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Bilayer graphene in a magnetic field supports eight zero-energy Landau levels, which, as a tunable band gap
develops, split into two nearly degenerate quartets separated by the band gap. A close look is made into the
properties of such an isolated quartet of pseudo-zero-mode levels at half filling in the presence of an in-plane
electric field and the Coulomb interaction, with focus on revealing further controllable features in bilayer
graphene. The half-filled pseudo-zero-mode levels support, via orbital level mixing, charge carriers with
nonzero electric moment, which would lead to field-induced level splitting and the current-induced quantum
Hall effect. It is shown that the Coulomb interaction enhances the effect of the in-plane field and their interplay
leads to rich spectra of collective excitations, pseudospin waves, accessible by microwave experiments; also a
duality in the excitation spectra is revealed.
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I. INTRODUCTION

Graphene, a monolayer of graphite, attracts a great deal of
attention, both experimentally1–3 and theoretically4–8 for its
unusual electronic transport, characteristic of “relativistic”
charge carriers—massless Dirac fermions. Dirac fermions
give rise to quantum phenomena reflecting the particle-hole
picture of the vacuum state, such as Klein tunneling9 and,
especially in a magnetic field, such peculiar phenomena10–14

as spectral asymmetry and induced charges, which are rooted
in the chiral anomaly �i.e., a quantum conflict between
charge and chirality conservations�. Graphene provides a
special laboratory to test such consequences of quantum
electrodynamics. Actually, the half-integer quantum Hall
�QH� effect and the presence of the zero-energy Landau level
observed1,2 in graphene are a manifestation of spectral asym-
metry.

Bilayer graphene is equally exotic15–17 as monolayer
graphene. It has a unique property that the band gap is
controllable18–22 by the use of external gates or chemical
doping; this makes bilayers richer in electronic properties. In
bilayer graphene interlayer coupling modifies the intralayer
relativistic spectra to yield quasiparticles with a parabolic
energy dispersion.16 The particle-hole structure still remains
in the “chiral” form of a Schrödinger Hamiltonian and there
arise eight zero�-energy�-mode Landau levels �two per valley
and spin� in a magnetic field.

Zero-mode Landau levels, specific to graphene, deserve
attention in their own right. They would show quite unusual
dielectric response23,24 while they carry normal Hall conduc-
tance e2 /h per level; for bilayer graphene direct
calculations25 indicate that the zero modes show no dielectric
response for a zero band gap but the response grows linearly
with the band gap. In bilayer graphene, with a tunable band
gap, the zero-mode levels split into two quartets separated by
the band gap at different valleys. Such an isolated quartet of
“pseudo”-zero-mode levels remains nearly degenerate and,
as noted earlier,25 the level splitting is enhanced or controlled
by an in-plane electric field or by an injected current; this
opens up the possibility of the current-induced QH effect for
the pseudo-zero-mode sector around half filling, i.e., at fill-
ing factor �= �2.

The purpose of this paper is to further examine the prop-
erties of the pseudo-zero-mode levels, especially, coherence
and collective excitations in the presence of an external field
and the Coulomb interaction. The pseudo-zero-mode levels
at half filling support, via orbital level mixing, charge carri-
ers with nonzero electric dipole moment, which is respon-
sible for field-induced level splitting and the current-induced
QH effect. Along this line our discussion comes in contact
with the works of Barlas et al.26 and Abergel et al.27 who,
from the viewpoint of QH ferromagnets, studied the
interaction-driven QH effect in the nearly degenerate octet of
zero-mode levels in bilayer graphene. Our paper partly ex-
tends their analysis by revealing an interesting interplay be-
tween the in-plane field and Coulomb exchange interaction,
which leads to rich spectra of collective excitations, acces-
sible by microwave experiments. We shall find a duality in
the excitation spectra and, under certain circumstances, an
instability in pseudospin textures.

In Sec. II we briefly review some basic features of the
pseudo-zero-mode levels in bilayer graphene. In Sec. III we
construct a low-energy effective theory for the half-filled
pseudo-zero-mode sector. In Sec. IV we examine the spec-
trum and collective excitations in it. In Sec. V we study the
microwave response of collective excitations. Section VI is
devoted to a summary and discussion.

II. BILAYER GRAPHENE

Bilayer graphene consists of two coupled hexagonal lat-
tices of carbon atoms, arranged in Bernal A�B stacking. The
electron fields in it are described by four-component spinors
on the four inequivalent sites �A ,B� and �A� ,B�� in the bot-
tom and top layers, and their low-energy features are gov-
erned by the two inequivalent Fermi points K and K� in the
Brillouin zone. The intralayer coupling �0��AB is related to
the Fermi velocity v0= ��3 /2�aL�0 /��106 m /s �with aL
=0.246 nm� in monolayer graphene. The interlayer cou-
plings �1��A�B and �3��AB� are 1 order of magnitude
weaker than �0; numerically,28 �1�0.30 eV, �3�0.10 eV,
and �0�2.9 eV.
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Actually, interlayer hopping via the �A� ,B� dimer sites
modifies the intralayer relativistic spectra to yield spectra
with a quadratic dispersion and the characteristic cyclotron
energy �c=2v0

2 / ��1�2��3.9B�T� meV with a magnetic field
B�T� in tesla. The low-energy branches, thereby, are essen-
tially described by two-component spinors on the �A ,B��
sites �with the high-energy branches separated by a large gap
��1�. The effective Hamiltonian is written as16

H =	 d2x��†�H+ − eA0�� + �†�H− − eA0��� ,

H	 = H0 + Has,

H0 = �c
 − �a†�2 + 
a

− a2 + 
a† � ,

Has = 	
U

2

1 − za†a

− �1 − zaa†�
� , �2.1�

together with coupling to electromagnetic potentials �Ai ,A0�.
Here, assuming placing graphene in a uniform magnetic field
B�0, we have rescaled the kinetic momenta �i=−i�i+eAi

with the magnetic length �=1 /�eB and defined a
=�2eB��x− i�y� and a†=�2eB��x+ i�y�, so that �a ,a†�=1;
we set Ai→B�−y ,0� to supply a strong magnetic field B
normal to the sample plane. The field �= ��A ,�B��

t refers to
the K valley with H+=H	=1 while �= ��B� ,�A�t refers to the
K� valley with H−=H	=−1. For simplicity we ignore weak
Zeeman coupling and suppress the electron spin indices.

