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The impact of coherence on the nonlinear optical response and stationary transport is studied in quantum
cascade laser structures. Nonequilibrium effects such as the pump-probe signals, the spatiotemporally resolved
electron density evolution, and the subband population dynamics (Rabi flopping) as well as the stationary
current characteristics are investigated within a microscopic density-matrix approach. Focusing on the station-
ary current and the recently observed gain oscillations, it is found that the inclusion of coherence leads to
observable coherent effects in opposite parameter regimes regarding the relation between the level broadening
and the tunnel coupling across the main injection barrier. This shows that coherence plays a complementary
role in stationary transport and nonlinear optical dynamics in the sense that it leads to measurable effects in
opposite regimes. For this reason, a fully coherent consideration of such nonequilibrium structures is necessary
to describe the combined optical and transport properties.
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I. INTRODUCTION

Quantum cascade lasers (QCLs) (Ref. 1) are semiconduc-
tor heterostructure lasers employing the transitions between
quantized intersubband levels in quantum well structures®°
and act as a source of radiation in the terahertz (THz)/mid-
infrared regime. The laser consists of multiquantum well pe-
riods comprising the electron injector and the optically active
region. These periods are repeated tens or even hundreds of
times over the length of the structure.” To drive the electrons
through the sample, an external bias is applied. Scattering
processes and optical recombination between the conduction
subbands in the doped structure within as well as between
periods lead to stationary electronic occupations out of equi-
librium. While on the technological side, this light source
can be used for spectroscopy in the fields of environmental
detection or medicine,”® it offers on a fundamental ground
an interesting model system to study intersubband charge
dynamics in a structure where the optical and the transport
properties are closely interrelated.

The first semiconductor heterostructure laser operating in
the intersubband regime was realized by Faist et al.' in 1994,
Since then, many types of QCLs of different design have
been built and optimized; see, e.g., Refs. 7 and 9 for an
overview. The QCL has been the subject of extensive theo-
retical research. The stationary properties of QCLs were
studied by a rate equation'®!" and a Boltzmann-type
approach!>!'7 as well as a quantum theory employing both
nonequilibrium Green’s functions'®?? and density-matrix
theory.”>"> Here, the gain, the current-voltage characteris-
tics, and the stationary charge distributions have been estab-
lished. First results regarding the nonlinear optical properties
such as optically induced subband population dynamics have
been presented by us within a density-matrix theory.?

One central result of these studies is that coherence can
play an important role in the determination of the stationary
current, requiring a fully microscopic theory of the current
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including nondiagonal density-matrix elements.?%>”-? Here,
the often applied rate and Boltzmann equation approaches,
based on Wannier-Stark hopping (WSH), fail. Experimen-
tally, indications of coherent charge transport have been ob-
served in the oscillatory gain recovery in pump-probe experi-
ments of mid-infrared QCLs (Refs. 29-32) as well as
recently in THz structures.’® This oscillatory behavior has
been attributed to resonant tunneling through the injection
barrier of the laser. These observations suggest that coherent
effects might also become visible in optics in the time regime
beyond the light-matter interaction. However, different
studies’**> reveal a simple relaxation in the gain recovery,
showing that not all samples exhibit this coherent effect.
Motivated by these investigations, this paper is focused
on the role and importance of coherence in the interplay
between ultrafast optical dynamics and stationary transport
in quantum cascade structures. We investigate the regimes
where coherence is of relevance in the combined optics-
transport system. To this end, we present a fully microscopic
theory describing the dephasing and tunneling processes in a
QCL structure. In order to systematically investigate the op-
tical and transport regimes, we focus on two quantities de-
scribing the coherent and the incoherent evolution within the
system: the tunnel coupling 2{) between the two states
across the main injection barrier and the level broadening T’
of the states. We systematically vary the width of the main
tunneling barrier in the QCL structure, thus establishing a
relation between these two central quantities. Using this re-
lation, we investigate the importance of coherence in the
calculated signals: In the transport regime, we compare a rate
equation (WSH) approach with a fully microscopic current
theory to investigate the regime of validity of both models.
In the optical regime, we consider pump-probe calculations,
complemented by the spatiotemporally resolved electron
density evolution and the subband population dynamics due
to strong ultrafast excitation. Using these nonlinear results,
aspects of the nature of the optically induced charge dynam-
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ics and the importance of coherence can be addressed.?

Comparing the optical and transport results, we find that
the influence of coherence is observable in opposite param-
eter regimes: the inclusion of coherence in stationary trans-
port calculations becomes important for 2 <T", where the
coherence between subbands [imits the current flowing
through the structure, while in the nonlinear optical gain dy-
namics, the inclusion of coherence drives the observed oscil-
lations in the gain recovery for 20 =T". Combining the two
results, we thus find that it is necessary to consider a fully
coherent theory in order to understand the combined optics-
transport problem independent of the parameter range of op-
eration.

II. THEORY

The QCL heterostructure is modeled as a multiconduction
subband system, with each period comprising an injector and
an active region. Within the effective mass and envelope
function approximations,36 the wave functions, assumed to
be separable and infinitely extended in the quantum well
plane, are given by

1 .-
Wii(X,2) = =™ E()up~o(x), (1)
VA

where A is the in-plane quantization area, X and k are the
in-plane spatial and momentum vector, respectively, &(z) is
the envelope function in growth direction, and uj-y(x) is the
Bloch function taken at the band edge. There are several
natural possibilities to choose the wave functions &(z) to
describe the system. Since we consider the optical response
of the system as well as the WSH model in the current cal-
culation, we choose the Wannier-Stark (WS) basis which di-
agonalizes the heterostructure potential as well as the exter-
nally applied bias. This offers an intuitive physical
interpretation of the optical transitions and the scattering be-
tween single-particle WS states as well as of the electron
counting between approximate system eigenstates. It should
be noted that, even though the physical observables are in
principle independent of the choice of basis, different results
are expected for different basis choices due to the necessary
approximations applied in many-particle problems. In the
following, the theory is applied to the THz QCL discussed in
Ref. 37. The band structure of this QCL in the original de-
sign is shown in Fig. 1 with the important subbands marked.
This structure is considered throughout this paper, consider-
ing different injection barrier widths b. The parameters used
in the calculations are found in Table I.

