynamical fermions on the
lattice is a notoriously difficult problem. One of the main
issues when simulating fermions on the lattice is the so-

called doubling problem �for an overview, see Ref. 15, Chap-
ter 4�. This problem is related to the chiral invariance of the
fermionic sector, and arises due to the appearance of multiple
�unwanted� zeros in the inverse propagator. In other words,
one is simulating more fermion flavors than expected, the
exact number being dependent on the dimensionality of the
theory. There exists a number of ways to avoid the doubling
problem, but all of them break chiral invariance in one way
or the other, an inevitable fact encoded in the Nielsen-
Ninomiya theorem.17 The solution we have chosen for our
simulations of graphene is the “staggered” fermion represen-
tation of Ref. 18. This choice is optimal for the study of
spontaneous chiral symmetry breaking in graphene, as it
yields the correct number of degrees of freedom while also
partially preserving the original chiral symmetry of the
theory, as will be shown in this section.

In order to discretize the fermionic sector of Eq. �2.2� in a
way amenable to computer simulations, there are a number
of choices that need to be made. As a first step, the fermions
are integrated out, and the problem is formulated using the
partition function written purely in terms of the gauge field
�Eq. �2.16�	. The fermions are then represented exclusively
through the determinant of the Dirac operator D. One can
attempt to compute the determinant exactly for a given �
configuration, which is feasible due to the low dimensional-
ity of the problem, and is what we have done for part of our
calculations. Alternatively one may use the so-called pseudo-
fermion method, which we will briefly explain in Sec. IV.

In order to arrive at the staggered fermion formulation, a
useful starting point is the “naïvely” discretized action,

SE
f ��̄,�,�	 = − �

n,m
�̄b,nDn,m��	�b,m, �3.12�

where

Dn,m��	 =
1

2
	0��n+e0,mUn − �n−e0,mUm

† �

+
v
2�

i

	 i��n+ei,m
− �n−ei,m

� + m0�n,m,

�3.13�

with Un=exp�i�n�. It should be noted that for small m0, Eq.
�3.13� becomes ill-conditioned, such that the “chiral limit”
m0→0 has to be reached by extrapolation. The boundary
conditions of the fermion fields are periodic in the spatial
directions and antiperiodic in the temporal direction. It is
possible, using a local unitary transformation on the fermion
fields, to simultaneously diagonalize the Dirac matrices in
Eq. �3.13� and thereby decouple the spinor components. This
procedure, known as the Kawamoto-Smit transformation19 or
simply as “spin-diagonalization,” is defined by

�n → Tn�n,

�̄n → �̄nTn
† , �3.14�

which in the Dirac operator �3.13� effects the transformation
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 → Tn
†	
Tn+e


, �3.15�

on the Dirac matrices 	
. The transformed fermion fields �n
are referred to as staggered spinors. It is straightforward to
show that the choice Tn=	0

n0	1
n1	2

n2 satisfies

Tn
†	
Tn+e


= �n

1 , �3.16�

where the Kawamoto-Smit phases are given by

�n
0 = 1,

�n
1 = �− 1�n0,

�n
2 = �− 1�n0+n1. �3.17�

In this fashion the Dirac structure is removed, resulting in a
sum of four identical terms in the action, one for each com-
ponent of the original four-component Dirac spinor �n.
These copies are referred to as staggered flavors. It has been
shown in Ref. 20 that for each staggered flavor one recovers,
in the continuum limit, two four-component Dirac flavors.
Thus, by retaining one staggered flavor, it is possible to have
exactly eight continuum fermionic degrees of freedom,
which is the correct number for graphene. The action of a
single staggered flavor is given by

SE
f ��̄,�,�	 = − �

n,m
�̄nKn,m��	�m, �3.18�

where the staggered Dirac operator is

Kn,m��	 =
1

2
��n+e0,mUn − �n−e0,mUm

† �

+
v
2�

i

�n
i ��n+ei,m

− �n−ei,m
� + m0�n,m.

�3.19�

The operator K thus replaces D in all expressions for the
probability, chiral condensate, and susceptibility that were
derived in Sec. II. As expected from the Nielsen-Ninomiya
theorem, the staggered lattice action does not retain the
full U�4� chiral symmetry of the original graphene action at
finite lattice spacing. As shown in Ref. 20, only a subgroup
U�1��U�1� remains upon discretization. Spontaneous con-
densation of �̄�, or equivalently the introduction of a parity
invariant-mass term, reduces this symmetry to U�1�. The
focus of this work is on the phase transition associated with
such a chiral symmetry-breaking pattern.