In H0 the linear kinetic term, leading to “trigonal warp-
ing,” represents direct interlayer hopping via �3, with 

=	��3 /�0���2v0 /�� /�c� �0.3 /�B�T�. Has takes into ac-
count a possible layer asymmetry, caused by an interlayer
voltage 
A0, which leads to a tunable18–20 gap U�e
A0
between the conduction and valence bands. The O�za†a�
terms in Has represent a kinetic asymmetry related to the
charge depleted from the dimer sites; note that it is very
weak with z=2�c /�1�0.026B�T��1.

While the linear spectra are lost, the bilayer Hamiltonian
still possesses a key feature of relativistic field theory, the
particle-hole �or chiral� structure of the quantum vacuum:
when the tiny O�zU� asymmetry is ignored, the spectrum of
H	, in general, is symmetric about zero energy �=0, apart
from possible �= �U /2 spectra that evolve from the zero-
energy modes of H0. Indeed, for 
=0 the spectrum of H	

consists of an infinite tower of Landau levels �n ,y0
 of paired
positive and negative energies,

�n = sn�c
��n���n� − 1� + �U/2�c�2 −

1

4
	zU , �2.2�

labeled by integers n= �2, �3, . . . and px �or y0��2px�; sn
�sgn�n�= �1 specifies the sign of �n.

In addition, there arise nearly degenerate Landau levels
carrying the orbital index �n�=0 and �n�=1 with spectrum

��n�=0 = 	U/2, ��n�=1 = 	�U/2��1 − z� . �2.3�

From now on we take, without loss of generality, U�0 and
denote n=0� and n= �1 to specify these pseudo-zero-mode
levels. There are four such pseudo-zero-mode levels �or two
levels per spin� at each valley and they reside on different
layers; the �0+,1� quartet on A sites at 	=1 valley is sepa-
rated from the �0−,−1� quartet on B� sites by a band gap U.
Each quartet remains degenerate, apart from O�zU� fine
splitting.

The presence of the pseudo-zero-mode levels and their
doublefold degeneracy �per spin and valley� both have a to-
pological origin and are consequences of spectral asymmetry,
or the nonzero index of the Hamiltonian H	 �U→0,

Index�H	�U→0� =	 d2x 2�eB/2�� , �2.4�

which is tied to the chiral anomaly in 1+1 dimensions. This
degeneracy is unaffected by the presence of trigonal warping

�0 alone25 but is affected by nontrivial diagonal compo-
nents in H	. Indeed, the kinetic asymmetry �za†a leads to
tiny level splitting and an electric field ��iA0 can also en-
hance the splitting. In other words, the pseudo-zero-mode
levels have an intrinsic tendency to be degenerate, but this at
the same time implies that their fine structure or the way they
get mixed depends sensitively on the environment.

The main purpose of the present paper is to study such
controllable features of the isolated pseudo-zero-mode quar-
tet in the presence of external fields and Coulomb interac-
tions. We are particularly interested in the properties of such
a quartet at half filling, where mixing of the zero modes
leads to nontrivial coherence effects and collective excita-
tions. For definiteness we focus on the n= �0+,1� sector at
	=1 valley, i.e., around filling factor �=2 �or �=1 when the
spin is resolved� and ignore the presence of other levels
which are separated by relatively large gaps; the �=−2 case
is treated likewise. We ignore the effect of trigonal warping,
which causes only a negligibly small level splitting25 of
O�z
4��1 /103, apart from a common level shift of O�z
2�.

To project out the n= �0+,1� sector let us make the
Landau-level structure explicit by the expansion ��x , t�
=�n,y0

�x �n ,y0
�n�y0 , t� with the field operators obeying
��m�y0 , t� ,�n

†�y0 , t��=�mn��y0−y0��. The charge density
�−p�t�=�d2x eip·x�†� is thereby written as

�−p = �p �
k,n=−�

�

gkn�p�	 dy0 �k
†eip·r�n, �2.5�

where �p=e−�2p2/4; r= �rx ,ry�= �i�2� /�y0 ,y0� stands for the
center coordinate with uncertainty �rx ,ry�= i�2. For the
�0+,1� sector the relevant coefficients are given by25 g00�p�
=1, g11�p�=1−�2p2 /2, g10�p�= i�p /�2, and g01�p�
= i�p† /�2 with p� py + ipx.

Let us put the �0+
�y0 , t� and �1�y0 , t� modes into a two-

component spinor �= ��0+
,�1�t and define the pseudospin

operators in the �0+,1� orbital space,
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S−p
� = �p	 dy0 �†1

2
��eip·r� , �2.6�

where ��= �1,�a� ��=0�3� with Pauli matrices �a and
�0=1. The charge density �−p projected to the �0+,1� sector
is thereby written as

�̄−p = 2�wp
0S−p

0 + wp
3S−p

3 + wp
1S−p

1 + wp
2S−p

2 � , �2.7�

where wp
0 =1−�2p2 /4, wp

3 =�2p2 /4, wp
1 = i�py /�2, and w2�p�

= i�px /�2. Note that �S−p
2 ,S−p

1 �t acts as a vector under rota-
tions about the z axis �B.

The Hamiltonian H of Eq. �2.1� is projected into the
�0+,1� sector to yield


H̄ = −	 d2x eA0�̄ +	 dy0 m�†�3� , �2.8�

where m�zU /4; the common energy shift �1−z /2�U /2 of

the �0+,1� sector has been isolated from 
H̄. One can

equally write 
H̄ as


H̄ = 2�
p

Pp
�S−p

� �2.9�

with Pp
� being the Fourier transform of P��x , t�,

P0 = − m − eA0 − 1
4e�2 � · E ,

P3 = m − 1
4e�2 � · E ,

�P2,P1� =
e�

�2
�Ex,Ey� , �2.10�

where E� = �Ex ,Ey�=−�xA0 denotes the in-plane electric field.
The Coulomb interaction also simplifies via projection.