In order to describe the ultrafast nonlinear optical and
stationary transport properties of the laser, it is preferable to
consider a fully microscopic treatment of the scattering
mechanisms in the structure. In this work, we consider the
interaction of the electronic system with longitudinal optical
(LO) phonons via the polar (Frohlich) coupling as well as
with the ionized doping centers in the laser. Even though
Coulomb scattering can be treated in the same way,’®% we
do not consider this interaction here. For the relatively lowly
doped THz laser considered here, it was shown that scatter-
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FIG. 1. (Color online) Band structure of the THz QCL from Ref.
37 for the injection barrier width »=5.5 nm under resonance con-
dition. The subbands involved in the laser transition (4,1') as well
as the injector subbands (5,2’) are marked.

ing with impurities typically dominates over Coulomb
scattering.*® Acoustic phonons are excluded since they in-
duce only very long scattering times in quantum wells and
act mainly as a low-energy intrasubband thermalization
mechanism.*! Interface roughness scattering is excluded due
to the difficulty of quantifying it microscopically, while alloy
scattering is small in structures with a binary material for the
wells (GaAs) and therefore neglected.*> The included scat-
tering mechanisms are treated in a density-matrix correlation
expansion approach within a second-order Born-Markov
approximation.*** We do not include renormalizations of
the subband energies due to scattering in the form of princi-
pal values (see Sec. I B 3 for a discussion of this approxi-
mation); it is assumed that these are small and approximately
constant for the different transitions, leading only to an ab-
solute energy shift without physical consequences (see Ref.
45 for a discussion of scattering-induced energy renormaliza-
tions in quantum wells).

A. Hamiltonian

To derive the dynamical equations, we divide the Hamil-
tonian of the system into three parts,

H=H,+ Hel—lighl + Hoeoy- (2)
The first part,
Hy=Hg +H,+ Hyp,= 2 8!"3“:/2"”3"' > ﬁwqb;bw 3)
ik q

describes the kinetics of the electrons in the heterostructure
potential Hg; as well as the externally applied bias H, and

TABLE I. Structural and material parameters used in the
calculations.

material system GaAs/Gag 15Al) gsAs

doping density Mg 2.945% 1010 cm™2
well electron mass m* 0.067 m,

LO phonon energy fhop o 36.7 meV
high-frequency permittivity S 10.9

static permittivity g 12.9
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the kinetics of the phonons H ,. The electronic part is di-
agonal due to the choice of basis. a k(a,k) denotes the cre-
ation (annihilation) operator of an electron in subband i with
quasimomentum k and energy &;;=¢;+#%k*/(2m;) and b;(bq)
the creation (annihilation) operator of an LO phonon with
three-dimensional quasimomentum q and energy fiwg
=fw . Subband nonparabolicity is neglected, and the sub-
band effective masses are assumed to be constant, m;=m",
where m™ is the effective mass of the well material.

H)_jign describes the interaction of the system with a co-
herent classical light source. The polarization of the light
field is chosen in the direction of the dipole moment, i.e., in
the growth (z-) direction, and the field is assumed to be a
spatially homogeneous Gaussian pulse,

A(t)=A(t)e,, A(r)=Agexpi{- (/1) Hcos(wyr),  (4)

with the laser frequency w; and Gaussian pulse duration 7.
The pulse area is defined via the envelope of the pulse.*
Under the assumption of a homogeneous excitation, the
Hamiltonian is momentum diagonal and reads as

Hej_jign = eA(D) 2 Mijaj;;ajlé, (5)
ik

with the elementary charge ¢>0, the coupling elements
M,-j:%<i|{ﬁz/m(z)+eA(t)/[2m(z)]}+H.c.|j>, and the momen-
tum operator p_=(%/i)d, with the space-dependent effective
mass m(z).

Finally, H,.,; describes the scattering processes:
electron-LO phonon interaction H,_p, as well as scattering
with ionized doping centers Hj_jp.-

1. Electron-LO phonon interaction
The electron-LO phonon coupling Hamiltonian is given
by

l—ph_ 2 E glj

ij kq

bqa; k_q+gu ]k_ b ik (6)

where ¢ is the in-plane projection of q. The coupling matrix
element is given by the Frohlich coupling,

{e ﬁwLo( 1 __)}1/26((1)
8= 2V \e, &

Here, €, and &, are the static and high-frequency permittiv-
ity, respectively, V is the quantization volume, e(q) is the
displacement unit vector, and ¢, is the projection of the mo-
mentum ¢ in growth direction.

(&le18). (7)

2. Interaction with ionized doping centers

Since the quantum cascade structure is doped, it is neces-
sary to take into account the interaction of the electrons with
the ionized doping centers. Typically, either a barrier or a
well in the QCL is doped, making it necessary to distribute
the ions in this layer. Here, we treat the interaction following
Ref. 19, where the dopant density is distributed on several &
sheets located at z; in the doped barrier/well. The ionized
doping centers are considered as classical scattering centers.
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The Hamiltonian for the interaction is given by

el—lmp— E E 2 lj(é’)allﬁ_q jk’ (8)

ij kq
with the screened electron-impurity interaction potential

1 2
Vilq) =
! A 280e,\VG" + N2

<§i|e—iqfle—\5§2+)\2\z—zl|

&. )

Here, \ is the screening constant and [ labels the position of
the randomly distributed individual ion & distributions in the
growth direction. For the screening, we use the static limit of
the Lindhard formula for a homogeneous electron gas.*’

B. Dynamical equations

1. Equation structure and approximations

We derive the dynamical equations using a correlation
expansion within a density-matrix approach in second-order
Born-Markov approximation, applying a bath approximation
for the LO phonons.**** This leads to equations of motion
for the microscopic polanzanons fiji= (alk (i # j) and the

subband occupations nik—<aika,»k>. On the level of the

coherences (a, kbg) air)

((al Vin(@ajir)), respectively, we neglect the interaction
with the optical field since these terms are of higher order in
the coupling.*® We assume the system to be homogeneous in
the plane perpendicular to the growth direction z; then, we
can restrict to a density-matrix diagonal in the in-plane mo-
mentum: {a;a;i)=f; i

The general dynamical equations are found in the Appen-
dix. While for the interaction with the doping centers, the
complete equation structure is considered, only the terms lin-
ear in the density matrix are taken along for the electron-
phonon interaction due to numerical reasons. This approxi-
mation is justified if we assume that we are working in the
regime of nondegenerate electron gases, where n;;<<1 which
is typically fulfilled in these QCL structures.

We should stress at this point that, due to the spatial ex-
tension of the Wannier-Stark wave functions, it is essential to
consider the whole set of matrix elements in the calculations.
Testbed calculations considered only certain sets of matrix
elements, e.g., we restricted to the diagonal/nondiagonal
scattering terms gugu , considered typically in nonbiased
(equilibrium) quantum well systems,>3%3%4% or alternatively
to terms where the overlap of the wave functions is the main
argument, i.e., terms such as g?ig?j* along with the above set
of terms. Both versions lead to nonstable results in some
parameter regimes where the coherences are important. It is
thus essential to consider the full set of matrix elements
when considering the properties of the QCL at resonance
condition and for large injection barrier widths, i.e., small
tunnel coupling across the injection barrier.

When considering the WSH model, the relaxation pro-
cesses are restricted to the Boltzmann scattering given by

phonon (impurity)-assisted
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FIG. 2. (Color online) Gaussian smoothening of the subband
occupations n;, for the two main subbands (injector 5, upper laser
state 1) at 7=10 K: (a) b=4.5 nm; (b) b=11.0 nm.