Finally, it should be pointed out that the situation concern-
ing graphene is unusually favorable, in the sense that the
staggered formalism somewhat fortuitously provides the cor-
rect number of fermionic degrees of freedom as Nf =2 for
graphene monolayers. In general, staggered fermions provide
only a compromise solution in the sense that some degree of
chiral symmetry is preserved, at the price of retaining some
of the doubling originally present in the discretized fermion
action. Indeed, if the case of Nf =1 were to be simulated, it
would be necessary to resort to the uncontrolled and contro-

versial “rooting” trick,21 whereby the desired number of con-
tinuum flavors is restored by taking the appropriate root of
the Dirac operator.

C. Computation of observables

The computation of � and �l from ensembles of gauge-
field configurations necessitates, in principle, the full inver-
sion of K and K2. Such a procedure may potentially become
extremely time consuming for large lattices. In this respect, a
choice exists between direct sparse solvers, such as
PARDISO,22 and iterative solvers of the conjugate gradient
type, such as BICGSTAB.23 As the lattice size is increased, the
performance of the direct solver scales much worse than the
iterative solver, by a factor roughly proportional to the lattice
volume. Nevertheless, the direct sparse solvers remain an
attractive choice for a number of reasons: the performance of
a direct solver is independent of the condition number of K,
which is the ratio of its largest and smallest eigenvalues, and
this is particularly significant close to a transition and for
small m0. Furthermore, direct solvers feature optimized par-
allelization and are efficient at handling inversion problems
with multiple right-hand sides. In view of this, PARDISO has
been found to be the solver of choice for the efficient com-
putation of observables on the presently used lattice vol-
umes.

Regardless of the type of solver used, the full inversion of
K quickly becomes impractically expensive when the lattice
size is increased. In this situation, it is possible to resort to a
stochastic estimator,24 which constitutes an alternative to the
exact calculation of Tr�K−1�. A suitable stochastic estimator
for � is given by

�̂ =
1

V
�
n,m

�n
†Kn,m

−1 ��	�m, �3.20�

where the �n are random Gaussian variables which satisfy
���n��=0 and ���m

† �n��=�m,n, where the double bracket nota-
tion indicates an average over �n.

For a given gauge configuration, averaging Eq. �3.20�
over �n yields Tr�K−1�, which only requires application of the
inverse to a limited number of random Gaussian vectors.
With this approach it is also straightforward to compute
Tr�K−2�, by simply applying the inverse to each random vec-
tor one more time. Adequate accuracy for � and �l is
achieved using �100 random vectors for each gauge con-
figuration, independently of the lattice volume used.

IV. MONTE CARLO STRATEGIES

This section presents the two Monte Carlo algorithms that
we have used to study the discretized low-energy effective
theory of graphene. We begin by outlining the Metropolis
Monte Carlo algorithm which, although conceptually sim-
pler, becomes computationally inefficient beyond a certain
lattice volume, after which we proceed to describe the more
advanced and highly efficient approach involving the Hybrid
Monte Carlo �HMC� algorithm with pseudofermions.
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A. Metropolis Monte Carlo

As shown in Sec. II B, the structure of the fermion deter-
minant allows for a positive definite probability measure.
Indeed, as shown in Sec. II C, an effective action can be
defined such that expectation values of observables can be
written as averages over field configurations weighted by

P��	 � exp�− Seff��	� = det�K��	�exp�− SE
g��	� , �4.1�

where the matrix K corresponds to the staggered Dirac op-
erator of Eq. �3.19�. In the Metropolis algorithm,25 a given
gauge-field configuration � is updated by the introduction of
a small change at a randomly chosen lattice site. The updated
configuration �� is then accepted with probability

p �
P���	
P��	

= exp�− �S� ,

�S = Seff���	 − Seff��	 . �4.2�

If the new configuration �� is rejected, � is retained, and a
new change proposed. In this fashion, a so-called Markov
chain of gauge configurations is generated, in which the
samples are distributed according to the desired probability
measure. After an appropriate number of thermalization
steps, gauge configurations can be saved at regular intervals,
which should allow for adequate decorrelation. The central
limit theorem then guarantees that for N uncorrelated
samples, the statistical uncertainties will decrease as 1 /�N.
The decorrelation can be measured in terms of the number of
full sweeps of the lattice required between two consecutive
observations, in order for the autocorrelation of the ensemble
of gauge configurations to become insignificant. For the Me-
tropolis algorithm, a proper balance between update size and
decorrelation is achieved for acceptance rates of �60–70 %.