The pseudo-zero-modes at each valley essentially lie on the
same layer, apart from a negligibly small admixture of
O��c /�1��10−3. One may thus retain only the intralayer in-
teraction for �,

H̄C =
1

2�
p

vp:�̄−p�̄p: , �2.11�

where vp=2�� / ��b�p�� is the Coulomb potential with the
fine-structure constant �=e2 / �4��0��1 /137 and the sub-
strate dielectric constant �b; �p=�d2p / �2��2. The normal-

ordered charges in H̄C are rewritten as

: �̄−p�̄p: = �̄−p�̄p − 
 ,


 = 2�p
2��wp

��2S0
0 + 2wp

0wp
3S0

3� �2.12�

under a symmetric integration over p.
The pseudospin operators Sp

� obey the SU�2��W�

algebra,29,30

�Sp
a,Sk

b� = c�p,k�i�abcSp+k
c − is�p,k��abSp+k

0 ,

�Sp
0,Sk

0� = − is�p,k�Sp+k
0 ,

�Sp
0,Sk

a� = �Sp
a,Sk

0� = − is�p,k�Sp+k
a , �2.13�

where �a ,b� runs over 1–3, and

s�p,k� = sin
�2p � k

2
�e�2p·k/2. �2.14�

p�k��ijpikj = pxky − pykx; for c�p ,k� set sin�¯�→cos�¯�
in s�p ,k�.

III. PSEUDOSPIN TEXTURES

In this section we study the properties of the pseudo-zero-
mode levels at half filling using the projected Hamiltonian

H̄�
H̄+ H̄C and the charge algebra �2.13�, with focus on
orbital mixing of the zero modes. Let us suppose that such a
half-filled state is given by a classical configuration where
the pseudospin points in a fixed direction in pseudospin
space, i.e., Sp=0

a = 1
2Nen

a and nana=1 with the total number of
electrons Ne=2Sp=0

0 .
Note that n3=1 corresponds to the filled n=0+ level with

the vacant n=1 level while n3=−1 represents the filled n
=1 level. The direction n= �n1 ,n2 ,n3� would, in general, vary
in response to the external field A0, and, as n tilts from n3

= �1, the n=0+ and n=1 levels start to mix. For self-
consistency we assume that A0 represents a uniform in-plane
electric field E� =−�xA0 and that it leads to a homogeneous
state �G
 of uniform density �0=� / �2��2� �with filling factor
�=2 for the spin-degenerate �=2 state or �=1 for the spin-
resolved �=1 state�. We thus consider all classical configu-
rations with �G�Sp=0

a �G
= 1
2Nen

a and single out the ground

state or the associated na by minimizing the energy �G�H̄�G
.
For na we use the parametrization n1=sin � cos �, n2

=sin � sin �, and n3=cos � with −����� and 0����.
We denote expectation values �G�O�G
��O
 for short.

Let us first substitute the charge and pseudospin, �Sp
0


= 1
2�0�p,0 and �Sp

a
= 1
2�0na�p,0, into 
H̄. �Here �p,0

= �2��2�2�p�, and �0,0=�d2x equals the total area, so that
Ne=�0�0,0.� This yields the response of the classical state �G

to an external probe, �
H̄
=�0�d2x n�P� with

n�P� = − eA0 + m�cos � − 1� − E� · de,

de = −
e�

�2
�n2,n1� = −

e�

�2
sin � n̂� , �3.1�

where n̂� = �n̂x , n̂y�= �sin � , cos �� is an in-plane unit vector.
Note that the half-filled pseudo-zero-mode state has an

in-plane electric dipole moment de of strength �e� /�2��sin ��
per electron, proportional to the in-plane component �n2 ,n1�
of the pseudospin. Mixing of the n=0+ and n=1 modes gives
rise to this dipole and its in-plane direction n̂� is related to the
relative phase between them; i.e., under U�1� transformations
�= ��0+

,�1�t→e−i�rel�
3/2�, n̂� rotates,

�S1 + iS2� → ei�rel�S1 + iS2� or � → � + �rel. �3.2�

This tells us that a change in relative phase caused by a
change in direction of the dipole is physically observable.
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In the absence of the Coulomb interaction, na naturally
points in the −Pa direction and, as a result, an in-plane field,
coupled to the electric dipole, works to enhance the pseudo-
zero-mode level splitting,25


� = 2�m2 + e2�2E�
2/2. �3.3�

We shall discuss below how the Coulomb interaction modi-
fies this.

The calculation of the Coulomb energy �G�H̄C�G
��H̄C

requires the knowledge of pseudospin structure factors
�G�Sp

�Sq
��G
��Sp

�Sq
�
, which, for the present half-filled state

with pseudospin �na, are given by

�Sp
�Sq

�
 =
1

4
�0�s���p

2�p+q,0 + n�n��0�p,0�q,0� , �3.4�

where � and � run from 0 to 3 with n0=1 and �na�
= �n1 ,n2 ,n3�; �s���† =s�� with s�0=0 and

s33 = sin2 � ,

s11 = cos2 � cos2 � + sin2 � ,

s22 = cos2 � sin2 � + cos2 � ,

s31 = − sin � cos � cos � + i sin � sin � ,

s32 = − sin � cos � sin � − i sin � cos � ,

s12 = − sin2 � sin � cos � + i cos � cos 2� . �3.5�

See Appendix A for details. Actually, the normal-ordered
correlation functions take simpler form

�:Sp
�Sq

� :
 = −
1

4
�0n�n���p

2�p+q,0 − �0�p,0�q,0� �3.6�

with which one can cast the Coulomb energy in the form

�H̄C
 = −
1

2
Ne�

p
vpe−q2/2C��q2/4� , �3.7�

where q2��2p2 and C��x�=1−x�1−x��1−cos ��2. From

�H̄C
 we have omitted a constant �Ne /2��0vp→0 which is re-
moved when the neutralizing positive background is taken
into account. Integrating over p yields a typical scale of the
Coulomb exchange energy,

