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We discuss possible tunneling phenomena associated with complex wave vectors along directions where the
spin degeneracy is lifted in noncentrosymetric semiconductors. We show that the result drastically depends on
the direction. In the �110� direction, no solution can be calculated in the usual way assuming that the wave
function and its derivative are continuous. A method for obtaining physical solutions is given and consequences
are drawn. As a result, there is no spin filtering in such a direction but the spin undergoes a precession through
the barrier with the rotation angle being proportional to the barrier thickness. In a direction close to �001� we
find a spin-filter effect in close agreement with the model discussed by Perel’ et al. �Phys. Rev. B 67,
201304�R� �2003��.
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I. INTRODUCTION

Understanding spin-dependent tunneling through semi-
conductor barriers is a fundamental problem in semiconduc-
tor physics. A description of this coherent process is crucial
for spin-subband engineering of semiconductor heterostruc-
tures and superlattices. Moreover, spin-dependent tunneling
through crystalline barriers has also become a topic of major
interest in spintronics.1,2 This paper thus lies at the interface
between general semiconductor physics and spintronics. Re-
garding semiconductor physics, it has close connections with
open problems in the envelope function theory.3 Harrison4

studied the problem of heterogeneous materials and intro-
duced the conditions of discontinuity of the envelope func-
tion, taking a general viewpoint, well beyond the semicon-
ductor area. A decisive step in semiconductors was
performed by BenDaniel and Duke5 who defined specific
discontinuity conditions of the derivative of the envelope
function between two media with different effective masses,
based on the conservation of the probability current. This
approach has been successfully applied to heterostructures
by Bastard6 and has become the standard calculation routine,
yielding very accurate energy positions of the energy bands,
in perfect agreement with the experimental data.7 Hereafter,
analogously, we deal with periodic lattices which are per-
turbed by a spin-orbit potential and where, due to the ab-
sence of space-inversion symmetry, the spin degeneracy of
the bands is lifted through a wave-vector-dependent “ex-
change” field.8,9 We show that the matching conditions of the
derivative of envelope function at the boundaries cannot be
“as usual.” Thus, the basic tunneling equations are not
known.

First of all, dealing with tunneling phenomena requires an
accurate knowledge of the energy structure in the forbidden
band gap, i.e., of the complex band structure of the barrier
material. In pioneering articles, Heine10 and Jones11 derived
general properties of the evanescent states and showed their
complexity over six-dimensional wave-vector space, consist-
ing of complex vectors associating a pure imaginary compo-
nent to a real propagating one. It might be thought that the

electrons will tunnel through such complex-wave-vector
states as they would do through usual evanescent states �with
pure imaginary wave vectors�, and this intuitive explanation
would be supported by our familiarity with the tunneling
of electrons located in semiconductor side valleys �e.g., in
the conduction band of silicon�. Hereafter, we deal with
spin-dependent tunneling of conduction electrons through a
gallium arsenide barrier, a compound with no inversion
symmetry.12 Such processes were investigated by Perel’ et
al.13 in a stimulating article using the effective-mass approxi-
mation and under simplifying assumptions; quite large spin-
filter effects were predicted. Although the complex band
structure of GaAs was expected to be well known, we have
recently found that, in fact, the spin-orbit interaction and the
absence of inversion symmetry had never been taken into
account simultaneously throughout the Brillouin zone.14,15

The evanescent band structure was calculated by several au-
thors. Chang16 considered semiconductors oriented in the
�100�, �111�, and �110� directions, with space-inversion cen-
ters �Oh group� or without space-inversion centers �Td
group�, but without taking into account the spin-orbit cou-
pling. Chang and Schulman17 performed a detailed calcula-
tion of the band structure of silicon, which belongs to the Oh
group. Schuurmans and t’Hooft18 studied semiconductors be-
longing to the Td group but explicitly discarded terms which
lead to odd k terms, so that essentially they studied GaAs and
AlAs as if they belonged to the Oh group. In Ref. 15 the
evanescent band structure in the fundamental gap of GaAs-
like III-V semiconductors, including both the spin-orbit cou-
pling and the lack of inversion symmetry, was carefully cal-
culated within a 14�14 and a 30�30 k ·p Hamiltonian
framework. Then it was demonstrated that the evanescent
states in the fundamental gap present an original topology,
with loops connecting nearly-opposite spin states at the cen-
ter of the Brillouin zone.14 This very structure has strong
consequences for electron tunneling. Here, in order to re-
move any unnecessary complexity, we start dealing with
electrons with a unique effective mass m, inside and outside
the barrier—an approximation used in numerical applica-
tions in Ref. 13. The spin splitting in the barrier is described
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via the D’yakonov-Perel’ �DP� Hamiltonian.8 We thus revisit
a classic in elementary quantum mechanics—the tunneling
of free electrons through a square potential barrier—but in a
case where the evanescent states in the barrier are spin split.
From general considerations, we derive relevant boundary
conditions which are sensitive on the crystallographic direc-
tion. We demonstrate that the tunneling process can become
rather involved: the case of loop-shaped real-energy lines
correspond to wave vectors which have both an imaginary
component, which defines the tunneling direction, and an
orthogonal real component, so that one has to deal, so to say,
with a “classical” tunneling effect in the sense where it is
possible to recover almost usual tunneling properties—
analogous to off-normal tunneling of free electrons—but in a
subtle way. In the case of one-dimensional tunneling with a
complex �neither real nor purely imaginary� wave vector, the
tunnel effect seems to be “anomalous:” a spin precession
occurs around a “complex magnetic field.” We show that the
derivative of the envelope function, which is the solution of
the Schrödinger equation, undergoes discontinuities at the
barrier plane—usually, in semiconductor heterostructures,
discontinuities of the derivative arise as a consequence of the
different effective masses in the well and in the barrier
material6—and we propose a treatment of heterostructures.
After entangling the two spin channels, it is possible to re-
cover a situation which has strong analogy with standard
tunneling and where the discontinuity of a “magnetic cur-
rent” can be viewed as the result of a kinetic-momentum
transfer at the barrier interfaces. The spin-orbit-split barrier
exerts a torque on the electron spin, similar to spin-torque
phenomena in ferromagnetic junctions as predicted by
Slonczewski9 and Berger,19 but in the case considered by
these authors, as the barrier is constituted of magnetic mate-
rial, a spin transfer occurs between the tunneling electrons
and the magnetization.

The layout of this paper is as follows. In Sec. II, we give
the background relative to the spin splitting and to the con-
servation of the probability current which will be used after-
ward. We show how the spin splitting can lead to complex
�not strictly imaginary� wave vectors in the barrier and we
analyze the consequences on the probability current. In Sec.
III, we study a barrier normal to �110� and in Sec. IV we look
in detail the case of an incident wave whose direction is
almost normal to a �001� barrier. A summary is given in Sec.
V.

II. BACKGROUND

A. Symmetry

Let us present the notations used throughout the present
paper �see Fig. 1�. e is a unit vector. The direction of the
axes, defined by ex, ey, ez with respect to crystal axes, will be
given in each case. ez is normal to the barrier. ez=e110 in Sec.
III and ez=e001 in Sec. IV. We define kI=�+q, kII=�+Q
+ iK ��, q, Q, and K are all real vectors�, and kIII=�+q. We
also use the following notations: �=xex+yey, �=�xex+�yey,
q=qez, Q=Qez, K=Kez, kI ·r=kIII ·r=�xx+�yy+qz, and
kII ·r=�xx+�yy+ �Q+ iK�z. Without spin, the wave function
of the incident plane wave and in the barrier should be writ-

ten as ei��·�+qz� and ei��·�+�Q+iK�z�, respectively.
To describe the structure of the evanescent states, we use

the k ·p method. In a n-band model, the energy dispersion
curves result from the diagonalization of a �n�n� k ·p
Hamiltonian Ĥ, but k is a complex vector, so that Ĥ is no
longer Hermitian and the evanescent states are associated
only to real eigenvalues E.14,15 To find the energy dispersion
curves, we have to solve the secular equation det M�k�
=det�Ĥ−EÎ�, where Î is the identity. Because the Hamil-
tonian is Hermitian when k is a real vector, we have the
relation M�k�t�=M�k��. Thus, det M�k��= �det M�k�t��

= �det M�k���. It follows that En�k�=En��k
��, where the band

indices n and n� may or may not refer to the same band.10,11

Moreover, Kramers conjugates correspond to the same en-
ergy, so that the state associated to �k , �up�� and the state
associated to �−k , �down�� are degenerate.20,21 Let us recall
that Kramers-conjugate states are obtained by application of

K̂, the time-reversal operator K̂=−i�yK̂0, where �y is the

relevant Pauli matrix and K̂0 is the operation of taking the
complex conjugate.20 Thus in GaAs, the spin degeneracy is
lifted and we expect that the four states ��k , �s��, �k� , �s���,
�−k� , �−s��, and �−k , �−s���� be degenerate, with �s� and �s��
being up-spin states in directions which, generally, are not
parallel �Fig. 2�. We are going to see a concrete example in
Sec. II B, where �s� and �s�� are quantized in the same direc-
tion, and in Sec. IV, where �s� and �s�� are not quantized in
the same direction.