In spite of its simplicity, the Metropolis approach has sev-
eral inherent disadvantages. The most serious one arises as
the fermion action is nonlocal, in the sense that updating a
single lattice site requires a full recalculation of det�K�. This
disadvantage is exacerbated by the fact that decorrelation is
dependent on the number of full sweeps of the lattice, and
the number of sites to be updated increases as the lattice size
is increased. Even with highly efficient parallel sparse solv-
ers, the execution time scales as �V3, such that it is bound to
become impractical above a certain maximum lattice size.
Also, as the updates in the Metropolis algorithm are entirely
random, it is usually only possible to update very few lattice
sites at once without ruining the acceptance rate. In Sec.
IV B, we give an overview of the HMC algorithm, which is
designed to overcome these difficulties.

B. Hybrid Monte Carlo

The problem of efficient updating of the gauge field in
theories with dynamical fermions has been addressed in Ref.
26 where the Hybrid Monte Carlo algorithm was introduced.
In this approach, the gauge field is evolved deterministically
along a molecular dynamics �MD� trajectory, such that the
entire lattice is updated at once. Thus, the number of updates
required for decorrelation within the HMC algorithm is dra-

matically reduced, although the number of MD trajectories
required for decorrelation roughly equals the number of
sweeps necessary in the Metropolis approach.

The basic idea of the HMC algorithm is to evolve a given
initial configuration �n in a fictitious time � according to the
classical equations of motion, with a Hamiltonian given by

H = �
n

�n
2

2
+ SE��	 , �4.3�

where SE��	 is the Euclidean action to be sampled, and �n is
a momentum conjugate to �n. This momentum is introduced
as an auxiliary field, with the sole purpose of defining the
above dynamics. The field �n is of no consequence to the
path integral that defines the theory, as its contribution fac-
tors out completely. It has been shown in Ref. 26 that the
procedure of classically evolving ��n ,�n�→ ��n� ,�n�� using
the above Hamiltonian, and choosing the initial �n from a
random Gaussian distribution, produces a Markov chain of
gauge-field configurations distributed according to the de-
sired probability measure.

Because the MD evolution is in principle exact, a trajec-
tory that is long enough should provide the desired decorre-
lation between consecutive samples, provided that the
pseudofermion field is refreshed at regular intervals. Ideally,
a 100% acceptance rate should thus be achievable. In prac-
tice, however, the MD evolution is implemented with a finite
time step ��, which introduces a systematic error. However,
as long as the evolution remains reversible, the effects of that
error on the distribution of gauge-field configurations can be
eliminated by means of a Metropolis step, comparing the
initial and final configurations after each MD evolution,
where Eq. �4.3� plays the role of the effective action in
Eq. �4.2�.

While the HMC algorithm achieves very efficient updat-
ing of the gauge field, a potentially serious drawback is that
the updating procedure requires �in principle� the full evalu-
ation of K−1 which is computationally prohibitively expen-
sive, even more so than det�K�. Because of this, a number of
methods have been developed that seek to circumvent the
necessity of calculating K−1. In one of these, the so-called R
algorithm,27 the inverse is approximated by a stochastical
estimator which, however, introduces a systematical error
due to the loss of reversibility. Arguably, the method of
choice is the �-algorithm,27 which reduces the MD evolution
into a sparse operation by re-expressing the square of the
fermion determinant as a path integral over complex scalar
fields known as pseudofermions, while simultaneously main-
taining the desirable features of the HMC approach.

C. Pseudofermions

As the pseudofermion method is explained in great detail
elsewhere �for pedagogical reviews, see Refs. 15 and 28� we
shall only concern ourselves with outlining the basic idea,
which is based on the identity
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det�Q� �
 D�†D� exp�− SE
p� , �4.4�

where the constant of proportionality is of no consequence.
Here, � ,�† are pseudofermion fields �which are bosonic but
nevertheless satisfy antiperiodic boundary conditions in the
temporal direction�, Q�K†K and the pseudofermion action
is

SE
p = �

n,m
�n

†Qn,m
−1 ��	�m = �

n
�n

†�n, �4.5�

where � follows a Gaussian distribution, related to the
pseudofermion field by �=K†�.