V1 = �
p

vpe−�2p2/2 =
�

�b�
��

2
, �3.8�

The effective Hamiltonian Heff= �
H̄+ H̄C
 is conve-
niently written in x space as Heff=�0�d2x Heff with

Heff = − eA0 + E��� ,

E��� = −
1

2
V1 + m�cos � − 1� + E sin � +

1

32
V1�1 − cos ��2,

�3.9�

where E= �e� /�2�E� · n̂�. In the present notation �with
�0�d2x→Ne� Heff stands for energy per electron in state �G

with pseudospin �n. The Coulomb correlation energy �V1
consists of a negative uniform component −V1 /2 �relative to
the zero of energy �U /2��1−z /2�� and a polarization-
dependent component which alone favors �=0, i.e., the filled
n=0+ level, and which varies continuously by an amount

Ec= �1 /8�V1 as n sweeps in pseudospin space. The Cou-
lomb interaction thus significantly enhances the pseudo-zero-
mode level splitting.

The stable configuration of the half-filled zero-mode state
�G
 is determined by minimizing E��� with respect to n or
�� ,��. Obviously E��� depends on � through E, which at-
tains a maximum when n� �E� or E=e��E�� /�2. Accordingly
it is convenient, without loss of generality, to suppose that
the in-plane field E� and n� lie along the y axis, E
=e�Ey /�2�0, and �=0. With this choice the “1,” “2,” and
“3” axes in pseudospin space coincide with the y, x, and −z
axes in real space, respectively. We adopt this choice and set
�n1 ,n2 ,n3�= �sin � ,0 ,cos �� in what follows.

One can now look for possible ground-state configura-
tions by writing down a phase diagram as a function of m
and E�. For clarity of exposition we leave it for a later stage
and here study collective excitations over a given ground
state �G
 �n. We focus on a special class of low-energy col-
lective excitations, pseudospin waves, which are rotations
about the energy minimum �G
 �n in pseudospin space.

As is familiar from the case of quantum Hall
ferromagnets,30 such a collective state is represented as a
texture state

�G̃
 = e−iO�G
�n, �3.10�

where the operator e−iO with

O = �
p

�p
−1�p

aS−p
a �3.11�

locally tilts the pseudospin from n to ñp by small angle �p
�n� ñp. Repeated use of the charge algebra �2.13� then

allows one to express the texture-state energy �G̃�H̄�G̃

= �G�eiOH̄e−iO�G
 in terms of the structure factors in Eq.
�3.4�, and this yields an effective Hamiltonian as a functional
of �p

a or its x-space representative �a�x , t�.
The angle variables �a�x , t� may be normalized, so that

�a��a�2=1 classically. As we shall see below, the effective
theory is expressed in terms of the following components of
�a:

 � �1 cos � − �3 sin � ,

! � �2 �3.12�

along the two orthogonal axes �i.e., the tilted 1 axis and the 2
axis� perpendicular to the pseudospin n with normalization
�na�a�2+ 2+!2=1. �Here we have chosen �=0 and set
�na�= �sin � ,0 ,cos ��, as remarked above; the ��0 case, if
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needed, is readily recovered.31� Actually they refer to the
following induced pseudospin components in the excited

state �G̃
:

 � − �p
−1�G̃�S2�G̃
 ,

! � �p
−1�G̃�S1 cos � − S3 sin ��G̃
 , �3.13�

as seen from the induced pseudospin ��G̃�Sp
a�G̃


���0 /2��p�abc�p
bnc.

We expand �G̃�H̄�G̃
 to second order in � and retain all
powers of derivatives acting on � to study the spectrum over
a wide range of wavelengths. The calculation is outlined in
Appendix B. The result is

�G̃�H̄�G̃
 = �0	 d2x�Heff + Hcoll� ,

Hcoll =
1

2
 "  +

1

2
!"!! + !Wp + Hch + �H ,

" = − E/sin � + Fp,

"! = E���� + Gp,

�H = E�����! + �1 /�2 sin ��� , �3.14�

E����=dE��� /d�, etc. Here

Fp =
Vc

2
�1

2
��

2
+ 	q + P−
q� ,

Gp =
Vc

2
�1

2
��

2
+ 	q − bq sin2 � − P−
q cos2 �� ,

Wp = −
Vc

2 �2
pxpy

p2 
q cos � + i
�px

�2
#q sin �� �3.15�

with Vc=� / ��b��, P−= �px
2− py

2� /p2, and

	q = �e−q2/2q

2
− 	

0

�

dz e−z2/2
1 −
1

2
z2�J0�zq� ,


q = �e−q2/2q

2
−

1

2
	

0

�

dz e−z2/2z2J2�zq� ,

bq = �e−q2/2�q/2 − q3/8� +
1

8
	

0

�

dz e−z2/2�1 − 4z2 + z4�J0�zq� ,

#q = �e−q2/2q/2 +
2

q
	

0

�

dz e−z2/2z
1 −
1

4
z2�J0��zq� ,

�3.16�

where q=��p�; substitution p→−i� is understood in the x
representation. For p→0, 	q→−�1 /2��� /2, �
q ,bq�→0,

and #q→−�1 /4��� /2 while they all tend to zero for p→�.
See Appendix C for more explicit forms of the integrals in-
volved in these functions.

In Hcoll, Hch refers to a topological charge �to be detected
with a constant potential A0�

�0	 d2x Hch = − e	 d2x A0
�

8�
�abc�ij��i�

a��� j�
b�nc,

�3.17�

where �xy =1 and �123=1. With nc promoted to �c, �d2x Hch
involves the winding number, which implies30 that possible
topologically nontrivial semiclassical excitations �skyrmi-
ons� associated with �a, in general, carry electric charge of
integral multiples of �e. Note also that �H, involving a term
linear in !, disappears for a stable-state configuration for
which E����=0.