B. Energy levels

In Sec. I, we mentioned that the evanescent band structure
is deeply altered when the lack of inversion symmetry is
taken into account together with the spin-orbit splitting. A
particular topology consisting of loops connecting Kramers-
conjugate spin states near the zone center was shown along
directions of type K�� /K ,0 , i� when the ratio � /K=tan � is
fixed. Such loop structure can be expected to arise as it is

FIG. 1. Sketch of the tunnel geometry with definition of nota-
tions. The spin-orbit-split barrier material of thickness a �medium
II� is located between two free-electronlike materials �media I and
III�. The tunnel axis, normal to the barrier, is the z axis. In the
free-electronlike materials, the real electron wave vector in the z
direction is referred to as q. In the barrier material, the evanescent
wave vector along the z axis is referred to as Q+ iK, where Q and
K are real quantities. The transverse wave-vector component, in the
barrier plane, � is conserved in the tunnel process. Then, the overall
wave vectors in the three media are, respectively, kI=kIII=�+q and
kII=�+Q+ iK.
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known that a band cannot stop.10 Depending on �, we obtain
the different pictures shown in Fig. 3. The spin vector along
a loop is defined by the mean value of the Pauli operator �̂.
In the small-k and small-� limit, we get two nearly-opposite
spin vectors. When going off the zone center, a numerical
calculation shows that the two spin vectors rotate to become
parallel at the point where the two subbands are connecting.
The appearance of these loops is the fingerprint of a strong
band mixing of the first conduction band and of the three
upper valence bands with remote bands �more precisely with
the second conduction band�. Indeed, as long as the wave

vector remains in some vicinity of �, the energy levels are
well described by the DP Hamiltonian, where the spin states
in the subbands only depend on � �see Sec. IV�. Observe, in
Fig. 3, that—because the extension of the loop tends to zero
when � tends to 45°—the portion of the loops which can be
described in this analytical model also has an extension
which can become vanishingly small. Hereafter, we stay in
the framework of the DP model, which allows analytical cal-
culations.

Throughout the present paper, we take the origin of the
energy at the bottom of the conduction band, so that the
relevant Hamiltonian is written as

Ĥ = Ĥ0 + ĤDP,

Ĥ0 =
p̂2

2m
=

− �2

2m
�2 = − �c�

2,

ĤDP = �� · �̂ , �2.1�

where m is the effective mass. ĤDP is the DP Hamiltonian
which describes the k3 spin splitting:8 �=��k�= ��x ,�y ,�z�
= �kx�ky

2−kz
2� ,ky�kz

2−kx
2� ,kz�kx

2−ky
2��. When k is real, the en-

ergy levels are pure spin states, quantized along �, in the
plane perpendicular to k. Note that the two eigenvalues of
� · �̂ are opposite, equal to the square roots of �̄2=�x

2+�y
2

+�z
2. We designate by �̄+ ��̄−� the square roots of �̄2 ��̄+ with

a positive real part and �̄− with a negative real part, if rel-
evant�. �̄+ ��̄−� will be used in Eqs. �2.6� and �2.8�. The

eigenvalues of Ĥ are written as E�k�.
Inside a finite-width barrier, the incident plane wave eiqz is

usually to be replaced with e	Kz which corresponds to an
imaginary wave vector 
iK.

�a� If the incident wave vector kI is in the �001� direction
�kI= �0,0 ,q��, the wave vector in the barrier is kII

= �0,0 ,
 iK� and the degenerate eigenvalues of Ĥ are E�k�
=−�cK

2 which is the �real� energy E�k� in the forbidden
band gap. If kI is almost in the �001� direction �kI= �� ,0 ,q�
with ��q�, kII= �� ,0 ,
 iK� and the eigenvalues of Ĥ are
E�k�=−�c�K2−�2�
��K�K2−�2 which is the energy E�k�
in the forbidden band gap as well.

�b� If kI is in the �110� direction �kI=
q
�2

�110��, a simple
idea would be to take kII=


iK
�2

�110� which leads to E�k�=
−�cK

2
 i�2 K3. This quantity is not real and cannot be an
energy E�k�.22 We are therefore led to consider a wave vec-
tor such that kII=

1
�2

�Q
 iK��110�.
The calculation is given in Appendix A. The resulting

band is plotted in Fig. 4, over a very broad energy domain to
reveal its general structure. We are only interested in evanes-
cent states located in the forbidden band gap, i.e., states with
a small negative energy. For our purposes, a key point is that,
at a given energy, we have exactly four possible states, with
wave vectors �Q
 iK� for spin ↑ and �−Q
 iK� for spin ↓,

the latter being obtained from the former through K̂. In short,

E↑�k� = E↑�k�� = E↓�− k� = E↓�− k�� . �2.2�

FIG. 2. This figure illustrates transformations which, starting
from a state of wave vector k and with a mean value of the Pauli

operator ��̂�, construct degenerate states. K̂0 is the complex conju-

gation and K̂=−i�yK̂0 is the Kramers time-reversal operator.

K̂ yields a state with the wave vector −k� and with the mean spin
−��̂�. The state of wave vector k� may be associated to another spin

state, corresponding to the mean value ��̂��. Applying K̂ to this
state, we form a degenerate state with the wave vector −k and
associated to the mean spin −��̂��. Four states are finally obtained.

FIG. 3. Plot of the real-energy lines inside the gap for k
= �� ,0 , iK�, where K and � are real and positive and tan �=� /K. The
calculation is performed using a 14�14 k ·p Hamiltonian. The
loops are drawn versus 	k	 in 2� /a0 units, where a0 is the cubic
lattice parameter. In all these directions, the spin degeneracy is
lifted. Their shape and extension sharply depend on �. For �
=43.2°, the two branches are too close to be resolved at this scale.
The parameters used in the calculation are P=9.88 eV Å,
P�=0.41 eV Å, EG=1.519 eV, c=E�8c−E�7c=0.171 eV,
PX=8.68 eV Å, =0.341 eV, E=E�7c−E�6c=2.969 eV, and
�=−0.17 eV �see Ref. 30 for a complete discussion�. Inset: real-
band structure �left, dashed line; for clarity, only a valence band
which is connected to the evanescent branch is drawn� and evanes-
cent band across the band gap �right, full line� along the �001�
direction ��=0� where the DP exchange field is zero �no spin
splitting�.
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Equation �2.2� provides us with a concrete example of the
ideas developed by Jones11 who showed that E�k�=E�k��.
The corresponding four plane waves are ei�Q
iK�↑ and
ei�−Q
iK�↓ or e	KzeiQz↑ and e	Kze−iQz↓ �this is schematically
shown in Fig. 5�. This leads us to define

⇑ = eiQz↑, ⇓ = e−iQz↓ , �2.3�

so that the four plane waves write e	Kz⇑ and e	Kz⇓.
In the following, ↑ and ↓ are the up and down spins when

the � vector, which plays the role of a magnetic field, lies
along a real direction which is taken as quantization axis.
When � is not collinear to any real direction, the spin eigen-
states are ↑k and ↓k. In Sec. IV A, we shall see that ↑k and ↓k
are no longer orthogonal. The implications of a wave vector
k=Q
 iK in the �110� direction will be considered in detail
in Sec. III.

C. Probability current

1. Free-electron probability current

We consider a spin-orbit-split barrier separating two re-
gions where the electron states are described by plane waves

and where the potential is taken equal to zero, as shown in
Fig. 1. The barrier potential is assumed to be a positive con-
stant. When dealing with tunneling phenomena through crys-
talline barriers, the wave-vector component � parallel to the
barrier plane has to be conserved. For an incident plane
wave, which has a real wave-vector component parallel to
the surface plane, this implies that the imaginary component
of the wave vector inside the barrier has to be orthogonal to
the barrier plane. Then, the imaginary component of the
wave vector inside the barrier defines the tunneling direction.
To analyze the tunneling processes, we distinguish two dif-
ferent mechanisms: �i� the wave vector has collinear real and
imaginary components along the normal to the barrier �we
refer to this mechanism as para type� and �ii� the real and
imaginary components of the wave vector in the barrier are
orthogonal �we refer to this mechanism as ortho type�. We
would point out that a plane wave with the real �imaginary�
wave vector ��+Q� �iK� is associated with the “classical”
probability current, e.g., calculated for a free electron, J f

=���+Q� /m �0�. Such currents, with a zero divergence, con-
serve the local probability in any domain located in the bar-
rier. On the contrary, a plane wave with the wave vector ��
+Q�+ iK is associated to J f =e−2K·r���+Q� /m. It looks as if
the local probability were to be no longer conserved in a
domain located in the barrier, unless Q=0, because � ·J f =
−�2� /m��K ·Q�e−2K·r. The case Q=0, results in a laminar
free-electron probability flux. The loops in the complex band
structure which have been studied in Ref. 15 correspond to
orthotunneling, the normal to the barrier plane lying along
�001�, a direction where the spin splitting is zero. On the
contrary, tunneling along the �110� direction, a direction
where the DP field is maximum, is a paraprocess. More pre-
cisely, the definition of the free-electron current of probabil-
ity

J f��� = Re
��
p̂

m
�� =

�

m
Im��� � �� �2.4�

is obtained from the conservation of the local probability
when the potential in the Schrödinger equation is real.23 Ob-
viously, the equations expressing the conservation of the
probability have to be re-examined carefully in our case,
where the Hermitian potential is nonreal due to the spin-orbit
interaction. The detailed derivation of the relevant current
operator which allows one to calculate the true currents of
probability J
 and J=J++J− is given in Appendix B. There,
it is shown how to extend the usual procedure, which con-
sists defining the velocity v̂ from the relation

v̂ =
�Ĥ

�p
. �2.5�

2. Ortho- and paraprocesses

Coming back to the specific case of the GaAs-type barrier,
let us derive a few basic results and present some definitions.
The orbital part of the wave function of the conduction band
is S in usual Kane’s notation24 and we write �+=S↑ �k� and

FIG. 4. Mathematical plot of the real-energy lines for k along
�110� as a function of the real part of the wave vector Q in the
barrier. The calculation is performed for a ratio � /�c=0.438 Å. We
are only concerned with negative energies, which refer to evanes-
cent states. More precisely, the physical states are located within a
very small energy domain below the origin. The domain Q�0 re-
fers to up-spin states, whereas the domain Q�0 refers to down-spin
states. In each case, the imaginary component of the wave vector
can take the values 
K. Thus, at a given energy, we have exactly
the four possible states �Q
 iK�↑ and �−Q
 iK�↓. The down-spin
states are Kramers conjugates of the up-spin states.