A =~ T+ T = ). (10)
The in- and out-scattering rates I';; and I';" are functions of
the subband occupations n;;: and are given for both the
electron-phonon and electron-impurity interactions in the
Appendix.

The system temperature enters the calculations through
the scattering rates which include the phonon distribution,
assumed to be given by an equilibrium Bose-Einstein distri-
bution ny=[exp(hwy/ kgT)—1]"', and the screening param-
eter N for the interaction of the electrons with the doping
centers (see also Ref. 50). Here, the approximation is made
that the lattice and the electronic temperature are the same.

2. Periodic boundary conditions

In order to describe the extension of the periodically
coupled structure, it is necessary to apply appropriate bound-
ary conditions in the growth direction. Since the inclusion of
coherence between states of different periods is important to
describe the nonlinear optical dynamics due to the spatial
extension of the wave functions,?® we consider a nearest-
neighbor approach where the coherence and wave function
overlap between two adjacent periods (n,n') are taken into
account. We checked this approximation by showing that
|finjn’,1:|’ g?,,j,,uvf,,j,,r(i)zo for |n—n’|22, where
f injn’,E(gg,jn,,Vinjn,(é)) denotes the coherence (coupling ele-
ment) between the states |i) and |j) in the periods n and n’,
respectively. We apply translational invariance of the density
matrix between periods,’!

finjn’,l; =fi(n+1)j(n’+1),l;’ Ny k= ni(n+l),l€' (1 1)

For the wave functions and the band edge energies g;, we
apply a coordinate shift and a bias drop, respectively,

gin(z) = gi(n+1)(Z + Lper)7

where L, is the period length and E the applied electric
field. In the following, the index i=(i,n) is taken as a com-
posite index.

Ein= €i(n+1) — eELper’ (12)

3. Shortcomings of the model

Even taking along the whole set of equations within the
approximations discussed above, we partially encounter
negative occupations n; (see Fig. 2) which is known from
the treatment of Redfield-type equations such as considered
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here.’>>* However, this typically does not lead to unphysical
results if we focus on averaged observables. For all dynami-
cal calculations, we obtain physical values for the current
density, the total electron densities in each subband, and the
gain spectrum. However, the broadening in Eq. (13) may
become negative for regimes where coherences play an im-
portant role due to the negative occupations. This may be
due to the fact that (i) the scattering rates as such are not
observables and (ii) the simple formula for the broadening
used here, which is typically applied in the literature, does
not take into account stationary coherence. In order to guar-
antee strictly positive values for the averaged scattering rates
to calculate the broadening in Eq. (13), which we can use as
a measure of the lifetime of the Wannier-Stark states, we
perform a Gaussian smoothening of the stationary distribu-
tions and use these in the calculations of the broadening T'.
Figure 2 shows an example of this smoothening for two dif-
ferent barrier widths: while for small barrier widths and low
temperatures the negative occupations are negligible, and
thus the corresponding averaged scattering rates are always
positive, the smoothening becomes important for large bar-
rier widths where the negative occupations can lead to nega-
tive values. Thus, the values obtained for the broadening I’
should be viewed as approximative values. Since we are con-
cerned with qualitative results only, this is justified. For the
cases where the negative occupations are negligible, and thus
the averaged scattering rates strictly positive, the smoothen-
ing induces changes in the broadening of 2%—-3%. We would
like to stress again, however, that all dynamical calculations
and all results except for Fig. 5 are performed without arti-
ficial modifications of the calculated data, such as any kind
of smoothening. In addition, it should be noted that the cal-
culations here are performed at the point of “maximal coher-
ence” with respect to the tunnel coupling across the injection
barrier, i.e., at resonance (cf. Sec. Il A). Away from reso-
nance, the influence of coherence and the correspondingly
related problems such as nonpositivity are strongly reduced.

The reason for the quite large negative values for the oc-
cupations partially encountered may be explained by the fact
that the system under consideration is a very complicated
one: for the nearest-neighbor coupling considered in the cal-
culations, we have 35 independent coherences, and thus
there is a very strong interplay between the different frequen-
cies of the coherences which can destroy the strict positivity
of the occupations. For small barrier widths and low tem-
peratures, the general dynamical Egs. (A1) and (A5) reduce
to the Boltzmann dynamics given in Eq. (10). Here, any
negative occupations observed in our full calculations are
negligible (n;,,=-107%) [see, e.g., Fig. 2(a)]. In the case of
the Boltzmann scattering dynamics, i.e., including only the
diagonal elements of the density matrix, the stationary occu-
pations remain strictly positive for all barrier widths and
temperatures.

The specific oscillation energies of the peaks can be ex-
plained by the energetic structure of the system: the peaks
correspond to different combinations of the bias drop per
period eFL,, and the LO phonon energy E| . In Fig. 2(b),
e.g., the large peaks correspond to the energy eFL,,—E;q
=56.40-36.7 meV=19.7 meV, while the smaller peak po-
sitions are given by 2eFL..—3E;5=2.7 meV. The latter are
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weaker since they represent a higher order process of itera-
tive transport and scattering. For the two subbands, the peaks
are shifted by AE~0.1 meV, corresponding to the tunnel
splitting between the two states, E;,—E;=~0.1 meV.

As stated above, there is a strong interplay between dif-
ferent coherences of sharp energy. For 7=50 K and a certain
barrier width regime, we need to incorporate additional
damping in order to obtain convergence. In the calculations,
we do this by adding a phenomenological, low-energy intra-
subband scattering mechanism with an energy which is un-
commensurable with the LO phonon energy (E~0.5 meV)
and use the LO phonon coupling element with an increased
strength. We should note that this damping is of a purely
phenomenological character and not a physical scattering
mechanism as implemented here. The concerned barrier
widths are marked in Figs. 5 and 6. The problem with con-
vergence may be a consequence of the combination of ne-
glecting low-energy scattering channels and applying the
Born-Markov approximation within the density-matrix
theory. Another explanation of this convergence problem is
that scattering-induced energy renormalizations are ne-
glected at this order of the perturbation expansion. This is an
approximation often applied within the Born-Markov
approximation.?>-® Since the renormalizations, like the scat-
tering rates, are temperature dependent, this could explain
why the convergence problems only appear for certain tem-
peratures. On the other hand, since the resonances depend on
the specific energy structure, and thus on the barrier width b,
problems are expected to appear only for certain barrier
widths, as witnessed in the results.