The kinetic term for �a is supplied from the electron ki-
netic term as Berry’s phase,

�G̃�i�t�G̃
 = −
1

4
�0�

k
nc�abc�−k

a �t�k
b =

�0

2
	 d2x !�t 

�3.18�

to O����, apart from surface terms. This shows that ! is
canonically conjugate to ��0 /2� . One can now write the
effective Lagrangian for the collective excitations as

L =
1

2
!�t − Hcoll� ,!� . �3.19�

Note here that this Lagrangian is written as

�0	 d2x L = �G�eiO�i�t − H̄�e−iO�G
 . �3.20�

This representation realizes and systematizes the single-
mode approximation �SMA� �Ref. 29� within a variational
framework.32 The present theory thus embodies nonperturba-
tive aspects of the SMA.

Upon elimination of !, Eq. �3.19� leads to an alternative
form of the effective Lagrangian for  as follows:

L$ =
1

2
��t$�2 −

1

2
$�Mp�2$ ,

Mp = 2�" "! − �Wp�2, �3.21�

where we have set $= �1 /2��"!�−1/2 .
The spectrum Mp of collective excitations is in general

anisotropic in p at low energies and depends critically on the
stable-state configuration n. In particular, the leading long-
wavelength correction in Hcoll starts with the direct Coulomb
interaction of O�p�, which leads to the spectrum,

Mp ���2% %!�2 + Vc
��

�p�
�% 

2cos2 � py
2 + %!

2px
2� ,

% 
2 � " �p=0 = − E/sin � ,
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%!
2 � "!�p=0 = E���� . �3.22�

The excitation gap at zero wave vector is thus given by
Mp→0=2% %!. In contrast, Mp recovers isotropy and the
standard excitonic behavior33 at short wavelengths,

Mp→� � V1/2 + % 
2 + %!

2 �3.23�

with " →V1 /4+% 
2 , "!→V1 /4+%!

2, and Wp→0 for p→�;
V1=Vc

�� /2.
It is worth noting here that the Coulomb interaction alone

yields % 
2 =0, i.e., a flat direction in � ,!� space. This implies

that, unlike in ordinary bilayer QH systems, there is no cost
of interlayer capacitance energy for the pseudo-zero-mode
sector which essentially resides in the same layer. Coherence
is thus easier to form in this sector of bilayer graphene.

If we set �→0, our Mp precisely reproduces the excita-
tion spectrum derived in Ref. 26 by assuming spatial isot-
ropy; actually, the effective Hamiltonian of Ref. 26 is appar-
ently different from our Hcoll but the spectrum turns out to be
the same. It is our use of general textures n that allows Hcoll
to handle spatially anisotropic situations as well.

IV. POSSIBLE GROUND STATES AND COLLECTIVE
EXCITATIONS OVER THEM

In this section we study the spectrum of the half-filled
pseudo-zero-mode state and the associated collective excita-
tions. Let us first gain a rough idea of the strengths of m and
E� relative to the Coulomb correlation energy 
Ec. A naive
estimate


Ec =
1

8
��

2

�

�b�
� 2.2�B�T� meV �4.1�

with a typical value �b�4 indicates that the bare Coulomb
interaction is apparently sizable, as compared with the basic
Landau gap �c�3.9B�T� meV. We remark that Eq. �4.1� is
likely to overestimate 
Ec. Actually 
Ec is written as an
integral of the form


Ec � 2�
p

vpe−q2/2�q2/4��1 − q2/4� �4.2�

with q=��p�, and the main contribution comes from the mo-
mentum region �p���1, where the Coulomb interaction is
very efficiently weakened �vp→vp /��p��, as indicated by a
random-phase-approximation study25 of the dielectric func-
tion ��p�. This screening effect essentially comes from
vacuum �Dirac-sea� polarization, specific to graphene. It may
effectively be taken care of by setting �b→�b�sc; a simple
estimate34 gives �sc�9 at B�1 T and �sc�3.6 at B
�10 T.

The ratio of the intrinsic zero-mode level gap 2m
=0.013B�T�U to 
Ec is generally small,

m/
Ec � 3�sc � 10−3�B�T�U�meV� , �4.3�

for a band gap U of O�1 meV� and increases with B and U.
For the in-plane field E=e��E�� /�2 the ratio

E/
Ec � 0.9�sc � 10−3E�V/cm�/B�T� �4.4�

is on the order of 10% for E= �E��=10 V /cm at B=1 T with
�sc�9. Note that E�m for E�3.6 V /cm�U�meV�B�T�3/2.

To determine the orbital configuration of the half-filled
zero-mode state �G
 one has to look for the minimum of
E���, Emin=E��min� with E���min�=0. Let us begin with the
case where E� is absent. It is clear from E��� of Eq. �3.9� that
the Coulomb correlation favors �=0 while the intrinsic
asymmetry m�0 alone favors �=�; 
Ec and m thus com-
pete.

�i� In case m�
Ec �although rather unrealistic�, one finds
Emin=−�2m−
Ec� and % 

2 =%!
2=m−
Ec at �=�. The collec-

tive excitations have a finite energy gap Mp=0=2�m−
Ec�
�0 and the spectrum is isotropic, reflecting the rotational
invariance of the bilayer system about the z axis �B or, more

explicitly, invariance of 
H̄+ H̄C �for A0=0� under U�1� ro-
tations in Eq. �3.2�.

�ii� On the other hand, for 0�m�
Ec, one finds Emin=
−
Ec�m /
Ec�2 at �= ��min with sin2��min /2�=m /
Ec; �min
varies from 0 to � with increasing m. Here we encounter a
somewhat strange situation. Note that, for ��0, ��, the
rotational invariance is spontaneously broken. Indeed, one
finds % 

2 =0 and %!
2=2m�1−m /
Ec�. Accordingly the collec-

tive excitations about this state are gapless �as the Nambu-
Goldstone modes�, and spectrum �3.22� is anisotropic in p.