FIG. 5. This figure is a special case of Fig. 2, when the DP field
� lies along a real direction n. Following the same procedure, four
degenerate states are constructed, which now have their spins quan-
tized along the same direction n �i.e., ��̂�= ��̂���.
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�−=S↓ �k�, where ↑�k�=↑ �see �i� below� or ↑�k�=↑k �see
�ii� below� and ↓�k�=↓ ��i�� or ↓�k�=↓k ��ii��. The corre-
sponding Schrödinger equation is

i�
��

�t

=
p̂2

2m
�
 + ��̄
�k��
. �2.6�

�i� Orthoprocess. Let us assume that kII=�+ iK �i.e.,
Re kII · Im kII=� ·K=0� is a possible evanescent state. Be-
cause E= �2

2m ��2−K2� is real on a real-energy line, the terms
�̄
�k� originating from the spin part of the Hamiltonian are
also to be real. We follow the usual procedure to derive the
expression of the probability current. ↑k and ↓k are no longer
orthogonal but in any case the real spin term disappears, so
that we obtain

� ��
�2

�t
= − � · J f��
� , �2.7�

which is the usual relation for probability conservation. Care
has to be taken that the relation � ·J f��
�=� ·J��
� does
not mean that J f��
�=J��
�. However, in such a case, a
number of classical results derived for free electrons will be
recovered.

�ii� Paraprocess. In the case of one-dimensional tunneling
along the n direction, where n is a unit vector normal to the
barrier, which involves a complex wave vector k= �Q
+ iK�n, ��k�= �Q+ iK�3��n�, we quantize the spin along the
direction of ��n� which is a real non-normalized vector.
�̄
�k� are no longer real. We follow the same procedure to
derive the expression of the probability current and we ob-
tain

� ��
�2

�t
= − � · J f��
� +

2

�
� Im �̄
��
�2. �2.8�

These equations could suggest an interpretation in terms
of two-channel transport with a generation-recombination
rate, analogous to Giant magnetoresistance phenomena.25 In
such a case, we would classically expect a spin mixing and
we will show that, indeed, a formal analogy exists. However,
care has to be taken that, at a given k, �+ and �− do not
correspond to the same energy except when �̄ is zero.

3. [110] direction

More specifically, we will deal with electron tunneling
along the �110� direction, a direction where the spin splitting
is maximum in the real conduction band. On this example,
we illustrate the preceding considerations. Let us consider
for instance the up-spin channel, where a possible wave vec-
tor is k= �Q+ iK�e110 as shown in Sec. II B, with the wave
function

�+�z� = ei�Q+iK�z �2.9�

and the DP field

�̄+ =
1

2
�Q + iK�3. �2.10�

The free-electron current is

J f��+� =
�

m
Im �+

� � �+ =
�Q

m
e−2Kz, �2.11�

� · J f��+� = −
2�

m
KQe−2Kz. �2.12�

On a real-energy line �see Eq. �A5��,

� ��+�2

�t
= − � · J+��+� =

2�

m
KQe−2Kz +

�

�
Im�Q + iK�3e−2Kz

=
2K

�

2�cQ +

1

2
��3Q2 − K2��e−2Kz = 0. �2.13�

Along the real-energy line, the eigenstates of the
Schrödinger equation comply, as expected, with the continu-
ity equation, with the current J+ to be identified. Here, it is
easy to show that �see Appendix B�

J
��
� = J f��
�

�

2�
�3 �

�z
�
2

−
�2

�z2 ��
�2� .

�2.14�

In the real conduction band, taking �
=eiqz, we obtain

J
�eiqz� =
2�c

�
q


3

2

�

�
q2 =

1

�

�

�q

�cq

2

1

2
�q3� =

1

�

�

�q
E�q� .

�2.15�

Concerning an evanescent wave �
=e�K
iQ�z, it is easy to
check that J
�e�K
iQ�z�=0 on a real-energy line.

4. Waves conserving the free-electron probability current

The waves which conserve the free-electron current of
probability play a special role: they appear to be “quasiclas-
sical states” which allow us to build solutions yielding intui-
tive physical interpretations. The waves involved in an ortho-
process verify Re k · Im k=0 and we have seen in Sec. II C 2
that this condition ensures the conservation of J f. In the case
of a paraprocess, with a paradigm of tunneling along �110�,
J f is not conserved in a given spin channel. Therefore, it is
necessary to consider an intricated wave function ��r�
=�+�r�↑ +�−�r�↓ =�+↑ +�−↓ =�↑↑ +�↓↓. In the following,
we indifferently use the notation �+ and �− or �↑ and �↓.

The free-electron probability current is given by20 J f���
= �1 /m�Re���p̂���, where the index � means a summation
�partial trace� on the spin or J f���= �1 /m�Re��+

�p̂�+
+�−

�p̂�−�=J f��+�+J f��−�. Due to Kramers symmetry, the
wave functions in the barriers �II+ and �II− can be written as

�II+�z� = A2ei�Q+iK� + B2ei�Q−iK�z,

�II−�z� = Ã2ei�−Q+iK� + B̃2ei�−Q−iK�z. �2.16�

The free-electron probability current carried by the func-
tion of the type �= �A2e−Kz+B2eKz�ei�Qz is ��=
1�
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J f��� =
�

m
�2K Im A2

�B2 + �Q�2 Re A2B2
� + �A2�2e−2Kz

+ �B2�2e2Kz�� . �2.17�

In the barrier, let us write �II=�II+↑ +�II−↓, so we have

J f��II� =
�

m
�2Q�Re B2A2

� − Re B̃2Ã2
�� + 2K�Im B2A2

�

+ Im B̃2Ã2
����+ Q�e−2Kz��A2�2 − �Ã2�2� + e2Kz��B2�2

− �B̃2�2��� . �2.18�

We see that the free-electron probability current in the

barrier is constant if and only if �A2�= �Ã2� and �B2�= �B̃2�. This

leads to A2=Aei�A, Ã2=Ae−i�A, B2=Bei�B, and B̃2=Be−i�B,
where A and B are two complex numbers. So the general
expression of a wave sustaining a constant J f inside the bar-
rier is

�II =�II�z� = Ae−Kz�ei�A ⇑ + e−i�A⇓� + BeKz�ei�B ⇑

+ e−i�B⇓� . �2.19�

It is useful to write

�II�z� = Ae−KzSexp i�A
+ BeKzSexp i�B

, �2.20�

where

S� = S��z� = � ⇑ + �� ⇓ . �2.21�

The Kramers conjugate of S� is Ŝ�= K̂S�, where K̂ is the

time-reversal transformation. Observe that S� and Ŝ� are
eigenstates of the helicity operator �p̂ · �̂� for the eigenvalue
�Q.

Let us look at the spin direction defined by S�. Recall that
the spin quantization direction is along the ��e110� vector. We
call Oz� the direction parallel to ��e110�; Ox� and Oy� are in
the �� plane normal to ��e110�. The spin direction is defined
via ��x��, ��y��, and ��z��. First of all we note that ��z��=0
while ��x��=2 Re �2 and ��y��=−2 Im �2 for S��0�. The spin
is in the �� plane. Any spin direction in the �� plane, which
we call an in-plane direction, can be described by a suited
value of �. For instance with �=exp i��, ��x��=cos 2�� and
��y��=−sin 2��, apart from a common factor, with �� being
the angle between the Ox� axis and the spin direction.

It can be shown that the largest vectorial space consisting
of J f-conserving waves at a given energy is E= ���,��,
where

��,� = ��Ae−Kz + �BeKz� ⇑ + ���Ae−Kz + ��BeKz�⇓

�2.22�

with � and ��C. E is a vectorial space over R, but not over
C.

Moreover, the existence of a superposition principle im-
plies that any linear combination with real coefficients of
two solutions with a current of probability of a given sign
has to be a solution associated to a current of probability of
the same sign. This is a strong constraint which is verified
over E0= ��A,B� � �S��= ��Ae−Kz+BeKz�S��, a vectorial sub-

space of E �in this subspace J f��A,BS��=2���2J f��A,B��, or

in ���A,BS��,�=cos � �A,BS�+sin � 1
K

�
�z�A,B�iŜ����—at fixed

�—which is also vectorial subspace �in this subspace
J f���A,BS��,��=2���2J f��A,B�cos 2��.

D. Standard tunneling case

The standard tunneling case is to be recovered when � is
zero; therefore, we build our analysis in close relation with
it. A crucial point is that the probability current has to be
constant, so that R+T=1, where R �T� is the reflection
�transmission� coefficient.