Including an artificial damping as discussed above, we
find that the value of the stationary current is approximately
independent of the scattering strength. This has already been
observed in earlier studies of the QCL (Refs. 15 and 41) and
attributed to the fact that a low-energy dissipative scattering
mechanism such as LA phonons leads mainly to a thermali-
zation within the subbands but has no strong effect on the
actual value of the stationary current. We adopt the validity
of this statement here and take the obtained values of the
current as physical results. On the other hand, it is clear that
the inclusion of additional large damping leads to a strong
overestimation of the total broadening as calculated in Eq.
(13). Since the relation between the broadening I' and the
tunnel coupling 2} is used to discriminate qualitatively dif-
ferent regimes, the inclusion of additional scattering mecha-
nisms for the concerned barrier widths (which typically leads
to a larger broadening) does not lead to qualitatively new
regimes of interest (see Fig. 5). It is for this reason that one
can safely disregard these values in the discussion of the
broadening and the tunnel coupling as is done in the follow-
ing.

III. NUMERICAL RESULTS

In this section, we apply the theory of Sec. II to the THz
laser from Ref. 37. This structure has been investigated with
respect to its transport in the stationary laser regime as well
as its gain properties.'” In the regime of ultrafast nonlinear
optics, Rabi oscillations were considered recently.?
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FIG. 3. (Color online) (a) Injector (5) and upper laser state (1")
showing an anticrossing at the main tunneling barrier at exact reso-
nance of the corresponding Wannier states. Lower laser state (4) is
also shown. (b) Tunnel splitting energy AE=|Es—E,/| for varying
bias and different barrier widths b determining the resonance bias at
the center of the anticrossing and the tunnel coupling 2Q) = AE.

First, the systematic setup is discussed, along with the
calculation of the central quantities used for the further dis-
cussion of the transport and optical properties. The stationary
nonequilibrium due to the different scattering mechanisms is
determined. This is necessary for the determination of the
stationary value of the current but also as a starting point for
the consideration of the optical response. Then, the WSH
approach is compared with a full current calculation to in-
vestigate the importance of the inclusion of coherence in the
stationary transport. Finally, the nonlinear optical response of
the structure is considered, focusing on pump-probe signals
as well as the spatiotemporally resolved electron density and
the optically induced population dynamics, to study the role
of coherence in the optical regime.

A. Systematic setup and stationary state

In order to systematically investigate the importance of
coherence, we vary the width of the main tunneling barrier
connecting the injector and the active region of the laser.
When resonant tunneling between the injector and the upper
laser state is small, the WS states are approximately localized
in the injector and in the active region. For a certain applied
bias, the WS states become delocalized across the injection
barrier and an anticrossing occurs, where the injector and the
upper laser level form a pair of binding/antibinding states.
The system is assumed to be in resonance at the center of the
anticrossing, i.e., for the bias at which the splitting energy
between the two respective levels has a minimum. Here, the
level splitting AE equals twice the tunnel coupling 2() be-
tween the localized injector and the upper laser state (see
Fig. 3).

The QCL as a multisubband nonequilibrium system is a
very complex structure, and thus a straightforward analytical
determination of the stationary population and coherence dis-
tributions due to scattering is not possible. We thus numeri-
cally determine the initial conditions to be stationary solu-
tions for f;; ; and n;; without the optical field by solving all
scattering contributions from an arbitrary state of fixed total
population until a steady state is reached. Figure 4 shows the
process of determining the initial distributions by starting
from subband populations n;=2/AXZn;; given by single-
subband Fermi distributions with equal populations in each
subband. An approximate stationarity is reached on a time
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FIG. 4. (Color online) Population relaxation dynamics using the
full set of dynamical equations for a barrier width of »=5.5 nm at
T=10 and 50 K, determining the stationary nonequilibrium of the
system. Inset: Short-time evolution of the subband populations.

scale of a few picoseconds, while long time intraband redis-
tributions can last up to several nanoseconds (not shown).
For small barrier widths, i.e., large tunnel coupling (), the

relaxation is described well by a Boltzmann relaxation r’zﬁg).

For larger barrier widths, the influence of the coherence on
the stationary populations cannot be neglected any longer
and becomes important which is discussed in detail in the
next section.

Having determined the stationary distributions, we can
calculate the scattering-induced broadening of the states. The
level broadening of the considered states is approximately
given by the mean of the two tunnel-split Wannier-Stark
states, I'=(I";,+I's)/2, where the broadening is determined
by the stationary Boltzmann out-scattering rate,

E (O)Fout }
I‘i - (0) P (1 3)

for the stationary occupations n . At these low tempera-
tures, the broadening is typically dommated by the impurity
scattering, which is strongly temperature dependent due to
the screening length® and thus increases strongly from 10 to
50 K, while the interaction with phonons is essentially given
by spontaneous emission.

Figure 5 shows the calculated values of ) and I" as a
function of the barrier width b. As is expected, the broaden-
ing remains roughly constant for varying barrier widths since
the scattering rates are not strongly influenced by the width,

T (meV)
2 Q (meV)

2t ]
:E:.T_::j—**
0 L L I

5 6 7 8 9 10 11 12 13
barrier width (nm)

FIG. 5. (Color online) Tunnel coupling 2{) and mean broaden-
ing I'=('5+1"},)/2 of the injector and the upper laser state for
different barrier widths » and at 7=10 and 50 K (see remark in
Ref. 55).
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while the tunnel coupling across the barrier approaches zero
for b—o. For T=10 K, the two energies are roughly the
same for b= 6.0. This is the regime which is physically in-
teresting, and thus barrier widths slightly larger and less than
this value are the focus in the following investigations. For
T=50 K, the broadening of the states is much larger then the
tunnel coupling for all considered barrier widths, and thus no
transition between different regimes is expected.

B. Stationary results: current calculations

The stationary distributions far from equilibrium deter-
mined in Sec. IIT A are the starting point for the optical dy-
namics discussed later in this chapter. Here, we consider the
accompanying evolution to the steady state value of the cur-
rent flowing through the structure. In order to investigate the
influence of coherence on the system, we focus on two dif-
ferent approaches to the current calculation: the first restricts
to the occupations n;; to consider a rate equation approach—
the so-called Wannier-Stark hopping model—and the second
takes the coherences f;; ¢ into account.

We start with the rate equation approach, where in effect
the electrons are counted as they cross an interface at a fixed
point in the growth direction of the structure due to scatter-
ing between states which are localized at different spatial
parts of the structure. The WSH current is just given by the
application of Fermi’s golden rule to each set of states. For
the electron-phonon interaction, it is determined via (n_q

:nq)s

Tisn(t)==22- 3 3 |g828(e i~ € * £10)
WAL= o
11
X nq+§ * 3 (dii=dipni(1 = njz,s), (14)

where J© denotes the absorption/emission of a phonon, d;;
=—ez,; is the expectation value of z for the WS state |i), and
the sum i,j is carried out over all states. The factor 2 arises
due to spin degeneracy and L=NL,, is the length of the
structure with N periods of length L. The current is fully
determined by the diagonal elements of the density matrix
n;i, considering jumping of electrons from one state to the
next, and reaches its steady state value as determined by the
relaxation in Fig. 4 when restricting to Boltzmann dynamics.
An analogous expression is found for the elastic impurity
scattering. While Eq. (14) can be motivated by hopping of
electrons between different positions z; and z;;, it is in fact
an approximation for the full current driven by coherences
[Eq. (15)]; see Ref. 56.