The excitation spectrum Mp in general exhibits a local
minimum �roton minimum� around �p���2 �see Fig. 1�a��.
In the 0�m�
Ec range of case �ii�, the roton minimum
changes critically with m: the minimum in px comes down,
as m is increased from zero, and touches zero �gap� at
m /
Ec�0.131 �with �min�42.6°�. The spectrum loses sense
�becoming pure imaginary� until m reaches m /
Ec�0.869
�with �min�137.4°� where the roton minimum reappears; it
then rises and returns to the m=0 spectrum at m=
Ec. This
peculiar feature inspires one to find an interesting structure
of E���,

E��;m� = E�� − �;
Ec − m� , �4.5�

valid for E�0 as well. This implies that the half-filled state
realized at �min for a given m�
Ec /2 is paired with the state
realized with angle �−�min at a larger intrinsic gap �m�
=
Ec−m. Both the energy E��min� and excitation spectrum

20 4 6 8

0.4

0.3

0.2

0.1

0.5

FIG. 1. �Color online� Excitation spectra Mp plotted in units of
Vc=� /�b� for m /
Ec=0.01, 0.05, 0.13, 1.1, and 1.2. The real
curves refer to the profiles in px at py =0 �i.e., normal to the in-plane
field Ey� and dashed curves to those in py at px=0.
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Mp completely agree for this pair of states, as seen from Eqs.
�3.15� and �3.21�. In particular, the filled n=0 level realized
at m=0 and the filled n=1 level realized at m=
Ec share the
same energy and collective excitations. We thus find a kind
of �small-m/large-m� duality in the 0�m�
Ec range.

In this m range the texture state, taken to be homogeneous
in space, acquires spontaneous in-plane electric polarization
�sin �min. The anomalous behavior of the roton spectrum
about m /
Ec�0.5 or ��� /2, mentioned above, reflects a
potential instability of the texture state due to spontaneous
polarization. Such electrically polarized homogeneous con-
figurations, unless polarization is relatively weak, are un-
stable against local charge inhomogeneities and would decay
into inhomogeneous configurations.

A local charge excess would align electric dipoles out-
ward or inward and let them drift in a magnetic field. One
may thus imagine a picture of charged electric dipoles drift-
ing around local charge centers �distributed randomly or in
some patterns on the real sample and substrate�, clockwise or
anticlockwise depending on the sign of the local excess
charge. We speculate that the half-filled state in the realistic
0�m�
Ec range may form many such domains for stabi-
lization.

Let us next set m→0, i.e., consider the case of zero band
gap U=0 and study the effect of E�. The in-plane field E
=e�Ey /�2�0 tilts the pseudospin toward �=−� /2 and com-
petes with 
Ec which favors �=0. As a result, �min varies
from 0 to −� /2 as Ey is increased. The charge carriers
thereby acquire a nonzero electric dipole moment �sin � and
the pseudospin waves always have a finite excitation gap for
E�0 �see Fig. 2�. For weak field 4E /
Ec�R�1, one finds
�min�−R1/3, Emin�−�3 /16�R4/3
Ec, and %!

2�3% 
2

��3 /4�R2/3
Ec, so that the excitation gap grows as

Mp=0 � ��3/2��4E/
Ec�2/3
Ec. �4.6�

For larger E&
Ec the gap rises almost linearly with E,

Mp=0 � 2E + 
Ec/2, �4.7�

along with % 
2 �E and %!

2�E+
Ec /2. As seen from Fig. 2,
Eqs. �4.6� and �4.7� combine to give a practically good de-
scription of the excitation gap over the entire range of E;
crossover takes place around E /
Ec�0.3. Note that the
Coulomb correction significantly enhances the excitation
gap; in particular, the gap rises prominently as E2/3 for a
weak field.

For E�0 the excitation spectrum Mp is necessarily aniso-
tropic, especially at low momenta, and, as seen from a con-
tour plot of Mp in Fig. 3, anisotropy of the roton minima
already develops around E /
Ec�0.02. The spectrum recov-
ers isotropy for �p���5 or larger and the asymptotic spec-
trum is lifted roughly by the amount of the excitation gap, as
seen from the spectrum profiles in Fig. 3�a� and from Eq.
�3.23�. Note that the roton minimum, unlike the m�0 case,
shows no sign of instability.

When both m and E are present, their effects generally
tend to add up. The texture excitations always have a gap and
their potential instability, in a certain range about m /
Ec
�0.5, weakens and eventually disappears with increasing E;

the roton dip remains to be a local minimum as long as E
�m. We remark that the duality implied by Eq. �4.5� would
hold in the presence of E as well.

In Fig. 2�c� we plot the excitation gap as a function of �E��
for some typical values of B�T� and m�U�meV�. With the
effect of screening �sc taken into account, Mp=0 falls in
roughly the same frequency range of microwaves.

If E� is sufficiently strong, a sizable excitation gap Mp=0
would arise, leading to an incompressible �=2 state. One
could thereby observe the �spin-degenerate� �=2 Hall pla-
teau with a suitably strong injected current for U�0 and
U=0 as well.

Of the pseudospin �n the angle � is related to the ratio in
amplitude of the n=0+ and n=1 modes while the angle � is
related to the relative phase between them. One would now
have control of mixing of the zero-mode levels by adiabati-
cally changing the strength and direction of an injected cur-
rent.

V. CURRENT AND RESPONSE

In this section we study the response of the pseudospin
waves in the �0+,1� sector under uniform fields B and Ey to
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FIG. 2. �Color online� �a� Excitation gap at zero momentum
plotted in units of 
Ec as a function of the in-plane field E /
Ec.
The red dashed curve refers to Eq. �4.6� and the green dotted line to
the asymptotic form of Eq. �4.7�. �b� Angle of inclination �min in
degrees. �c� Excitation gap Mp=0, in units of meV and GHz, plotted
as a function of the in-plane field �E�� for some typical values of
�B�T� ,�sc ,U�meV��. Dashed curves refer to the cases where the
screening effect is turned off, �sc→1.
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a weak time-varying external field. To this end we consider a
weak vector potential A�t�= �Ax ,Ay�, which describes an ex-
ternal field ��tA and, at the same time, serves to probe the
current. For simplicity we take it to be spatially uniform.