We shall need the standard �without spin� function ��0��z�
defined as

��0��z� = ��I
�0��z� = a1eiqz + b1e−iqz �z� 0� ,

�II
�0��z� = a2e−Kz + b2eKz �0� z� a� ,

�III
�0��z� = a3eiqz �a� z� ,

�
�2.23�

where z�0, 0�z�a, and a�z, respectively, correspond to
the incident wave �index I�, to the wave in the barrier �index
II�, and to the transmitted wave �index III�, as illustrated in
Fig. 1. ��0��z�, a C1 function, meets the boundary conditions

��0��z0−� = ��0��z0+�,
��0�z0−�

�z
=

���0��z0+�
�z

, z0 = 0 or a ,

�2.24�

b1

a1
=

2�q2 + K2�sinh Ka

D
�

�q2 + K2�
�q + iK�2 , �2.25a�

a2

a1
=

2q�q + iK�eKa

D
� 2

q

�q + iK�
, �2.25b�

b2

a1
=

2q�− q + iK�e−Ka

D
� 2

q�− q + iK�
�q + iK�2 e−2Ka,

�2.25c�

a3

a1
=

4iKq

D
e−iqa � 4i

qKe−iqa

�q + iK�2e−Ka, �2.25d�

D = �q + iK�2eKa − �q − iK�2e−Ka. �2.25e�

The approximations hold when exp Ka�1. The function
��0��z� is such that the probability current J f���0�� is constant.
The reflection coefficient R= �b1 /a1�2 and the transmission
coefficient T= �a3 /a1�2 are such that R+T=1.

Also observe that, if we multiply ��0� by any C1 function
f�r , ↑ ,↓�, the product and its derivative are continuous at
the interfaces, satisfying the initial boundary conditions.
Consider the case where the incident wave is eiq·r. If we take
f�r , ↑ ,↓�=ei�·r↑ or f�r , ↑ ,↓�=ei�·r↓, we obtain a solution to
the tunneling problem if, and only if, the incident component
ei�q+��·r and the reflected component ei�−q+��·r correspond to
the same energy.26
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III. PARAPROCESS: [110]-ORIENTED BARRIER UNDER
NORMAL INCIDENCE

A. General considerations

In the case where the wave vector is parallel to the �110�
direction and the ĤDP Hamiltonian is taken into account, we
have seen in Sec. II B that the wave vector is to be of the
form ��Q
 iK�e110 to get a real eigenvalue �an energy� of the
Hamiltonian. But in such case, J f is not conserved �Eq.
�2.17�� and even not constant inside the barrier, so that the
standard calculation routine to find the solution �i.e., the con-
tinuity of the wave function and of its derivative� cannot
apply.

We could try to build a solution according to the usual
procedure, but with a wave in the barrier involving the two
spin channels, which can give a constant J f �see Eq. �2.19��

��z� = ��I�z� = �A1eiqz + B1e−iqz�↑ + B̃1e−iqz↓ ,

�II�z� = �A2e−Kz + B2eKz� ⇑ + �Ã2e−Kz + B̃2eKz� ⇓ ,

�III�z� = A3eiqz↑ + Ã3eiqz↓ ,
�

�3.1�

where ⇑ and ⇓ are defined in Eq. �2.3�. The usual boundary
conditions �C1 function� for the down-spin channel, for in-

stance, yield four equations determining B̃1, Ã2, B̃2, and Ã3,

B̃1 = B̃2 + Ã2,

qB̃1 = �Q − iK�Ã2 + �Q + iK�B̃2,

Ã2e−i�Q−iK�a + B̃2e−i�Q+iK�a = Ã3eiqa,

Ã2�Q − iK�e−i�Q−iK�a + B̃2�Q + iK�e−i�Q+iK�a = − Ã3qeiqa. �3.2�

They only provide a nontrivial solution if the determinant
of the system is equal to zero which gives the relation

�q2 − Q2 − K2�sinh Ka + 2iKq cosh Ka = 0. �3.3�

The only solution is K=0 but it is not relevant to our prob-
lem.

B. Solutions to the tunneling problem

1. Constant-� case

We go back to the Schrödinger equation to determine the
proper boundary conditions and, to avoid any unnecessary
mathematical complexity, here we assume that � is constant
over the three regions. Along the �110� direction, with k
= �1 /�2�k�110�, the DP Hamiltonian writes

HDP = �ck
2


1

2
�k3, �3.4�

where the + �−� sign applies to the up �down� spin, quantized
along the DP field. As usual, we obtain the effective Hamil-
tonian by substituting k with −i�, i.e., k with −i �

�z ;

HDP = − �c
�2

�z2 

i

2
�

�3

�z3 . �3.5�

Thus, we have the two equations


− �c
�2

�z2 +
1

2
i�

�3

�z3��↑ = �E − V�z���↑,


− �c
�2

�z2 −
1

2
i�

�3

�z3��↓ = �E − V�z���↓, �3.6�

where V�z�=V when 0�z�a and V�z�=0 outside. Because
the DP Hamiltonian was obtained using the perturbation
theory, we will look for a solution to the effective
Schrödinger equation to the first order in � only. Let us con-
sider the up-spin channel. We write

�↑ = ��0� + �↑
�1�, �3.7�

where ��0� is the standard function �obtained for �=0 and
defined by Eq. �2.23�; it is a C1 function, with a discontinu-
ous second derivative�. �↑

�1� is a first-order term in �, so that
the Schrödinger equation to the first order writes

− �c
�2�↑

�z2 +
1

2
i�

�3��0�

�z3 = �E − V�z���↑. �3.8�

We integrate this equation from one side of the interface
to the other, i.e.,

− �c
 ��↑

�z
�

z0−�

z0+�

+
1

2
i�
 �2�↑

�0�

�z2 �
z0−�

z0+�

= �
z0−�

z0+�

�E − V�z���↑dz .

�3.9�

Then

lim
�→0
�− �c
 ��↑

�z �
z0−�

z0+�

+
1

2
i�
 �2��0�

�z2 �
z0−�

z0+�� = 0. �3.10�

Taking the standard function �Eq. �2.23�� and referring to
the limit at z0 inside the barrier and inside the well, respec-
tively, as z0

B and z0
W, we obtain


 �2��0�

�z2 �
z0
W

= − q2��0��z0
W� �3.11�

outside the barrier and


 �2��0�

�z2 �
z0
B

= K2��0��z0
B� �3.12�

inside the barrier. At the interfaces ��0��z0
B�=��0��z0

W�
=��0��z0�, then

�c
 ��↑

�z
�

z0−�

z0+�

=
1

2
i��K2 + q2���0��z0� . �3.13�

This provides us with the jump of the derivative at the
interfaces. To the first order in q /K,
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 ��↑

�z
�

z0
W

z0
B

=
1

2
i
�

�c
�K2 + q2���0��z0� �

1

2
i
�

�c
K2��0��z0�

= 2iQ↑�
�0��z0� �3.14�

after Eq. �A9�.
Similarly, for a down spin Q↓=−Q↑, and we have


 ��↓

�z
�

z0
W

z0
B

= 2iQ↓�
�0��z0� . �3.15�

It is worth remarking that this very discontinuity condition
was found in a quite different situation, involving Rashba-
split quantum wells.27

Now let us assume that Q↑=Q. The wave function con-
structed from the eigenstates in the three regions is

��z� = ��I�z� = A1eiqz + B1�q,K,Q�e−iqz �z� 0� ,

�II�z� = A2�q,K,Q�e−KzeiQz + B2�q,K,Q�eKzeiQz �0� z� a� ,

�III�z� = A3�q,K,Q�eiqz �a� z�
� �3.16�

with the coefficients B1�q ,K ,Q�, A2�q ,K ,Q�, B2�q ,K ,Q�,
and A3�q ,K ,Q� to be determined.

To the first order in Q, the solution can be expanded as

�I�z� = �a1eiqz + b1e−iqz� + �1Qe−iqz,

�II�z� = �a2e−Kz + b2eKz�eiQz + Q��2e−Kz + �2eKz�eiQz,

�III�z� = a3eiqzeiQa + �3�Qeiqz �3.17�

with

�1 = 
dB1�q,K,Q�
dQ

�
Q=0

, �3.18�

�2 = 
dA2�q,K,Q�
dQ

�
Q=0

, �2 = 
dB2�q,K,Q�
dQ

�
Q=0

,

�3.19�

and

�3 = 
dA3�q,K,Q�
dQ

�
Q=0

= iaa3 + �3�. �3.20�

We write

� = �S + �Ŝ, �3.21�

where

�S�z� = ��I
S�z� = a1eiqz + b1e−iqz �z� 0� ,

�II
S �z� = �a2e−Kz + b2eKz�eiQz �0� z� a� ,

�III
S �z� = a3eiqzeiQa �a� z� ,

�
�3.22�

�Ŝ�z� = ��I
Ŝ�z� = �1Qe−iqz �z� 0� ,

�II
Ŝ �z� = Q��2e−Kz + �2eKz�eiQz �0� z� a� ,

�III
Ŝ �z� = �3�Qeiqz �a� z� .