When deriving the current microscopically from the cur-
rent operator f=—e/(2m0)\f”(x,t)[ﬁ+eA(t)]‘f’(x,t)+H.c.,
one arrives at another picture of the current, where it is the
coherence between states which carries the current flowing
through the structure. Here, the current is given completely
via the nondiagonal elements of the density matrix fj;z,
which in growth direction yields
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FIG. 6. (Color online) Stationary current for both the WSH and
the full calculation at resonance for varying barrier widths at T
=10 and 50 K (see remark in Ref. 55).
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where v,-j=%<i|[ﬁz/m(z)+eA(t)/m(z)]+H.c.|j) are the veloc-
ity matrix elements and the factor 2 again arises due to spin
degeneracy. For the calculation, the polarizations f;; ; are ini-
tially set to zero. The finite occupations in the subbands lead
to a stationary current which is fully determined by the scat-
tering in the structure.

We now carry out current calculations using both the
WSH and the full approach for varying barrier widths. The
result is shown in Fig. 6. The WSH current remains approxi-
mately constant for varying barrier widths. This is due to the
fact that at resonance, the injector and the upper laser level
form a pair of binding/antibinding states whose nature hardly
changes with b. Thus, the hopping current is not affected by
the barrier width; see also Ref. 27. The slight increase in the
current may be attributed to the impact of the other levels
which change slightly with decreasing bias, which is needed
to keep the two tunnel-coupled states in resonance.

In contrast, the full calculation [Eq. (15)] based on the
coherences shows the expected drop of the current with bar-
rier thickness. We first focus on the case 7=10 K. For small
barrier widths (where 2Q0=T"), the two stationary current
results are approximately the same and show a qualitatively
similar behavior, i.e., the slope of the two curves are almost
parallel. In this regime, the WSH and the full model both
describe the stationary current well. The slightly smaller
value for the full model stems from the fact that only the
main injection barrier is investigated systematically here.
Resonant tunneling at the other barriers in the structure is not
considered, so that a similar argumentation as applied in the
following can also be applied to them. Thus, it is expected
that a constant offset can occur, probably due to the extrac-
tion barrier where the two delocalized states (lower laser
level, extraction level) are also close to resonance.

For large barrier widths (where 2Q <T"), the full current
decreases until it almost vanishes in the limit of large barrier
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widths. This decrease is the physically expected behavior, as
the growing injection barrier width restricts the current flow-
ing across the barrier and thus through the whole structure.
For larger barrier widths, the growing localization of the
charge in the injection region leads to the fact that the
Wannier-Stark states which are delocalized across the injec-
tion barrier no longer constitute a “good” basis to describe
the states of the system. For this reason, the coherence be-
tween these two states becomes important in the stationary
state, whereas it is negligible for smaller barrier widths. This
can be seen in the relaxation dynamics as well, where for
large barrier widths, the influence of the coherences on the
populations, mainly of the injector and the upper laser state,
becomes very important, and thus a pure Boltzmann relax-
ation description fails for the stationary populations.

For the case of T=50 K, the situation is different. For
small barrier widths, the drop of the full current is more
pronounced than for 7=10 K, showing that even for those
barrier widths the WSH model for the current fails. We
should note that this difference is not as pronounced as
would be expected; however, since we are interested in
qualitative results, it suffices to find that the onset of devia-
tion between the WSH and the full calculation is shifted to
lower barrier widths. It should be noted that for all barrier
widths here, the relation 20 <TI" is fulfilled.

It is thus found that in the stationary current calculations,
the inclusion of coherence becomes important if 2Q <1" un-
der resonance. For 2Q) =T, the WSH approach to the current
calculation is a good approximation, and thus the inclusion
of coherence is negligible. For 2Q <T', only the full model
shows the physically expected decrease in the current as the
tunnel coupling decreases since the coherence between the
injector and the upper laser state becomes important to de-
scribe the localization of the eigenstates. The decrease in the
tunnel coupling across the main tunneling barrier limits the
current flowing through the structure. This limitation is not
reproduced by the WSH approach. It should be noted that
this result has already been discussed before in Ref. 27 for
the QCL and in Ref. 57 for superlattices.

C. Ultrafast optical dynamics

We now turn to the nonlinear optical response due to an
ultrafast external perturbation of the laser structure from sta-
tionarity. Here, the situation is not as clear as in the transport
case. Obviously, the light-matter interaction as such is a co-
herent process as the vector potential couples to the nondi-
agonal elements of the density matrix f; ;. However, it is
more interesting to consider the dynamics after the passage
of the pulse, where the signal is typically dominated by in-
coherent scattering.

As discussed in Sec. III B, coherences between Wannier-
Stark states are important in the regime of large barrier
widths and high temperatures, where the stationary states are
coherent superpositions of the WS states; they describe the
tunneling through the barriers and thus the return to the sta-
tionary state. This is expected to remain important in the
optical dynamics in order to describe the return to the steady
state after optical excitation. However, the comparatively
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FIG. 7. (Color online) Dependence of the absorption spectrum
on the injection barrier width at 7=10 K.

large scattering with respect to the tunneling (see Fig. 5) is
expected to destroy all observable coherent effects in this
regime. The question arises whether coherent optical effects
after ultrafast optical excitation can be observed in the oppo-
site regime, where coherences were shown not to be impor-
tant in the stationary transport. Recently, optical pump-probe
measurements in mid-infrared?®32 and THz QCLs (Ref. 33)
have shown an oscillatory behavior attributed to (coherent)
resonant tunneling through the injection barrier. In this sec-
tion, this effect is investigated with respect to the relation
between the tunnel coupling and the level broadening.

We begin by considering the linear response of the system
to characterize the laser. Then, we analyze the nonlinear op-
tical response in form of the experimentally studied pump-
probe signals to study the regime of importance and the role
coherence plays in the optical signal. We complement this
study by looking at the optically induced charge as well as
the subband population dynamics.

The linear absorption of the structure is calculated via the
complex susceptibility

1 8J(w)

X(w) = oA (w)’

(16)
8J(1)=J(t)—J, denotes the change in the current density in-
duced by the optical field with vector potential A(w), where
Jyy is the stationary value of the current density determined in
the previous section and J(¢) is given by Eq. (15). From this,
the absorption a(w)~ w Im x(w) is calculated.