In order to simulate graphene, one requires det�K�, not
det�Q�=det�K†K�. Thus, using the pseudofermions according
to the above prescription effectively doubles the number of
degrees of freedom. Fortunately, the staggered fermion ac-
tion allows for an odd-even decomposition,28 such that a
single staggered flavor can be simulated. In the odd-even
decomposition, the lattice is separated into sublattices of
even and odd sites, according to the sign of �−1�n0+n1+n2.
Thus, as the derivative operator connects odd �even� sites
with even �odd� ones, while the mass term connects odd
�even� sites with odd �even� ones, the following odd-even
decomposed form results,

K = �m0 Koe

Keo m0
� , �4.6�

and therefore

Q = �Keo
† Koe + m0

2 0

0 Koe
† Keo + m0

2 � , �4.7�

which, using the fact that Koe
† =−Keo, has been factorized into

blocks of even-even and odd-odd elements. As a conse-
quence,

det�Q� = det�Keo
† Koe + m0

2�2. �4.8�

Thus, in order to recover det�K�, it suffices to retain only the
even-even �or odd-odd� block of Q. In practice, this is imple-
mented simply by discarding either the odd �or even� ele-
ments of �.

In the presence of pseudofermions, the MD Hamiltonian
becomes

H = �
n

�n
2

2
+ SE

g + SE
p , �4.9�

and the equations of motion are

�̇n =
�H

��n
= �n, �4.10�

�̇n = −
�H

��n
� Fn

g + Fn
p , �4.11�

where the “force term” associated with the gauge action
takes the form

Fn
g � −

�SE
g

��n
= −

1

g2�
j=1

3

I�UnUn+ej

† − Un−ej
Un

†�

= −
1

g2�6�n − �
j=1

3

��n+ej
+ �n−ej

�� + ¯ ,

�4.12�

where I�x� is the imaginary part of x; the second line in this
equation corresponds to the compact formulation and the last
line, obtained by expanding in powers of �, shows the result
for the noncompact case. The pseudofermion contribution is
given by

Fn
p = −

�SE
p

��n
= − �

n
�†�Q−1

��n
� = �

n
�†Q−1 �Q

��n
Q−1� .

�4.13�

The essence of the � algorithm is the treatment of � as a
constant background field throughout each MD trajectory.
After each MD evolution, the pseudofermion field is re-
freshed using random Gaussian noise according to �=K†�.
Computationally, the great advantage of this algorithm is that
in each step ��, the calculational effort is reduced to apply-
ing the inverse of K†K to a single vector �, which is signifi-
cantly less expensive than computing the full inverse.

The numerical integration of the MD equations of motion
requires a reversible method, and the usual choice is the
leap-frog integration formula26 which is also area preserving.
The calculation of the pseudofermion force in Eq. �4.13� is
preferentially accomplished using an iterative solver such as
BICGSTAB,23 in which case the algorithm scales roughly as
�V. Nevertheless, in practical calculations the scaling is in-
evitably somewhat worse, as the truncation error of the leap-
frog method tends to increase with increasing lattice size,
necessitating a smaller time step ��.

In the present study of the low-energy effective theory of
graphene, we have used both the Metropolis and HMC algo-
rithms, verifying that for any given set of parameters the
results agree within statistical uncertainties. We now turn to a
presentation of our simulation results.

V. RESULTS

In our simulations, the fermions live in a volume of extent
V�Lx

2�Lt, while the gauge bosons also propagate in the z
direction of length Lz. Increasing Lz beyond 8 was found to
have no discernible effects. The results will thus be referred
to by the short-hand notation Lx

2�Lt. Also, the action �2.2�
has been rescaled according to Eq. �2.4�, such that
��v /g2 and v=1 in the staggered Dirac operator of
Eq. �3.19�. Our simulations have been performed at finite
�but small� values of m0, such that the limit m0→0 is
reached by extrapolation.

We have performed simulations on lattice sizes up to
202�20 using the Metropolis method and 282�28 using
HMC. The former method scales roughly as V3 and therefore
quickly becomes uneconomical when the lattice volume is
increased. However, an advantage of the Metropolis method
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is that the speed of the algorithm is independent of the con-
dition number of the staggered Dirac operator K, as the fer-
mionic determinant is evaluated using a direct solver. In con-
trast, the HMC algorithm with pseudofermions scales
roughly as �V, if used together with an iterative solver such
as BICGSTAB.23 However, the HMC algorithm then becomes
sensitive to the condition number of K, such that obtaining
data becomes more difficult at small bare fermion masses or
close to the critical coupling. This problem can be somewhat
alleviated using a direct solver such as PARDISO,22 but in that
case the HMC algorithm scales roughly as �V2.

Within the Metropolis approach, �240 uncorrelated con-
figurations were generated for each value of �� ,m0�. When
using the HMC algorithm, a similar number of MD trajecto-
ries were generated for each data point. The optimal MD
time step �� was found to be dependent on the values of �
and m0. In order to simultaneously optimize the acceptance
rate, decorrelation, and execution time, �� was adjusted in
the range �0.01,0.03	, while the number of steps N� was cho-
sen randomly from a Poisson distribution such that the aver-
age MD trajectory length between updates of the pseudofer-
mion field was �̄=N���=2. The choice of �̄�2.5 was found
to give optimal decorrelation.