�
�3.23�

�S is a continuous function but its derivative is not. To the
first order, its jump at the interfaces is


 ��S

�z
�

z0
W

z0
B

= iQ�II
�0��z0� �3.24�

As we have derived that the jump of the derivative of the

wave function � is 2iQ�II
�0��z0�, we deduce that �Ŝ is a con-

tinuous function and that the jump of its derivative at the
interfaces is


 ��Ŝ

�z
�

z0
W

z0
B

= iQ�II
�0��z0� . �3.25�

This provides us with the following four equations which
determine the four coefficients �1, �2, �2, and �3�:

�1 − �2 − �2 = 0,

�2e−Ka + �2eKa − �3�e
iqa = 0,

iq�1 − K�2 + K�2 = i�II
�0��0� ,

K�2e−Ka − K�2eKa + iq�3�e
iqa = − i�II

�0��a� . �3.26�

The solution of this system is

�1 = −
i

K
a3eiqa sinh aK =

4q

D
a1 sinh aK ,

�2 = − ia3eiqaeKa

2K
=

a2

q + iK
,
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�2 = ia3eiqae−Ka

2K
=

b2

q − iK
,

�3� = 0. �3.27�

In the following, we consider Q /K=�K /4�c and also q /K
as first order terms and we look for solutions up to the first
order. The term in the reflected wave function arising from
Q�1=2�q /K��Q /K� is a second-order contribution which has
to be neglected. Note that, in region I, if the incident wave
has the wave vector q, the reflected wave should have the
wave vector −q�, where q=q0−�q and q�=q0+�q. From Eq.
�B27�, it can be verified that �q= �� /4�c�q0

2= �q0 /K�2Q. Then
�q is a second-order term which has to be neglected, so that
media I and III have no sizable spin splitting. This indicates
that the solution we obtain in the case of a constant � also
constitutes a plausible physical solution when � is a step
function, with �=0 outside the barrier. Also note that, at this

level of approximation, �Ŝ is a wave which only exists inside
the barrier and is not coupled to the free-electron waves out-
side the barrier. Because A3=a3eiQa, we see that there is a
pure dephasing between the up- �Q↑=Q� and the down-
�Q↓=−Q� spin channels.

We have to be sure that, in our treatment, the probability
current is conserved along the tunnel process. The wave in
the barrier, in the up-spin channel, is of the form ��z�
= �A2e−Kz+B2eKz�eiQz=��z�eiQz with A2=a2�1− i Q

K � and B2

=b2�1+ i Q
K �. Let us calculate J to the first order in Q by

making use of Eq. �2.14�,

J��� = J+��� = J f��� +
�

2�

3 �

�z
�2

−
�2

�z2 ���2� .

�3.28�

It is sufficient to evaluate the term in the bracket to the
zeroth order, substituting � with ��0�. One finds

J��� = J f��� +
�

2�

 ���0�

�z
2

− ��0�� �2

�z2�
�0� − ��0� �2

�z2�
�0���

� J f��� + 2
�c

�K

Q

K

 ���0�

�z
2

− 2K2���0��2� = J f���

− 2
�c

�
Q����0��2 + 2�a2

�b2 + a2b2
��� �3.29�

with

J f��� = Im���
�

m

��

�z
� =

2�c

�
Im���

��

�z
� +

2�c

�
Q���0��2,

�3.30�

J f��� =
2�c

�
Im���0�����0�

�z
� +

4�c

�
Q�a2

�b2 + a2b2
��

+
2�c

�
Q���0��2. �3.31�

By comparing these expressions, one obtains

J��� =
2�c

�
Im���0�����0�

�z
� = J f���0�� . �3.32�

This definitely establishes current conservation in the tunnel
process.

Starting with an incident spin state ��0�, the transmission
asymmetry T in the spin-dependent tunneling process can be
expressed as

T =
	T���0��	2 − 	T�K̂��0��	2

	T���0��	2 + 	T�K̂��0��	2
. �3.33�

In the present case, we find T=0. Whatever the incident spin,
the tunnel barrier acts as a pure spin rotator, without any spin
filter effect. The cases of a spin-split quantum well confined
between infinite walls and grown along the �110� direction is
discussed in Appendix B, Sec. B 2.

2. Unified description

Let us now consider transport in the real conduction band,
in region I or III. In the case �=0, the solution of the
Schrödinger equation is ��z�=��0��z�=aje

iq0z+bje
−iq0z, where

j=1 or 3 and b3=0. When � is nonzero, the wave function,
in the up-spin channel, has to be of the form

��z� = ei�
aj�1 + �
�q

q0
�eiq0z + bj�1 + �

�q

q0
�e−iq0z�e−i�qz,

�3.34�

where ei� is a phase factor. Here again, let us calculate J to
the first order in �q by making use of Eq. �3.28�. Substituting
� with ��0� in the bracket, one obtains

J��� � J f��� +
�

2�

 ���0�

�z
2

+ 2q0
2���0��2� = J f���

+ 2
�c

�
�q�3���0��2 − 2�aj

�bje
2iq0z + ajbj

�e−2iq0z�� ,

�3.35�

J f��� = J f���0�� + 4
�c

�
�q��aj�2Re � − �bj�2Re ��

− 2
�c

�
�q���0��2. �3.36�

For Re �=−Re �, one finds

J f��� = J f���0�� + 4
�c

�
�q Re ���aj�2 + �bj�2� − 2

�c

�
�q���0��2

= J f���0�� + 4
�c

�
�q Re �����0��2 − �aj

�bje
2iq0z

+ ajbj
�e−2iq0z�� − 2

�c

�
�q���0��2. �3.37�

Taking Re �=−1 and Im �=Im �=0,

J��� = J f���0�� . �3.38�

In the barrier, we consider �cf. Sec. III B 1�
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�B�z� = 
a2�1 − i
Q

K
�e−Kz + b2�1 + i

Q

K
�eKz�eiQz,

�3.39�

�B�z0�e−iQz0 = �a2e−Kz0 + b2eKz0� − i
Q

K
�a2e−Kz0 − b2eKz0� ,

�3.40�

�B�z0� = eiQz0
��0��z0� + i
Q

K2

��B
�0��z0�
�z

�
= eiQz0
��0��z0� + i

�2

4�2c

��B
�0��z0�
�z

� . �3.41�

In the well, let us take �cf. Eq. �3.34��

�W�z� = eiQz0
aj�1 −
�qj

qj0
�eiqj0z

+ bj�1 +
�qj

qj0
�e−iqj0z�e−i�qj�z−z0�, �3.42�

where z0 is the boundary relevant to the region of the well
�e.g., z0=0 in region I and z0=a in region III�. Although we
are still dealing with a unique effective mass and a constant
�, for the subsequent discussion, it is convenient to refer to �
��c� as �2 ��2c� or � j �� jc�, where j=1 or 3 in the different
regions, and to the wave vectors as qj0−�qj and −�qj0
+�qj�;

�W�z0� = eiQz0
�aje
iqj0z0 + bje

−iqj0z0� +
�qj

qj0
�− aje

iqj0z0

+ bje
−iqj0z0�� �3.43�

�W�z0� = eiQz0
��0��z0� + i
�qj

qj0
2

��W
�0��z0�
�z

� = eiQz0
��0��z0�

+ i
� j

4� jc

��W
�0��z0�
�z

� �3.44�

We obtain

�B�z0� − �W�z0� = eiQz0
i
�2

4�2c

��B
�0��z0�
�z

− i
� j

4� jc

��W
�0��z0�
�z

�
= eiQz0

i

4� jc

��B
�0��z0�
�z

��2� jc

�2c
−
� j�2c

� jc
�

= eiQz0
i

4�2c

��W
�0��z0�
�z

��2� jc

�2c
−
� j�2c

� jc
� .

�3.45�

Here, we have used the relation

�2c

��B
�0��z0�
�z

= � jc

��W
�0��z0�
�z

�3.46�

which originates from the usual relation expressing current
conservation in the absence of DP field.6 When � and �c �i.e.,

m� are constant, �B�z0�−�W�z0�=0, which establishes the
continuity of the wave function.

Now, let us examine the matching conditions of the de-
rivative,

�B�z� = 
a2�1 − i
Q

K
�e−Kz + b2�1 + i

Q

K
�eKz�eiQz,

�3.47�

��B�z0�
�z

= eiQz0�
− Ka2�1 − i
Q

K
�e−Kz0 + Kb2�1 + i

Q

K
�eKz0�

+ iQ�a2e−Kz0 + b2eKz0��
= eiQz0
 ��B

�0��z0�
�z

+ 2iQ��0��z0�� , �3.48�

��W�z0�
�z

= eiQz0�iqj
aj�1 −
�qj

qj0
�eiqj0z0

− bj�1 +
�qj

qj0
�e−iqj0z0� − i�qj�

�0��z0��
= eiQz0
 ��W

�0��z0�
�z

− 2i�qj�
�0��z0�� . �3.49�

�2c
��B�z0�

�z
− � jc

��W�z0�
�z

= eiQz0�
�2c

��B
�0��z0�
�z

− � jc

��W
�0��z0�
�z

� + 2i��2cQ

+ � jc�qj���0��z0�� =
1

2
i��2K2 + � jqj0

2 �eiQz0��0��z0� .

�3.50�

This is exactly the jump of the derivative calculated in Eq.
�3.14�, up to the second-order terms. Thus, starting from the
standard solution, we have constructed in a very simple way
a wave function which is continuous, associated to the con-
stant current of probability J f���0��, and which is the solution
to the tunneling problem.