In Fig. 7, the absorption spectrum of the gain transition is
shown for different injection barrier widths. Due to the anti-
crossing at resonance, the spectrum shows a double-peak
structure which can be resolved for small barrier widths
where the tunnel splitting is sufficiently large. For larger bar-
rier widths, the two peaks merge to form a single resonance
for sufficiently small tunnel splitting energies compared to
the dephasing of the transition. Due to this splitting, it is a
priori unclear which of the transitions is to be considered the
optical gain transition. In the following considerations, the
system is excited resonantly on the transition yielding the
larger peak gain which here is the lower gain transition fre-
quency, and the accompanying optical dynamics is investi-
gated. The second peak appearing for 5=9.0 nm at AE
~16 meV arises from an enhanced dipole moment between
the two resonant states 1’,5 and extractor state 3.
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When increasing the barrier width further, the coherence
between the injector and the upper laser state becomes im-
portant so that the stationary state of the system is in a linear
superposition of the two WS states, localized in the injector
region. This coherence can lead to a strong decrease in or
even a vanishing of the gain. To illustrate this, it is helpful to
consider a simple three-level system consisting of the two
resonant states (injector 5 and upper laser state 1’) and lower
laser state 4. We assume that the coherences between the
lower laser state and other two states is small compared to
the stationary tunneling coherence at the time of the probe
pulse #,, which is taken as a & pulse, i.e., [fa1/(to)],|fa5(t0)]
<|f,:5(to)|. Solving the semiconductor Bloch equations, the
gain at the laser frequency is then given by (under the as-
sumption |Es—E /| <|Es—E,|)

>

a~ — {dis(ns —ny) + dilf(nl' —ny) + 2dysdyyr Relfys5(to) ]},
(17)

with the constant level densities n;. If the system is now in
the state |W)~|5)+|1") (d4s=~—d,;/) which is localized in
the injection region, as is the case for large barrier widths,
we have ns=n;,. The gain is then given by the stationary
inversion of the states ns—ny as well as a further term
-2 Re[f/5(ty)] containing the coherence between the two
resonant states,

a~ —di{2(ns — ny) - 2 Re[f115(1) 1. (18)

Typically, the first term containing the inversion determines
the optical spectrum. In the presence of a strong stationary
coherence fi:5(ty), the gain can be strongly reduced or even
vanish, even in the presence of a strong inversion, which is
the case for all barrier widths considered. The stationary state
as a superposition of the two WS states is fully localized in
the injector, leading to a very small dipole overlap with the
lower laser state which is witnessed in the vanishing gain.

For the nonlinear optical dynamics, we focus on the
pump-probe signals which have been experimentally mea-
sured recently.”®3> An ultrafast nonlinear pump pulse reso-
nant on the laser transition excites the sample, leading to a
gain saturation at the laser energy, and a subsequent weak
probe pulse tests the laser transition as a function of the
delay time between the two pulses (see Fig. 8). Correspond-
ing to the experiments, a 170 fs 17 pump pulse (P) and a (in
comparison to all optical transitions of interest) spectrally
broad probe pulse (Pr, with 7=50 fs) are used. In contrast to
a standard differential transmission spectrum where the com-
plete energy range is recorded,*’ the focus is on a monochro-
matic measurement, yielding the absorption at a fixed energy
for different delay times. The experimental separation of
pump and probe pulses which is done via directional filtering
of the response is carried out here in such a way that the
response to only the pump pulse &Jp is subtracted from the
response to both the pump and probe pulses SPp,p,, yielding
the purely linear response after the influence of the pump
pulse whose direct response is filtered out. Thus, we consider
for the absorption
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FIG. 8. (Color online) Pump-probe signals after ultrafast strong
pumping and subsequent linear probing at the laser energy for dif-
ferent delay times t,; and barrier widths at 7=10 and 50 K. Both
pump and probe pulses are chosen to be resonant on the laser tran-
sition. Insets: Pump-probe signals for small delay times.
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with the delay time 7,, the fixed pump and probe energy @
(which is equal to the laser energy here), and the probe field
Ap,. 6J(@) is the Fourier transform of the corresponding
simulated time signal &J,(¢) taken at the fixed frequency @.
In Ref. 58, it is shown that the nonlinear absorption accord-
ing to Eq. (19) describes the signal contribution measured in
the probe direction. While the signal contains all coherent
effects also in the limit of delay times shorter than or com-
parable with the dephasing times, additional coherent effects
are included for short delay times which are not measured
experimentally due to directional filtering; these effects are
expected to be small. Our result reproduces well-known
studies in the probe direction, for instance, Ref. 59. The dif-
ferential pump-probe response is then given by exp{—[a(z,)
- ao(td)]L}— 1~ —(l’(td)+ ao([d) = PP(td), where ao(td) de-
notes the linear response without the pump pulse and it is
assumed that «L <1 where L is the length of the structure.
For reasons of presentation, we plot the negative differential
pump-probe response. Then, positive signals correspond to a
decreased gain compared to the stationary reference gain
value.

The pump-probe response for different barrier widths and
at T=10 and 50 K is shown in Fig. 8 (see also Fig. 11 for the
corresponding population dynamics caused by the pump
pulse for b=4.5 and 7.0 nm at T=10 K). The ultrafast pump
pulse saturates the gain transition, leading to a strong absorp-
tion at this energy (positive pump-probe signal). The follow-
ing return to the steady state shows two main features: (i) a
decay of the signal on a time scale of a few picoseconds.
This feature is due to the incoherent scattering which leads to
a return to the steady state, yielding the original gain for the
laser transition. (ii) For smaller barrier widths, an oscillatory
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modulation of the signal whose amplitude decreases for
growing barrier widths, while its period of the order of pico-
seconds increases correspondingly. In addition, fast oscilla-
tions with a period on the order of 0.1 ps are visible which
are addressed briefly below but which are not the focus of
the paper.

The oscillatory feature is a coherent effect in the dynam-
ics after the passage of the pulse: The pump pulse depopu-
lates the upper laser state locally in the excited region. At
resonance condition, such a locality is represented by a co-
herent superposition of levels 1’ and 5. This causes coherent
charge oscillations between the two superpositions which are
localized in the injector and in the active region,® leading to
a modulation of the coherence between the two laser states
and thus to an oscillation of the gain signal. The oscillation
hardly causes any changes in the WS subband populations
and no oscillating inversion as will be discussed later in this
section. Thus, the oscillation is a coherent effect. The charge
oscillations are visible for the case that the tunneling period
Toe~1/AE is less than the scattering period Ty~ 1/T,
1.e., Toee = Tyean Let us first focus on 7=10 K. Here, gain
oscillations are strongly visible for b=4.5 and 5.5 nm where
20=T, ie., Too = Tyuy Already for b=6.5 nm, the oscilla-
tions become hardly visible and fully vanish for d
=7.0 nm, where T,,.> T, For very large barrier widths,
it is not possible to invert the gain transition due to the strong
coherence between the injector and the upper laser state. The
two states are now in a superposition state localized in the
injector, and thus a dipole interaction via the electric field
between the lower laser state and the upper state is not pos-
sible since the charge is localized outside the active region.
Thus, no charge inversion occurs (compare the discussion of
the gain for large barrier widths in Fig. 7). At T=50 K,
20 =T, ie., Ty = Tyeuy 18 fulfilled for all barrier widths (cf.
Fig. 5), and thus only very weak gain oscillations are found
for b=4.5 nm. Again, for large barrier widths, no inversion
occurs, leading to an almost vanishing pump-probe signal. It
should be noted that the fast oscillations on a time scale of
around 300 fs seen in the insets of the pump-probe signals
for small delay times ;=<1 ps can be attributed to tunneling
due to the coherence between the lower laser state and the
two resonant states which show an energy splitting of AE
~13 meV, corresponding to an oscillation period of T
~300 fs. Due to the changing applied bias and the corre-
spondingly changing laser energy, the oscillation period
changes slightly between T, =~200-300 fs.