The HMC algorithm is the method of choice for lattices
larger than 202�20. As a check on the HMC code, the data
points for 162�16 computed using the Metropolis algorithm
in Ref. 5 were recomputed using the HMC method, and
found to agree within statistical uncertainties. In all cases,
the uncertainties were estimated using the Jackknife
method.29

A. The semimetal-insulator transition

In order to determine the critical coupling �c for sponta-
neous chiral symmetry breaking, we calculated the chiral
condensate � and susceptibility �l for � between 0.05 and
0.5, and for m0 between 0.0025 and 0.020 �in lattice units�.
Figure 2 shows our data for lattice sizes 202�20 �upper
panels� and 282�28 �lower panels�.

The chiral condensate increases as � is decreased, more
sharply so below ��0.1. This behavior becomes more pro-
nounced as m0 is decreased, providing the first indication of
a phase transition as the Coulomb coupling is increased. In
turn, the susceptibility also grows sharply around ��0.1.
This feature tends to disappear for m0�0.010 as the lattice
volume is increased. Thus, in order to understand the prop-
erties of the transition, masses smaller than m0�0.010
should be used in the simulation. This situation is similar to
that encountered in quenched QED4 �Ref. 30� where it was
concluded that for the critical region to be reached, bare
masses smaller than �0.025 should be used. On the other
hand, for the smallest mass of m0=0.0025, the change in the
susceptibility as a function of the lattice volume appears to
be relatively mild for ��0.09. The rise in the susceptibility
is therefore likely to be a real feature, indicating that the
critical region has been reached.

In spite of the compelling qualitative evidence presented
above, the nature of the simulational study precludes the use
of bare masses m0 that are small enough so that the distortion

introduced is negligible. What is needed is a controlled way
of obtaining information about the massless limit, using the
data at hand, taken at small but finite m0. A suitable observ-
able is provided by the logarithmic derivative R �Ref. 31� of
the chiral condensate with respect to m0,

R � � � ln �

� ln m0
�

�

= �m0

�
� ��

�m0
��

�

, �5.1�

which allows for a more precise determination of the critical
coupling �c, as well as for an estimate of the universal criti-
cal exponent � �see Eq. �5.4�	. In the limit m0→0, R→1 in
the chirally symmetric phase since ��m0; while at the criti-
cal coupling �=�c, one expects R→1 /�. Finally, R vanishes
in the limit m0→0 in the spontaneously broken phase, where
��0 for m0→0. The data on R in Fig. 3 �right panel�
indicate that chiral symmetry is spontaneously broken for
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FIG. 2. �Color online� Chiral condensate �upper left panel� and
susceptibility �upper right panel� for lattice size 202�20. Lower
panels show the same quantities for 282�28. The lines represent �2

fits of Eq. �5.8� to � only, with X0 ,X1 ,Y1 ,� and �c as free param-
eters; the data points with largest finite-size effects have been
excluded from the fit. The optimal parameter values are: for
202�20, X0=0.665�0.2, X1=−0.280�0.088 and Y1=−0.2869
�0.090, �=2.27�0.13, �c=0.0721�0.0006; for 282�28,
X0=0.3427�0.028, X1=−0.190�0.014 and Y1=−0.179�0.014,
�=2.309�0.037, �c=0.0785�0.0003. The uncertainties are purely
statistical.
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�=1 /14.0�0.071, but remains unbroken for �=1 /11.0
�0.091. We thus conclude, using the 282�28 data, that

0.071 � �c � 0.091, �5.2�

which could be further refined by use of larger lattice vol-
umes and smaller values of m0.

B. Determination of the equation of state

While the logarithmic derivative R may provide model-
independent information on the critical coupling as well as
the exponent �, it involves the chiral susceptibility and is
therefore prone to large finite-size effects. A more accurate
determination of �c can be achieved by means of an appro-
priate equation of state �EOS�

m0 = f��,�� , �5.3�

which is to be fitted to the simulation data on the chiral
condensate. This EOS can then yield direct information on