3. Insight into the step-function case

The case where ��z�=�g�z� is not a constant raises diffi-
cult questions. The problem is not to solve Eq. �3.6� but to
define a proper Hamiltonian, which has to be Hermitian: this
would not be the case simply by substituting � with ��z� in
these equations and there are several ways to symmetrize
this Hamiltonian. This is in line with the BenDaniel-Duke
�BDD�5 approach when dealing with a heterostructure where
m=m�z�, i.e., where m depends on z; for instance, m=m1 in
region I and m=m2 in region II.6,7 In that case, the starting
point is the Hamiltonian

Ĥ = −
�2

2m�z�
�2

�z2 + V . �3.51�

NGUYEN et al. PHYSICAL REVIEW B 79, 165204 �2009�

165204-10



The key idea is to transform this equation by defining the
BBD Hamiltonian

ĤBDD =
�

2i

�

�z
v̂ + V , �3.52�

where v̂ is defined in Eq. �2.5�. Then, an integration of the
Schrödinger equation around the origin, exactly as per-
formed above, will allow us to show that J=��v̂� is continu-
ous because � and 1

m�z�
��
�z are continuous. The BDD Hamil-

tonian guarantees probability-current conservation and the
problem receives sound foundations. Unfortunately, the more
complicated form of the current of probability given in Eq.
�2.14�, in particular due to the �

��

�z �2 term, makes an analo-

gous transformation not obvious, so that the general case still
remains an open question. However, let us point out that,
when the masses and the DP-field coefficients are not very
different over the three regions—a frequent situation in
heterostructures—through the procedure described in Sec.
III B 2, we are able to construct a wave which is continuous
at the boundaries and that conserves the current of probabil-
ity. Therefore, this wave is a plausible solution. The principle
is first to solve the envelope-function problem in the absence
of DP field, i.e., g�z�=0, taking into account the mass dis-
continuities in framework of the BDD formalism. This deter-
mines the standard function ��0��z�. Second, the wave func-
tions in the different regions are modified according to the
rules defined in Sec. III B 2 �Eqs. �3.39� and �3.42��. The
current of probability remains equal to Jf���0�� in the three
regions. Concerning the continuity of the wave function at
the boundaries, we have at z0=0

��W
�0��0�
�z

� 2iq1a1,

�q �
�1�2c

�2�1c

�2

4�2c
q1

2, Q �
�2

4�2c
K2. �3.53�

Thus �see Eq. �3.45��

�B�0� − �W�0� = −
1

2

q1a1

�2c
��2� jc

�2c
−
� j�2c

� jc
� . �3.54�

We use

� j,2 =
� j + �2

2
, �� j,2 =

� j − �2

2
,

� j = � j,2 + �� j,2, �2 = � j,2 − �� j,2 �3.55�

� j,2 =
� jc + �2c

2
, �� j,2 =

� jc − �2c

2
,

� jc = � j,2 + �� j,2, �2c = � j,2 − �� j,2, �3.56�

�B�0� − �W�0� = −
1

2

q1a1

�2c
�1,2
�1 −

��1,2

�1,2
��1 +

��1,2

�1,2
�

1 −
��1,2

�1,2

−
�1 +

��1,2

�1,2
��1 −

��1,2

�1,2
�

1 +
��1,2

�1,2

� =
q1a1

�2c
�1,2���1,2

�1,2

− 2
��1,2

�1,2
� �

q1a1

�2c
�2���1,2

�1,2
− 2
��1,2

�1,2
�

= 4a1
q1

K

Q

K
���1,2

�1,2
− 2
��1,2

�1,2
� . �3.57�

At z0=a, the situation is similar with

��W
�0��a�
�z

= iq3a3eiQaeiq3a. �3.58�

In the case where
�� j,2

� j,2
and

�� j,2

� j,2
are small and considered as

first-order terms, the discontinuities are third-order terms
which can be safely neglected.

4. Quasiclassical picture (regions I and III without sizable spin
splitting)

In the case where regions I and III have no sizable spin
splitting, we develop a quasiclassical picture of the tunneling
process. For an up spin Q=Q↑, the wave function in the
barrier writes as

�II+�z� = 
a2�1 −
iQ

K
�e−Kz + b2�1 +

iQ

K
�eKz�eiQz

= �II
�0��z�eiQz + � iQ

K

1

K

�

�z
�II

�0��z��eiQz. �3.59�

The wave function for the down spin is obtained by re-
placing Q with −Q. We can combine the two spin channels to
build the quasiclassical solution �c�z� corresponding to an
incident wave with a spin lying in the plane perpendicular to
the DP field,

�I
c�z� = ��↑ + ��↓��I

�0��z� = S��0��I
�0��z� �3.60�

which yields

�II
c �z� = �II

�0��z�S��z� −
Q

K

1

K

�

�z
�II

�0��z�iK̂S��z� . �3.61�

Defining

tan � =
Q

K
� � �3.62�

we can write to the first order

�II
c �z� = cos ��II

�0��z�S��z� − sin �
1

K

�

�z
�II

�0��z�iK̂S��z� .

�3.63�

The transmitted wave is
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�III
c = ��eiQa↑ + ��e−iQa↓�a3eiqz = S��a��III

�0�. �3.64�

The incident wave corresponds to a spin lying in the ��

plane, normal to ��e110�. An important result is that the trans-
mitted wave has the spin S��a�, i.e., rotated by the angle
−2Qa. We can estimate the angle 2Qa
�0.2�K /1 Å−1�2�a /1 Å� in GaAs along the �110� direction,
with the largest reasonable value of K being smaller than
0.1 Å−1, a value beyond which the spin splitting in k3 is no
longer valid. The spin-split barrier appears to exert a spin
torque which produces a rotation of the spin of the transmit-
ted electron around the quantization axis, which is the direc-
tion of the DP field. There is no spin transmission asymme-
try. The spin-orbit-split barrier acts as a spin rotator inside
the �� plane. This has some analogies with the reflection of
a neutron beam on a ferromagnetic mirror discussed in Ref.
28 which physically results from spin precession during the
time spent by the evanescent wave inside the barrier. But, in
this example, this straightforwardly arises from the differ-
ence in the reflection and transmission coefficients for the
two spin eigenstates. Anyway, this spin precession provides
an estimation of the tunnel time �, by using this built-in
Larmor clock.29 The effective field is determined through
���2���̄� whereas ��=2Qa��a��̄e /�c�K2. We find �
��a� /2�c���̄e / �̄�K2. In the �110� direction, �̄e=1 /2 �see Sec.
II B�, so that ���a� /4�cK��10−18�a /1 Å��1 Å−1 /K� s.

We recognize that the in-plane solution belongs to the
subspace of free-electron-current conserving waves studied
in Sec. II C 4. In that sense, we have restored a classical
tunneling process. Note that J=J f is a constant, but the clas-
sical magnetic current in region II, �J f�z�=J↑

f �z�−J↓
f �z�, is

not and undergoes a discontinuity at the boundaries. Quite
generally for any two-component spinor �=�+↑ +�−↓ with
�+=�eiQz and �−=�eiQz

J f��
� =
�

m
Im��


� � �
� , �3.65a�

�J f = J f��+� − J f��−� =
�

m
Im��+

� � �+ − �−
� � �−� ,

�3.65b�

�J f =
�

m
Im���+↑− �−↓�† � ��+↑ + �−↓�� =

1

m
Re��†�p̂ · �̂��� .

�3.65c�

Thus, the jump of �J f is

��J f�
z0
W

z0
B

=
�

m
Im���̂z��z0

† ����
z0
W

z0
B

� =
1

m
Re��†�p̂ · �̂���

z0
W

z0
B

.

�3.66�

More explicitly, we have �JI
f =�JIII

f =0,�JII
f �z�

�2�Q
m ���2� 1

K

��II�z�
�z �2. This can be viewed as a kinetic-

momentum transfer along the internal-field direction during
the tunnel process, in strong analogy with the spin transfer
resulting from spin torque in ferromagnetic structures, as in-
troduced by Slonczewski9 and Berger.19

FIG. 6. �Color online� The lower part of this figure illustrates the
spin-dependent tunneling scheme in the case of a �001�-oriented
barrier �Perel’s case�. The horizontal plane describes the electron
wave vector in the barrier; K is taken along the �001� axis and � lies
in the barrier plane, along �100�. The upper part of the figure
�E�0� corresponds to the real conduction band—the wave vectors
are real quantities—and the parabolalike curves describing spin-
split states along the �101� direction are drawn. An up-spin state
�full line, open circle� with the wave vector q� is degenerate with a
down-spin state at the wave vector q �dotted line, dark circle� and
also with up- and down-spin states at the wave vectors −q and −q�,
respectively. This is useful for the calculation of a quantum well,
given in Appendix B, Sec. B 2. Concerning the evanescent states, in
a naive effective-mass picture, one may think of evanescent states
being mirrors of these real states �in the E�0 domain� with imagi-
nary wave vectors. Then up- and down-spin electrons at the energy
E would tunnel with the two different wave vectors iq� and iq, thus
resulting in a spin-filter effect. However, our calculation shows that,
concerning evanescent states �lower part of the figure, E�0�, the
situation is not so simple. In the negative-energy region, the K axis
refers to the imaginary wave-vector component and � refers to the
real wave-vector component. Real-energy lines are found only
when tan �=� /K�1. These real-energy lines, when drawn for a
given �, consist of loops connecting nearly-opposite spin states at
the zone center �“up” spin: full curve and “down” spin: dotted
curve�. Obviously, when going off the zone center, the spin no
longer remains a good quantum number—in fact, it can be calcu-
lated that its average value rotates along the loop—but it has to be
pointed out that, in the D’yakonov and Perel’ description, the en-
ergy eigenvectors are pure spin states which depend on the � ratio.
Two of these loops are drawn here. Let us consider a tunneling
process at the energy E �horizontal gray plane or yellow plane in the
online edition� of an electron with the wave-vector component � in
the barrier plane, which has to be conserved in the tunneling pro-
cess. It can be observed here that the two states marked on the loops
by a dark circle �K�� and an open circle �K�—which are energy
degenerate—are associated to the same real wave-vector compo-
nent �. However, they correspond to two different � as they are,
respectively, associated to the imaginary components iK and iK�,
along the tunneling direction. The difference between K and K�
results in a spin-filter effect. Inset �upper left�: top view of the plane
at energy E showing the intercepts with the loops which determine
the relevant wave vectors K and K�.