The current operator �H /�A derives from two parts in H
of Eq. �2.1�. One coming from H0 is the ordinary form of
current, which has no projection to the �0+,1� sector and
induces transitions to other levels. The other one, specific to
bilayer graphene, derives from the O�zU� part of Has, and the
relevant O�A� portion of its �0+,1� projection is written as

H̄A = − 2�2m�0e��AxSp=0
1 − AySp=0

2 � , �5.1�

where m=zU /4. Evaluating �G̃�H̄A�G̃
 yields an addition to
Hcoll of the form

HA = − �2e��c0Ax + cxAx! + cyAy � ,

c0 = m sin �, cx = m cos �, cy = m . �5.2�

One might read from HA the current density carried by
the zero-mode sector as jx

zm=−�2�0e�m sin �min �which, for
Vc=0, equals −��e2 /h�Ey�. This, unfortunately, is not a com-
plete amount of current yet. Inter-Landau-level transitions
caused by the ordinary current induce some extra charge in
the �0+,1� sector. In other words, the presence of A causes
level mixing, which modifies the current within the �0+,1�
sector. Such a modification was calculated earlier32 for stan-

dard QH systems and, in the present case, it is given by

��̄−p � �S−p
0 − S−p

3 �u11�p� ,

u11�p� � 2ie�2�1 − �2p2/4��pxAy − pyAx� �5.3�

to O�A�, apart from terms of O��tAi /�c�. This u11�p� repre-
sents charge accumulated in the n=1 level via the n=1
→ �2→1 inter-Landau-level transitions.

The induced charge also carries current within the �0+,1�
sector via the interaction

�H̄A =
1

2�
p

vp:��̄p,��̄−p�:− �
p

e�A0�p��̄−p. �5.4�

The current response is now calculated from �G̃�H̄A

+�H̄A�G̃
. The result again takes the form of Eq. �5.2� with
coefficients �c0 ,cx ,cy� modified as follows:

c0 = m sin � + �1 − cos ��E + �V1/32�sin 2�

= E − E���� , �5.5�

cx = m cos � + ¯ = − E���� , �5.6�

cy = m + �V1/16��cos � − 1�

= E cos �/sin � − E����/sin � . �5.7�

With E����→0, Eq. �5.5� verifies that the pseudo-zero-mode
sector carries the correct amount of Hall current �in response
to a uniform field E� with conductance �xy =−�e2 /h.

The Hamiltonian H̄A+�H̄A governs the microwave re-
sponse of the pseudo-zero-mode sector. It is combined with
Hcoll to yield the source term $�2cy�"!�1/2Ay
−cx�"!�−1/2�tAx� for L$ in Eq. �3.21�. Solving for the station-
ary action then yields a response of the form �Ay�¯��tAx.
From this one can read off the optical Hall conductance due
to virtual transitions within the �0+,1� sector,


�xy��� = −
�e2

2��
cos �min

M0
2

M0
2 − �2 , �5.8�

which is significantly peaked around ��M0�Mp=0, the
pseudospin-wave gap.

The collective excitations within the �0,1� sector thus con-
tribute the cos � portion �
�xy��→0�� of the Hall conduc-
tance �xy while the remaining �1−cos �� portion of �xy es-
sentially comes from the n=1→ �2→1 virtual transitions
with larger gaps ��2�c&M0. These two components are
distinguishable via microwave or light response.

With disorder taken into account, the diagonal conductiv-
ity 
�xx��� also is significantly peaked around ��M0 and
M0 varies critically with E or by an injected current, as we
have seen in Fig. 2. Microwave or infrared experiment,35 via
absorption, reflection, or conductance fluctuation, would pro-
vide a direct means to explore such unique dynamics of the
pseudo-zero-modes.

VI. SUMMARY AND DISCUSSION

Zero-mode Landau levels, specific to graphene in a mag-
netic field, are very special. Their presence has a topological
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FIG. 3. �Color online� �a� Excitation spectra Mp, in units of
Vc=� /�b�, for E /
Ec=0.01, 0.05, and 0.1. The real curves refer to
the profiles in px and dashed curves to those in py. �b� Contour plot
of Mp for E /
Ec=0.02.
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origin in the chiral anomaly. They show quite unusual dielec-
tric response that reflects quantum fluctuations of the
vacuum state �the Dirac sea�. Bilayer graphene supports
eight such zero-mode levels which, unlike in monolayer
graphene, involve two different orbital indices n=0,1. As a
tunable band gap develops, four of them at one valley are
isolated from the others at another valley and remain nearly
degenerate although its fine structure sensitively depends, via
mixing of zero modes, on the environment.

In this paper we have studied the effects of an external
field and the Coulomb interaction on such an isolated zero-
mode quartet. This pseudo-zero-mode sector, especially at
half filling, supports, via orbital mixing, quasiparticles with
charge and electric dipole, which give rise to characteristic
collective excitations, pseudospin waves. We have con-
structed a low-energy effective theory of pseudospin waves
with general pseudospin textures and noted a duality �Eq.
�4.5�� in the excitation spectrum. The excitation gap at zero
momentum turns out to be generally small, reflecting the
intrinsic degeneracy of the pseudo-zero-mode sector, and the
Coulomb exchange energy works to enhance the effect of the
in-plane field on the gap. This means that the gap is tunable
by an in-plane field or by an injected current; the mixing of
the zero modes �i.e., relative phase and magnitude� is also
externally controllable to some extent.

The pseudo-zero-mode sector of bilayer graphene is par-
ticularly suited for exploring coherence phenomena. This is
because it essentially resides on the same layer so that, un-
like in ordinary bilayer QH systems, there is no cost of in-
terlayer capacitance energy for it.

An experimental signature of the field-induced gap is to
observe the quantum Hall effect with an injected current; one
would be able to resolve the �= �2 Hall plateaus �or the
spin-resolved �= �1 plateaus� using a suitably strong cur-
rent.