�c as well as the critical exponents � and �̄, defined by

� � �� � ln �

� ln m0
�−1�

�=�c,m0→0
, �5.4�

�̄ � � � ln �

� ln��c − ��
�

m0=0,�↗�c

. �5.5�

In addition, using the scaling relation,

�̄�� − 1� = 	 , �5.6�

one can obtain the critical exponent 	, defined by

	 � − � � ln �

� ln��c − ��
�

m0=0,�→�c

. �5.7�

The EOS also provides a means for an extrapolation
m0→0, which necessitates an ansatz for Eq. �5.3�. We have
considered an EOS similar to those successfully applied32–35

to QED4,

m0X��� = Y���f1��� + f3��� , �5.8�

where the functions X and Y are expanded around �c such
that X���=X0+X1�1−� /�c� and Y���=Y1�1−� /�c�. The de-
pendence of Eq. �5.8� on � is

f1��� = �b, f3��� = ��, �5.9�

where b��−1 / �̄. Thus Eq. �5.8� can be used to study de-

viations from the classical exponents �=3 and �̄=1 /2. It
should be noted that for the case of QED4,32–35 an extended
version of the ansatz �Eq. �5.9�	 has been used to include
logarithmic corrections to the EOS.

While it is possible to fit both � and �l simultaneously, it
is advantageous to use the latter quantity as a consistency
check only, as the finite-size effects are much smaller for �.
It is also useful to restrict the fit range to the data points
where such effects are not too large. The results of the fits
with restricted range are given in Fig. 2, whereas the results
of a full fit to all data points are shown in Fig. 4. The results
for �c and � are much more consistent for the restricted data
set. The fit results for the restricted 282�28 data set indicate
a critical coupling of �c=0.0785�0.0003 and a critical ex-
ponent �=2.309�0.037. All of the fits described above have
been performed using the constraint b=1, which is equiva-
lent to the assumption 	=1, using Eq. �5.6�. However, we
have also relaxed this constraint by treating b as an addi-
tional free parameter in the fit. In all cases, no significant
deviations from b=1 were found for any of the fits. Never-
theless, it would still be desirable to use larger lattices in
order to minimize the finite-size effects at smaller values of
�.

However, it is significant that the present results for both
202�20 and 282�28 favor values of ��2.3 and b�1.0,
which strongly disfavors the classical mean-field exponents

�=3, �̄=1 /2. Fits using classical exponents tend to become
less and less favored when the lattice volume is increased,
which is also reflected in the “Fisher plot” shown in Fig. 5.
In particular, consistent fits for � can be achieved using data
for 202�20 and 282�28 if the fit range is restricted to those
data points where the finite-size effects are under reasonable
control, as shown in Fig. 2.

It has been argued in Ref. 7 that the semimetal-insulator
phase transition should present an essential singularity, in the
sense that the EOS for zero mass in the broken phase would
be given by
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FIG. 3. �Color online� Logarithmic derivative R for lattice sizes
202�20 �left panel� and 282�28 �right panel�. The solid lines for
the largest four values of � correspond to the restricted fits shown in
Fig. 2. The dashed red line in the right panel connects the data
points for �=1 /15.0�0.067, where the downward slope is charac-
teristic of the spontaneously broken phase. On the other hand, the
dashed blue line connecting the data points for �=1 /11.0�0.091
clearly indicates that chiral symmetry remains unbroken in the limit
m0→0 for that value of �. The evidence for spontaneous chiral
symmetry breaking is significantly stronger for 282�28, where the
data for �=1 /13.0�0.077 are consistent with the broken phase,
while for 202�20 the opposite is true. The 282�28 lattice favors a
slightly larger value of �c, while simultaneously disfavoring the
classical critical exponent �=3.
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� = C0 exp�−
C1

��c − �
� , �5.10�

with C0 ,C1 constants. This expression has vanishing deriva-
tives to all orders at the critical point, and is said to be
characterized by Miransky scaling.7 The critical exponents

corresponding to such a transition are �=1, �̄=
, and 	=1.
This type of transition has sometimes been referred to as a
Kosterlitz-Thouless transition, even though strictly speaking
the latter does not involve spontaneous symmetry breaking.
The value �=1 is apparently ruled out by the considerable
dependence of the susceptibility on m0 even for large values
of �, which are far from the transition and where the finite-
size effects are small. If the value of � was close to unity, one
would observe a susceptibility which is independent of m0 as
the critical point is approached. While our data does not
favor an interpretation in terms of Miransky scaling, a full

consideration of this issue is beyond the scope of the present
paper.

C. Finite-size effects

If a realistic picture of the properties of the semimetal-
insulator transition, as exhibited by the low-energy effective
theory considered here, is to be obtained, a proper assess-
ment of the finite-size effects has to be made. In general, the
lattice volume should ideally be large enough such that all
explicit degrees of freedom �represented in this case by m0�
as well as any dynamically generated ones �the Goldstone
boson associated with spontaneous chiral symmetry break-
ing� can be contained. In order to illustrate the finite-size
effects, the chiral condensate and susceptibility have been
plotted for volumes of 202�20 and 282�28 in Fig. 6.