NGUYEN et al. PHYSICAL REVIEW B 79, 165204 �2009�

165204-12



IV. ORTHOPROCESS: [001]-ORIENTED BARRIER UNDER
ALMOST NORMAL INCIDENCE

It is not possible to stay in simple band schemes, like in
Fig. 3, as � has to be conserved: the relevant scheme is
drawn in Fig. 6. To simplify without altering the physics of
interest, the component of the wave vector normal to �001� is
taken parallel to �100�. The spin is quantized along the Oz
axis, taken parallel to �001�. As shown below, the eigenstates
of the spin are in a direction normal to Oz. The energy writes

E = − �c�K2 − �2�
 ��K�K2 − �2, �4.1�

�E + �c�K2 − �2��2 = ���K�2�K2 − �2� , �4.2�

where the generic wave vector is �e100+ iKe001. This equa-
tion may admit four real roots 
K and 
K�. The states of
the four wave vectors �� ,0 , iK�↑k, �� ,0 ,−iK�↑k�,
�� ,0 , iK��↓k�, and �� ,0 ,−iK��↓k�� have the same energies: K
and K� are such that E↑ �K�=E↓ �K��. Note that Kramers
conjugate states, which would involve −�, are not relevant
because � is conserved. We use K0= �K�+K� /2 and �K=K�
−K �note that this definition differs by a factor of 2 of the
definition used in Sec. III, where 2�q=q�−q; the choice
made in the present section makes the comparison easier
with the results derived in Ref. 13�. We assume that K��K
�0, so that �K�0. Moreover, as in Ref. 13, the incident-
wave energy is smaller than half of the barrier energy, which
means that q�K.

As recognized by Perel’ et al., the tunneling problem ad-
mits simple C1 solutions under the approximation � /K0�1.
Besides, the spin asymmetry which originates from the spin-
orbit interaction is characterized by the ratio �K /K0, which,
from band-structure calculations30 and from spin-precession
experiments,31,32 is known to be small, i.e., �K /K0�1. We
further assume that aK0 is not small compared to unity,
which corresponds to a barrier of small transparency, and
consequently we have exp�−2aK0��1. These three quanti-
ties, � /K0, �K /K0, and exp�−2aK0�, will be hereafter taken
as first-order quantities and we will look for solutions to the
first order only. This does not imply that the quantity a�K
= �aK0���K /K0�, which is of crucial interest as it character-
izes the spin selectivity of the barrier �as illustrated by the
simple evaluation indicated below�, is smaller than unity. In
the physical problem, we consider electron tunneling under
off-normal incidence and the angle of incidence is significant
only when q and � are of the same order, which means

q /K0�1. We shall use this additional approximation only
when it will be necessary to get analytical expressions of the
wave vectors �Sec. IV C�. Intuitively, if we start with an
unpolarized electron beam, the up- �down-� spin electrons
merge from the barrier with an amplitude of probability al-
most proportional to exp�−aK� �exp�−aK���, so that the cur-
rent asymmetry—which, in this case, is also the polarization
 of the current—is given by

 �
e−2aK − e−2aK�

e−2aK + e−2aK�
= tanh a�K . �4.3�

Indeed, in Ref. 13, it is found that the polarization P of
the transmitted current, when the primary beam is not polar-
ized, is P� tanh a�K �see below Eq. �4.15��. In practical
cases, a�K cannot be larger than a �often small� fraction of
unity. Nevertheless, in the calculation, we do not put any
restrictive assumption on a�K �which is not assumed to be a
first-order quantity� and we will calculate eigenvectors, when
required, as a power expansion in a�K; but, obviously, we
keep in mind that the first-order term will generally be suf-
ficient to reach a reasonable accuracy.

A. Zeroth-order wave functions

The wave vectors K and K� are related through the equa-
tion �K��K and assuming ��0 for the sake of simplicity�

− �c�K2 − �2� − ��K�K2 − �2 = − �c�K�2 − �2�

+ ��K��K�2 − �2 �4.4�

or

�c�K�2 − K2� = ���K�K2 − �2 + K��K�2 − �2� . �4.5�

Up to the first order in �K /K0, Eq. �4.5� writes as

2�cK0�K = 2��K0
��K0

2 − �2� �4.6�

or

�K =
��K0

�c
��1 −

�2

K2� �
��K0

�c
. �4.7�

We now calculate the eigenvectors. Let us write k
= �� ,0 ,!iK� with !=
1, K=K or K�, �, K, and K��0. �

=K��K ,0 , i!��. The eigenvalues of �̂ ·�= �
�z �x−i�y

�x+i�y −�z
� are


�K�K2−�2. To the first order in � /K0, the normalized
eigenvectors c1↑ +c2↓ = �

c1

c2
� are such that

wave

vector � �0
iK

� � �

0

− iK
� � �0

iK�
� � �

0

− iK�
�

spin� �2 �1 +
i�

2K

1 −
i�

2K
� �1 −

i�

2K

1 +
i�

2K
� � 1 −

i�

2K�

− �1 +
i�

2K�
� � � 1 +

i�

2K�

− �1 −
i�

2K�
� �

. �4.8�
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Observe that ↑k and ↓k are not orthogonal �even in a first-
order calculation—compare the first term to the third one
after substituting K� with K�. Inside the barrier the wave
function is of the shape �II�r�=ei�·��II�z� and

�II�z� = A2�1 +
i�

2K

1 −
i�

2K
�e−Kz + B2�1 −

i�

2K

1 +
i�

2K
�eKz

+ Ã2� 1 −
i�

2K�

− �1 +
i�

2K�
� �e−K�z + B̃2� 1 +

i�

2K�

− �1 −
i�

2K�
� �eK�z

= 
A2e−Kz + B2eKz +
i�

2K�
�− Ã2e−K�z + B̃2eK�z��
1

1
�

+ 
 i�

2K
�A2e−Kz − B2eKz� + Ã2e−K�z + B̃2eK�z�
 1

− 1
� .

�4.9�

Outside the barrier, we are looking for the solution of the
shape

�I�z� = A1
1

1
�eiqz + B1
1

1
�e−iqz + Ã1
 1

− 1
�eiqz

+ B̃1
 1

− 1
�e−iqz �4.10�

and

�III�z� = A3
1

1
�eiqz + Ã3
 1

− 1
�eiqz. �4.11�

The wave function writes as

�I�z� = �A1eiqz + B1e−iqz��1 1 �t + �Ã1eiqz + B̃1e−iqz��1 − 1 �t,

�4.12a�

�II�z� = 
A2e−Kz + B2eKz +
i�

2K�
�− Ã2e−K�z + B̃2eK�z���1 1 �t

+ 
 i�

2K
�A2e−Kz − B2eKz� + Ã2e−K�z + B̃2eK�z�

��1 − 1 �t, �4.12b�

�III�z� = �A3eiqz��1 1 �t + �Ã3eiqz��1 − 1 �t.

�4.12c�

The continuity of the wave function �Eq. �4.12�� and of its
derivative at z=0 and z=a provides a linear system of eight
equations. A full discussion is given in Appendix C. This
calculation has strong similarities with Slonczewski’s9 ap-
proach of the tunneling between two ferromagnets separated
by a barrier, because we deal with two coupled spin chan-
nels.

B. Polarization

The transmission asymmetry T is

T =
�t+�2 − �t−�2

�t+�2 + �t−�2
�4.13�

with �t+�2 �resp. �t−�2� =��III�2, calculated when A1=1 and

Ã1=0 �resp. A1=0, Ã1=1�. All the coefficients Aj and Ãj are
calculated in Appendix C.

To the zeroth order in � /K0, t
= t0

, and T=T0, now

�t0
+�2 =  4qKe−Ka

�K − iq�22

, �t0
−�2 =  4qK�e−K�a

�K� − iq�2 2

�4.14�

and we get the result of Ref. 13, namely,

T0 = tanh a�K . �4.15�

Up to the first order in � /K0, t
= t1

, and T=T1, �t1


�2

= ��A3

�2+ �Ã3


�2� but �Ã3
+�2 and �A3

−�2 are of second order in
� /K0, so that, up to the first order in � /K0, the result is the
same as for the zeroth order: T0=T1.

It is easy to show that this transmission asymmetry is
nothing but the spin polarization of the transmitted beam
when the primary beam is unpolarized, T0=T1=P. As we
have only assumed that q�K0, we may wonder why the
ratio q /K0 does not appear in P. The answer is given if we
perform the calculation 1 order further in �K /K0�1. Then, a
lengthy calculation leads to

P =

tanh a�K +
K0 − q

K0 + q

�K

K0

1 +
K0 − q

K0 + q

�K

K0
tanh a�K

. �4.16�

In the limit where �K /K0 is negligible, P=tanh a�K is re-
covered.