Experimentally, gain oscillations have been observed in a
mid-infrared laser in Refs. 29-32 and in a THz laser in Ref.
33. In the case of the mid-infrared laser, pronounced gain
oscillations were found up to relatively high temperatures,
including a gain overshoot when probing close to the reso-
nance. This effect depends strongly on the strength of the
scattering mechanisms, specifically on the depletion of the
lower laser subband and the strong coupling through the in-
jection barrier, and has not been observed in our calculations.
According to Ref. 31, the lifetime of the superposition of the
two resonant states T,=1 ps which is much longer than
the observed oscillation of T,,=~500 fs, and thus 2Q>T
which is the regime where gain oscillations are expected. In
Ref. 35, time-resolved pump-probe differential transmission
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measurements did not show signs of gain oscillations. As the
authors argue in the paper, this is due to the very short scat-
tering rates due to Coulomb scattering (T, < 100 fs) which
is much smaller than the tunneling oscillation period (7
=517 fs), and thus no gain oscillations are expected.

The interpretation of the oscillations in the pump-probe
signals being caused by coherent charge transfer across the
injection barrier is strengthened by considering the spatioen-
ergetic structure of the stationary state obtained from our
Green’s function model.?° In Figs. 9(a) and 9(c), the spectral
function A(E,k=0,z) which describes the density of states
for vanishing in-plane momentum is shown. The peaks
roughly correspond to the WS wave functions |&(z)|* with an
energetic width I';. For b=4.5 nm, the binding and antibind-
ing combinations of the injector and the upper laser level can
be resolved around E~=36 meV, while this is not the case
for b=7.0 nm as AE<T'. The right figures show the lesser
Green’s function Im[{G=(E,k=0,z)] describing the corre-
sponding carrier density. For b=4.5 nm, the carrier density
qualitatively follows the spectral function corresponding to
two occupied levels in the stationary state. Thus, when per-
turbing the stationarity on an ultrashort time scale, a super-
position of the two states leads to an oscillatory modulation
of the gain. For b=7.0 nm, the carrier density does not fol-
low the density of states; only the superposition of the two
states, localized in the injector, is occupied at stationarity,
and thus no superposition can be excited and no oscillations
occur. The stationary distribution is already a superposition
of the two WS states, which is also the reason why the in-
clusion of coherence is important to correctly describe the
stationary transport of the system (see Fig. 6).

In addition to the spatioenergetic resolution of the station-
ary charge density, it is insightful to consider its spatiotem-
poral evolution during and especially after the excitation
with an ultrafast laser pulse. To do this, we consider the
spatiotemporally resolved electron density which is given by

1 N
n(zt) = 222 £ fia0), (20)
i k

where the time dependence is included in the density matrix
fi;i(®). In order to simplify the representation and to focus on
the optically induced dynamics, the difference between
n(z,t) and the stationary electron density ny(z), An(z,t)
=n(z,t)—ng(z), is considered in the following. Similar calcu-
lations have been presented in Ref. 23, where however no
detailed modeling of the pump pulse was done.

In Fig. 10, the electron density evolution is shown for the
same parameters of the pump pulse as used for the calcula-
tion of the pump-probe signal discussed above. Shortly after
the pulse has passed at r=0.3 ps, the density is depleted in
the active region due to the fast nonradiative extraction from
the lower laser level to the extractor state and into the injec-
tor.

After this, two qualitatively different behaviors are seen
for the two barrier widths. For 5=4.5 nm, the resonant tun-
neling across the injection barrier leads to a fast refilling of
the upper laser state and thus to an increased density in the
active region at t=1 ps. At t=2 ps, the density in the ac-
tive region again decreases. Thus, the oscillation of charge
which occurs on a time scale of 1.8 ps as detected by the
probe pulse [see Fig. 8 (left)] can be directly seen in the
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FIG. 10. (Color online) Spatiotemporal evolution of the electron
density of the QCL after ultrafast nonlinear optical excitation at T’
=10 K. The pump pulse parameters are the same as for the pump-

probe results.

electron density evolution. When considering the electron
density without the polarizations, i.e., restricting to the diag-
onal elements of the density matrix for the calculation, or
even just without including the coherences between different
periods (not shown), this oscillation is not observed at all.

For the case of b=7.0 nm, a roughly monotonous return
of the density depletion to the steady state is found, and thus
no gain oscillations are expected, as verified in the pump-
probe signals. Due to the weaker tunnel coupling between
the injector and the active region, the charge transfer is slow
so that the oscillation period induced by the tunnel coupling
T, is larger than the scattering period T, and thus charge
oscillations cannot be observed. Additionally, there are fast
oscillations in the active region on a time scale of around 300
fs which we already addressed in the discussion of the pump-
probe signals. The oscillations in the injector region can be
explained by coherences between the injector states where
E,—Es=~5 meV=850 fs.

It has already been mentioned that the charge oscillations
are not seen in the electron density evolution when only the
diagonal elements of the density matrix are used in Eq. (20).
Thus they constitute a coherent effect. This is better exem-
plified by considering directly the subband population evo-
lution caused by the strong pump pulse excitation. We thus
consider the dynamics of the WS populations n,(¢)
=2/AZn;(t) under ultrafast optical excitation. It should be
stressed here that the dynamical calculations are carried out
with the full equation structure including both the diagonal
and nondiagonal density-matrix elements. Again, the dynam-
ics is considered for the same nonlinear excitation used in
the pump-probe calculations. The results are shown in Fig.
11.