As expected from the quite different nature of the low-
energy theory of graphene in the spatial and temporal direc-
tions, the finite-size effects observed in the simulation are
also different. Increasing the extent of the temporal dimen-
sion leads to an increase in the condensate �, as would be
expected by comparison with QED4 where the finite-size ef-
fects are dominated by such behavior. The finite-size effects
in the temporal dimension grow as m0 is decreased, and do
not depend strongly on �. This indicates that the effects are
due to distortion of the staggered propagator involving the
bare mass m0.

On the other hand, increasing the extent Lx of the spatial
directions has a quite different effect on the chiral conden-
sate. The effect is to lower the value of �, which is opposite
to the effect of increasing Lt. The relative change in � also
appears to be roughly independent of m0, such that the abso-
lute shift is larger for larger values of m0. It is also notewor-
thy that the finite-size effects in Lx are very small in the
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FIG. 4. �Color online� Chiral condensate �upper left panel� and
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panels show the same quantities for 28�28. The lines represent �2

fits of Eq. �5.8� to � only, with X0 ,X1 ,Y1 ,� and �c as free param-
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estimated magnitude of finite-size effects. The optimal parameter
values are: for 202�20, X0=0.364�0.029, X1=−0.156�0.013
and Y1=−0.159�0.013, �=2.573�0.041, �c=0.0715�0.0003;
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unbroken phase, as shown in Fig. 6, while they quickly be-
come large with the onset of spontaneous chiral symmetry
breaking. We therefore conclude that these effects are due to
the emergence of a dynamically generated Goldstone mode
which is highly spatially extended.

For all the results presented here, the extent Lz=8 has
been used for the bulk dimension, in which the fermionic
degrees of freedom do not propagate. Increasing the size of
that dimension has apparently no effect whatsoever on the
results for the chiral condensate and susceptibility, as dem-
onstrated by a comparison between results on a 142�14 lat-
tice with Lz=8 and Lz=14. The results for all observables in
question are compatible within statistical uncertainties, and
binning of the data for � into a histogram plot also shows no
perceptible differences between the two event distributions.
Apparently, restricting the bulk dimension to Lz=8 has no
significant effect on the accuracy of our results, although an
increased Lz can be accommodated if necessary, as this has
little effect on the total computational cost. Such a result is
nevertheless somewhat intuitive, as the fermions do not
propagate in the bulk, and thus should be mostly insensitive
to the presence of a boundary in that dimension. However, it
should still be noted that32–34 in the context of QED4 the
main effect of the boundary is to introduce a constant back-
ground component into the gauge fields. In other words, at
finite volume the results can be well described in terms of a
renormalized staggered lattice propagator, augmented by a
constant background field that may vary from one configu-
ration to the next.

In addition to shifting the calculated values of the conden-
sate, finite-size effects may also influence the distribution of
the measured MC samples. We have observed that for small
lattice volumes, the simulation exhibits a tendency to jump
between two different states, akin to the effect noted in the
QCD simulations of Ref. 24. This effect appears to be stron-
gest in the quenched case, and weakens as more fermion
flavors are added. The area of parameter space most affected
is just above �c, where the Coulomb interaction is not yet
quite strong enough to break the chiral symmetry, and � is
strongly fluctuating. As this first-order feature also tends to
disappear with increasing decorrelation and decreasing
finite-size effects, we attribute it to a combination of these
factors. This is in line with Ref. 24, where attempts to fit the
event distribution with two Gaussians did not turn out satis-
factorily.

VI. TESTS AND CROSS-CHECKS

In this section, we briefly describe the various tests per-
formed in order to validate our simulations. Using the for-
malism described in Sec. III, we extended our code to per-
form simulations of QED in 2+1 dimensions �QED3�, and
compared our results with those from Ref. 30. In this case
the differences with graphene are that the gauge field lives in
one less spatial dimension, and that all the components of the
gauge field are dynamical, since Lorentz invariance is re-
spected.

We have also developed another test based on QED in
3+1 dimensions �QED4�, which we compared with the re-
sults of Ref. 32–34. In this case the differences with
graphene affect the fermion field, which lives in one more
dimension. As in the previous case all the components of the
gauge field contribute, as the theory is Lorentz invariant. Our
lattice Monte Carlo implementation has satisfactorily passed
all of the above mentioned tests. A comparison between our
results for QED3 and those of Ref. 30 is shown in Fig. 7.