The collective excitations within the pseudo-zero-mode
sector also carry a considerable portion of the total current. A
direct study of the excitation gap Mp=0 and its field depen-
dence by microwave absorption or reflection would clarify
the unique controllable features of the pseudo-zero-mode
sector in bilayer graphene and, in addition, the effect of
screening on the Coulomb correlation energy 
Ec due to
vacuum polarization.
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APPENDIX A: STATIC STRUCTURE FACTORS

In this appendix we outline the derivation of the pseu-
dospin static structure factors �Sp

aSq
b
 �in Eq. �3.4�� for the

half-filled pseudo-zero-mode levels �G
 with �S0
a
= �Ne /2�na

pointing in a general direction n= �na� in pseudospin space.
Let us first note that, when only the n=0+ level is filled, i.e.,
for n3=1 polarization, these structure factors are readily cal-

culated: filling the n=0+ level and leaving the n=1 level
empty immediately imply that �Sp

�Sq
�
= ��0 /2�2�p,0�q,0 for

� ,�� �0,3� and �:Sp
aSq

b:
=0 for a ,b� �1,2�. One may then
note the algebraic relation

Sp
aSq

b = efpq
1

2
��abSp+q

0 + i�abcSp+q
c � + :Sp

aSq
b : �A1�

with fpq=�2�p ·q− ip�q� /2 and determine, e.g., �:Sp
3S−p

3 :

= �Ne /4���0�p,0−�p

2� and �Sp
1S−p

1 
= �Ne /4��p
2 with �p

=e−�2p2/4.
The structure factors for the half-filled state with a general

pseudospin polarization n are obtained from these n3=1
structure factors by a suitable rotation in pseudospin space.
Note first that the n3=�3= �1 eigenspinors ��1
 of the Pauli
matrix �3 are rotated by angle �� ,�� to form the �a= �na

eigenspinors U��1
 with U=e−i��3/2e−i��2/2. Accordingly we
decompose the zero-mode field �= ��0+

,�1�t �defined in Eq.
�2.6�� into the �a= �na eigenmodes �� by writing �
=U��.

On substitution �=U��, Sp
a are rewritten as linear com-

binations of the pseudospin operators Sp�
a

���†��a /2�eip·r�� composed of ��; Sp
0 =Sp�

0. One can then
calculate �Sp

�Sq
�
 for general na from the structure factors

�Sp�
�Sq�

�
 for the n3=1 state. The result is summarized in Eq.
�3.4�.

Note, in particular, that Sp
a =naSp�

3+¯. This yields �Sp
a


=na�Sp�
3
=na��0 /2��p,0 and tells us that the normal-ordered

factors take particularly simple form �:Sp
aSq

b:

=nanb�:Sp�

3Sq�
3:
 or

�:Sp
�S−p

� :
 = − n�n��Ne/4���p
2 − �0�p,0� �A2�

with n0=1, as quoted in Eq. �3.6�.

APPENDIX B: COLLECTIVE EXCITATIONS

In this appendix we outline the derivation of Hcoll in Eq.
�3.14�. Let us first consider the contribution from the Cou-
lomb interaction 1

2�pvpJp with Jp= �G���̄p�O��̄−p�O�G
 and
��̄p�O=eiO�̄pe−iO. Expanding ��̄p�O in powers of O�� by
repeated use of the W� algebra �2.13� and subsequently sub-
stituting the structure factors in Eq. �3.4� allow one to evalu-
ate Jp. The O��� term is thereby written as

Jp
�1� = − �0�p

2�k=0
a �abcwp

bw−p
' s�c,'�

= �0�p
2�0

2��wp
1�2 − �wp

3�2�s�1,3� �B1�

under a symmetric integration over p; s�c,'��sc'+s'c for
short. �Here, we have employed the convention �=0 and
n2=0, as remarked in the text.�

Similarly, the O���� term is written as
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Jp
�2� = �0

2�p
2��abcnawp

b�−p
c �2 +

�0

2
�p

2�
k

cos2
1

2
�2k � p�

��N1 + N2� +
�0

2
�p

2�
k

sin2
1

2
�2k � p��N3 + N4�

−
�0

4
�p

2�
k

sin��2k � p��2N5 + N6� �B2�

with

N1 = �−k
� �k

aw−p
' wp

b��'��abcs��,c�,

N2 = − �−k
� �k

awp
bw−p

' �abj��cjs�c,'�,

N3 = �−k
� �k

a�wp
0�2s��,a�,

N4 = − �−k
� �k

awp
aw−p

' s��,'�,

N5 = �−k
� �k

awp
0w−p

' ��'�s��,a�,

N6 = �−k
a �k

b�abcwp
0w−p

' s�c,'�, �B3�

where k�p=kxpy −kypx.
One can evaluate �pvpJp by integrating over p and leav-

ing the k integration as it is. One may express the sines and
cosines in terms of e�i�2p�k. Integration over p is then car-
ried out as a Fourier transform of the form �pvpe−�2p2/2+ip·x

�powers of pi� with x→�2��k���2�ky ,−kx�.

The rest of terms in Hcoll are obtained via the induced
pseudospin to O����,

��Sp
a�O
 =

�0

2
�p�na�p,0 + �abc�p

bnc −
1

2
�na��b,�b�p

− ��a,�b�pnb�� , �B4�

where ��a ,�b�p��kcos��2k�p /2��−k+p
a �k

b for short. This,
in particular, is used to evaluate the contribution �
O
 from

 in Eq. �2.12�. Somewhat tedious calculations along these
lines eventually lead to Hcoll in Eq. �3.14�.

APPENDIX C: INTEGRALS
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overall factors, are expressed in terms of the modified Bessel
functions

	 dz e−z2/2�¯� = e−q2/4��

2
�c0I0�q2/4� + c1I1�q2/4��

�C1�

with coefficients

�c0,c1� = �1/4��2 + q2,− q2� for 	q,

�c0,c1� = �1/2��q2,− 2 − q2� for 
q,

�c0,c1� = �q2/16��− 2 + q2,− q2� for bq,

�c0,c1� = − �q/8��1 + q2,− 3 − q2� for #q. �C2�
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