During the excitation with the pump pulse, the popula-
tions of the laser levels undergo Rabi flopping, while the
other levels follow adiabatically.?661-63 After the excitation,
the populations return to the steady state due to the (incoher-
ent) scattering processes. While for »=4.5 nm, the Rabi
flopping is restricted mainly to the two resonantly excited
subbands (1’,4); the subband flopping for b=7.0 nm in-
cludes both the two laser states (4,1’) and injector level (5)
since both transitions from the lower laser state are energeti-
cally very close due to the very small tunnel splitting. This
weakens the oscillator strength of each transition, reducing
the effective pulse area compared to the full population in-
version seen for a 177 pump pulse in an ideal two-level sys-
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FIG. 11. (Color online) Optically induced population dynamics
n;(t) for the barrier widths b=4.5 and 7.0 nm at 7=10 K, showing
coherent Rabi oscillations as well as subsequent scattering-induced
relaxation back into the steady state. The pump pulse parameters are
the same as for the pump-probe results (the pump pulse is shown by
the dashed line in the figures).

tem. Still, in both cases, the gain transition is saturated, lead-
ing to absorption at this energy. An oscillating inversion of
the upper und lower laser states corresponding to the oscil-
lations in the pump-probe signals (Fig. 8) or in the spa-
tiotemporal electron density evolution on a time scale of a
few picoseconds (Fig. 10) is found neither for b=4.5 nm nor
for b=7.0 nm. As a matter of fact, if the dynamics are con-
sidered without scattering (not shown), no further population
dynamics are found after the passage of the pulse, while the
corresponding pump-probe signals show an undamped oscil-
lation in the case of b=4.5 nm. This illustrates again that the
oscillations in the gain recovery are a coherent effect.

In summary, it is found that gain oscillations are observed
where the tunnel oscillation period is sufficiently less than
the scattering period, where the relation 2Q =T is valid. The
tunnel coupling leads to pronounced coherent charge transfer
between the injector and the active region as witnessed in the
pump-probe signals and the spatiotemporally revolved elec-
tron density evolution. Considerations of quantities which do
not directly relate to the coherence, such as the dynamics of
the WS populations, show that the oscillations observed in
the pump-probe signals constitute a coherent effect which
requires a fully coherent theory to be observed. It should be
noted here that compared to the current calculations, where a
stationary localization of charge leads to the drop of the
current signal, it is here the dynamical transfer of charge
between different locations in the laser structure which con-
stitutes the coherent effect. Thus, the inclusion of coherence
becomes essential in the nonlinear optical dynamics for the
regime where 2Q) =T to describe the observed coherent ef-
fects. Here, the coherence in the system drives the gain os-
cillations, while for 2Q <T', the scattering destroys the co-
herent effects.

IV. CONCLUSION

We have established a microscopic quantum theory of
scattering for quantum cascade lasers to treat stationary
transport as well as nonlinear optical dynamics. A key issue
is the importance of coherence, i.e., the nondiagonal ele-
ments of the density matrix, and the role which it plays in
different parameter regimes of the tunnel coupling () be-
tween the two states across the main injection barrier and the
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mean level broadening I' of the states. In the transport re-
gime, we have compared a rate equation (WSH) approach to
the current with our microscopic theory at resonance condi-
tion and found that for 2Q =T, the WSH approach is a good
approximation. For 2Q) <T, only the full approach shows the
physically expected decrease of the current for decreasing
tunneling across the main injection barrier, whereby the in-
cluded coherence limits the current flowing through the
structure via a stationary localization of charge in the injec-
tion region. On the other hand, the consideration of ultrafast
nonlinear optical pump-probe signals has shown that the in-
clusion of coherence is important to describe the experimen-
tally observed coherent effects for 2Q0 =T, where it drives
the dynamical charge transfer between the injector and the
active region, resulting in oscillations in the gain recovery.
For 2O =T, only the typical decrease in the pump-probe
signal due to incoherent scattering is observed. It should be
noted again that, in general, coherences are necessary to de-
scribe the return to the stationary state after optical excitation
due to the strong interplay between transport and optics in
this system. The spatially resolved electron density evolution
in time shows the density oscillating between the injector
and the active region for 2Q0=T". The consideration of the
population dynamics of the levels does not show these oscil-
lations, revealing that they are an inherent coherent effect
resulting from the nondiagonal elements of the density ma-
trix.

Thus, the inclusion of coherence is important in opposite
parameter regimes in stationary transport and nonlinear op-
tical dynamics: in the former, it becomes important for
20 =T, while in the latter, it allows the observability of
coherent effects for 20 =T". In this sense, the coherence acts
in complementary ways: in the transport regime, it leads to a
limitation of the current which is not reproduced by the rate
equation approach. In the optical regime, the coherence
drives the oscillatory modulation of the gain recovery which
is not destroyed by the scattering. Thus, it is necessary to
consider a fully coherent theory in order to describe the com-
bined system of optics and transport in this nonequilibrium
structure in the entire parameter range.
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APPENDIX: SCATTERING EQUATIONS
1. Electron-LO phonon interaction

The general form of the scattering equations in Born-
Markov approximation is given by (for ng=n_,)

PHYSICAL REVIEW B 79, 165322 (2009)

fij,lg A 12 % Ni:m(q){(anj _fnj,E)flm,lg+§[(nq + 1)5(8an

e10)] = (O

Sml;ﬂf - 8LO) + I’lqa(sn];

~ Enk+g T 8LO) +ng 5(8n/€ ~ Emi+g —

_flm,lg+§)fnj,l€[(nq + 1)5(8n1€_
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= &nirg = €L0)] = (O = frn e fin il (ng + 1) e,

&g+ EL0)]} (A1)

~ Emk+g SLO) +nq 5(81112 -

mn
are restricted to terms linear in the density matrix since in the

systems considered here, so that |f;; if il <|fi il
The Boltzmann relaxation is determined via

A = — T+ T = np), (A2)

where NV (q)= g?jg%. In the calculations, the considerations

with the semiclassical Boltzmann in- and out-scattering rates
given by

F”l_ _2 |811| Nijcy g (”q +1)d(g;i— Elivg T £L0)

q.l
+ nqé(si/;_ SIIE-HE - 8LO)]7 (AS)
F?,St = E lgd*(1 = nye, )ng e — ey + eL0)
q,!
+(ng+ 1) (e — &g — €L0)]- (Ad)

2. Ionized doping centers—impurity scattering

The general form of the scattering equations is given by

‘f'ij,lz == 772 E [Mnm(q_’)fn] k(s(snk m12+(})
mn g
Mml(c_i)fmn k+q5(8jk nlz+q) Mmj (Q)fln ka(snk

mk+q) Mml(q)fnm k+q 5(811( (AS)

where the average MY (q)=(Zi7 Vf /(@) VL

n/;+(;)] >

'n(—c;»g over the
statistically distributed doping atoms is introduced. Since the
semiclassical interaction is linear in the density matrix, all
terms are taken along for this interaction.

The semiclassical Boltzmann in- and out-scattering rates
are given by

i 2T )
Fi;(l: ? < M§§5(8i12— 8ll;+<])nll€+(ja (A6)
q,l
o 2 M 5(3”3— E1ivg) (1 = 1yjcyz) . (A7)
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