In addition to these major checks, the following usually
overlooked ones were also performed: explicit verification
using a computer algebra system �CAS� of the correct struc-
ture of the staggered fermion operator, invariance of the ac-
tion and the observables under gauge transformations, and
reversibility of the HMC algorithm within each MD evolu-
tion. We finally note that the computing time required by the
present calculations is �105 CPU hours, which is in line
with an estimate given by Hands and Strouthos in Ref. 10.
Allocations of this size are routinely available at various su-
percomputing centers.

VII. OBSERVATION OF THE TRANSITION

The experimental detection of excitonic instabilities in
graphene depends on the size of the induced gap �. Unfor-
tunately, computing � in absolute units requires knowledge
of a suitable dimensionful observable �other than � itself� to
calibrate the calculation. To our knowledge such a quantity is
not yet available. In Ref. 6, the excitonic gap was estimated
within a gap-equation approach by assuming a value of the
cutoff of the order of the inverse lattice constant of the
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graphene honeycomb lattice. In that study, the gap was found
to be of the order of a few tens of Kelvin. However, such a
procedure only constitutes an order-of-magnitude estimate.
As in our approach, the size of the gap can be determined in
absolute units only after calibration of the calculation using a
dimensionful observable.

Another issue of significance from the experimental point
of view is the effect of impurities and lattice defects. These
were investigated in Ref. 36, and they were found to have a
substantial impact on the low-energy excitations in graphene.
Also, Ref. 37 has studied the stability of the excitonic insu-
lating phase in the presence of impurities, lattice defects and
thermal fluctuations, and concluded that all of these effects
tend to suppress the excitonic instability. Clearly, the experi-
mental demonstration of the semimetal-insulator transition in
graphene will be challenging from the point of view of
sample quality.

As the mere presence of a substrate will likely eliminate
the insulating phase due to screening of the Coulomb inter-
action, the most favorable experimental setup would involve
samples of suspended graphene. Fortunately, this may also
serve to eliminate most of the above mentioned concerns.
Indeed, it has recently been found in Ref. 3 that in order to
access the intrinsic electronic properties of graphene, thor-
ough current annealing of suspended samples is necessary.
The annealed samples were found to exhibit a greatly im-
proved carrier mobility, far in excess of the values reported

for conventional samples on a substrate. Also, the demon-
stration of Shubnikov–de Haas �SdH� oscillations suggests
that the mean-free path in current state-of-the-art suspended
graphene is comparable to presently achievable sample di-
mensions of a few micrometers. Thus, graphene samples of
sufficient quality to demonstrate the excitonic instability will
likely be available in the near future.

To summarize, our work in Ref. 5 indicates that the exci-
tonic insulating effect in graphene is unlikely to be observed
unless the graphene sheet is freely suspended, such that the
Coulomb interaction is not screened by the dielectric sub-
strate. Further, the experimental work in Ref. 3 has demon-
strated that the elimination of impurities and defects is nec-
essary in order to access the intrinsic electronic properties of
graphene. As both of these conditions can nowadays be ful-
filled by experiment, we hope that the appearance of the
excitonic gap will be demonstrated in the near future.

VIII. CONCLUSIONS

We have described the low-energy effective theory of
graphene, its gauge and global symmetries, and shown how a
discretized lattice formulation can be constructed such that it
contains the correct number of degrees of freedom and par-
tially retains chiral invariance at finite lattice spacing. We
have also explained in detail the numerical methods em-
ployed to perform lattice Monte Carlo simulations of the
discretized theory, focusing on the determination of the loca-
tion and properties of the semimetal-insulator phase transi-
tion.

On the theoretical side, we conclude that our extended
analysis is consistent with the findings of Ref. 5, which pre-
dict that suspended graphene should possess an excitonic gap
in the band structure. We have now, using the HMC algo-
rithm, extended the results of Ref. 5 to much larger lattice
volumes, as well as smaller fermion masses. While the sce-
nario first reported in Ref. 5 is confirmed by the present
results, the larger lattices used also provide tantalizing hints
that the phase transition is not of infinite order, as predicted
in Ref. 7, nor is it likely to be described by classical critical
exponents. In order to achieve a precise determination of the
critical exponents it is necessary to perform simulations at
much larger lattices, potentially as large as 482�48. We are
currently exploring the feasibility of such simulations by
benchmarking our code on a 362�36 lattice.

An accurate determination of the critical coupling and the
critical exponents will provide a solid understanding of the
universality class of this transition, as well as another piece
of experimentally verifiable information on the electronic
properties of graphene.
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