Let us consider the transmission of a primary electron
beam with an initial current polarization Pi through a spin-
filtering structure characterized by the transmission coeffi-
cients e−2aK� �e−2aK� for up- �down-� spin electrons. As the
incident up- �down-� spin current is proportional to 1+Pi
�1−Pi�, the current polarization of the emerging beam is
simply given by P,

P =
�1 + Pi�e−2aK − �1 − Pi�e−2aK�

�1 + Pi�e−2aK + �1 − Pi�e−2aK�
=

Pi + 

1 + Pi
, �4.17�

where  is given by Eq. �4.3�. The above formula yielding
the polarization of the transmitted beam is a standard expres-
sion for spin filters �in spin polarimetry,  is referred to as
the Sherman function�.33 Thus, P in Eq. �4.16� appears to
result from the combination of a primary-electron-beam po-
larization Pi�−�K /K0 when q /K0�1, which does not de-
pend on the barrier thickness, with the spin asymmetry of the
material,  =tanh�a�K�. The initial polarization −�K /K0
could be straightforwardly understood as resulting from the
band mismatch, an interface effect. If this analogy provides
us with a useful physical insight, it must, however, be real-
ized that the above calculation is only valid when exp aK0
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�1 and cannot be extrapolated to a=0. In any case, it is
clear that Pi builds up in the early stage of the transport
process.

C. � ÕK0 first-order wave function

It is shown in Appendix C that there is no � /K0 first-order
term in A2, A3, B1, and B2. We are therefore going to calcu-

late � /K0 first-order terms in B̃1, Ã2, B̃2, and Ã3. To be con-

sistent with Sec. IV A, we assume that A1�0 and Ã1=0. We
obviously have to invert the role of K and K� if we start from

A1=0 and Ã1�0. Let us recall that the calculation is per-
formed with �K /K0�1 which is always true and � /K0�1.

Equations �C1e�–�C1h� give

− Ã2�1 −
iq

K�
� + B̃2�1 +

iq

K�
�

=
i�

2K�
�1 −

iq

K
�A2 +

i�

2K�
�1 +

iq

K
�B2, �4.18a�

− Ã2�1 +
iq

K�
�e−K�a + B̃2�1 −

iq

K�
�eK�a

=
i�

2K�
�1 +

iq

K
�A2e−Ka +

i�

2K�
�1 −

iq

K
�B2eKa.

�4.18b�

The determinant of the system defined by Eq. �4.18� is

Det = �1 +
iq

K�
�2

e−K�a − �1 −
iq

K�
�2

eK�a �4.19�

which differs from zero; therefore, Ã2 and B̃2 can be calcu-
lated.

We assume a�0 �the case a=0 has no interest� and we
obtain

Ã2 = −
i�

2K�

A2ea�K/2 sinh�K0a�

sinh�K�a�
+ B2eK0asinh�a�K/2�

sinh�K�a� �
�4.20�

and

B̃2 =
i�

2K�

A2e−K0asinh�a�K/2�

sinh�K�a�
+ B2e−a�K/2 sinh�K0a�

sinh�K�a�� .

�4.21�

Noticing that �i� � /K�=� /K0�1+�K /2K���� /K0��1
−�K /2K0��� /K0 �the same result holds for � /K�� /K0�,
�ii� a�K�aK, �iii� A2"A1 �Eq. �2.25b��, and �iv� B2
"A1 exp�−2Ka� �Eq. �2.25c��, we get

Ã2 � −
i�

2K0
A2ea�K/2 sinh�K0a�

sinh�K�a�
, �4.22a�

B̃2 =
i�

2K0

A2e−K0asinh�a�K/2�

sinh�K�a�
+ B2e−a�K/2 sinh�K0a�

sinh�K�a�� .

�4.22b�

From now on we assume that exp K0a�1, so that
sinh �K0a� /sinh �K�a�=exp�−a�K /2� and

Ã2 � −
i�

2K0
A2. �4.23�

A lengthy calculation shows that

�i� B̃1 is proportional to �� /K0���K /K0� and therefore is

negligible. However, we can note that B̃1 is not strictly equal
to zero so that the reflected wave has a �1 −1�t component
even though the incident wave has only a �1 1�t component.

�ii�

B̃2 �
i�

2K0
e−a�K
2

iK + q

iK − q
e−a�K/2 sinh

a�K

2
+ 1�B2.

�4.24�

We furthermore assume that q /K0�1, so that

B̃2 �
i�

2K0
e−a�K�2 − e−a�K�B2 �4.25�

and eventually

Ã3 =
i�

2K0
�sinh

a�K

2
− 2 sinh2a�K

2
�A3. �4.26�

There is no assumption on a�K in Eq. �4.26�.
We note that, as Ã3 differs from zero, the incident wave

with only a �1 1�t spin component is transmitted with a com-
ponent along the �1 −1�t spin direction. This means there is
no pure spin-filter effect along the x-quantization axis.34

V. CONCLUSION

Electron tunneling in a semiconductor with no inversion
symmetry and in the presence of spin-orbit coupling involves
complex wave vectors in the barrier. In directions where the
D’yakonov-Perel’ �DP� field is nonzero, the problem be-
comes highly nontrivial. We have distinguished two particu-
lar types of tunnel processes: para-type process where we
have one-dimensional tunneling with a complex wave vector
and ortho-type process associated with a complex wave vec-
tor with orthogonal real and imaginary components. For a
paraprocess, the DP field is a complex vector, but it remains
collinear to a real direction, so that the eigenvectors are or-
thogonal spin states. We have shown that, along the �110�
direction no C1 solution exists. The expression of the current
of probability is re-examined, proper boundary conditions
are derived, and a treatment of heterostructures is proposed.
Quasiclassical states are shown to be in-plane solutions,
which imply a pure spin rotation of the transmitted beam
around the direction of the DP field. In the �110� direction,
there is no spin-filter effect. This contrasts with the situation
in the real conduction band where the spin splitting is maxi-
mum along �110�. For an orthoprocess, the DP field is a
complex vector, which is not collinear to any real direction,
and the eigenvectors of the Hamiltonian are no longer or-
thogonal spin states. Moreover, the evanescent eigenvectors
are not associated with the same spin depending whether
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they propagate from left to right or from right to left. In this
case, we have derived a first-order solution to the tunnel
problem, which has strong similarities with standard off-
normal tunneling, and an almost pure spin-filter effect was
demonstrated, a conclusion consistent with the result of
Perel’ et al.13 whose expression for the transmitted polariza-
tion has been corrected by the introduction of an initial in-
terface polarization.

All these questions should now be addressed experimen-
tally and we think that experiments are within reach. For
instance, further developments of the study of the polariza-
tion of a reflected spin-polarized electron beam can be con-
sidered, in line with the measurements reported in Ref. 35.
Polarized-luminescence experiments in quantum wells
grown along the �110� axis could also bring valuable infor-
mation, as well as measurements on resonant-tunneling de-
vices or photogavalnic-effect measurements in coupled quan-
tum wells.36–39 The results derived in the present paper
provide insight in spin-dependent tunneling in solids whereas
they also open stimulating perspectives for spin manipulation
in tunnel devices.
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APPENDIX A: EVANESCENT BAND IN THE [110]
DIRECTION

Let us write k= �Q+ iK�e, having in mind e along the
�110� direction: e=e110= 1

�2
�110�. We have to find the relation

between Q and K to get a real eigenvalue of the Hamiltonian

Ĥ. This real eigenvalue is the energy. The Hamiltonian Ĥ
writes as

Ĥ = �c�Q + iK�2 + ��̂ · � = �c�Q + iK�2 + ��̄e�Q + iK�3�̂ · e�,

�A1�

where e�=� / 	�	 �provided 	�	�0�. �̄e, a dimensionless pa-
rameter, depends on the direction. If e=e110, � is parallel to
e11̄0 with �̄e=1 /2.

The eigenvalues are

E�k� = �c�Q + iK�2 + ��̄e��Q + iK�3. �A2�

The spin is quantized along �e�, so that ���0 corresponds
to the spin ↑ and ���0 corresponds to the spin ↓. Separating
the real and imaginary parts of the eigenvalue, we obtain

Re E�k� = �c�Q2 − K2� + ��̄e��Q3 − 3QK2� , �A3�

Im E�k� = 2�cQK + ��̄e��3Q2K − K3� . �A4�

Looking for the real-energy lines, we have the equation

Im E�k� = 0 ⇒ 2�cQ + ��̄e��3Q2 − K2� = 0, �A5�

K2 = 3Q2 + 2�
�c

��̄e
Q �=3Q2 + �4

�c

�
Q if e = e110� .

�A6�

Equation �A6� is the relation between Q and K we were
looking for. The energy is

E��Q� = − �8�e�Q3 − 8�cQ
2 − �2

�c
2

��̄e
Q = − �4�Q3 − 8�cQ

2

− �4
�c

2

�
Q if e = e110. �A7�

For a given E�Q� value, we have two possible choices of
K,

K = 
�3Q2 + 2�
�c

��̄e
Q

�= 
�3Q2 + �4
�c

�
Q if e = e110� . �A8�

Let us note that ��4�� /�c�Q��3Q2, so that �Q�� �K� and

K � 
 ��4��c/��Q . �A9�

The sign of �� determines the sign of Q ��c�0�. As
stated above ���0, which corresponds to spin ↑, gives Q
�0 whereas ���0, which corresponds to spin ↓, gives Q
�0.

We have the symmetry property

E
�Q� = E	�− Q� . �A10�

The study of the function E�Q� is straightforward and we
take �=−1 in the following, with the other case being de-
duced by symmetry,

dE−�Q�
dQ

= 24�e�Q2 − 16�cQ + 2
�c

2

��̄e

�=12�Q2 − 16�cQ + 4
�c

2

�
if e = e110� .

�A11�

The roots Q1 and Q2 of the derivative are

Q1 =
�c

2��̄e
, Q2 =

�c

6��̄e
,

Q1 =
�c

�
, Q2 =

�c

3�
if e = e110. �A12�

Incidentally we note that

E−�Q1� = 0. �A13�

The corresponding curve is plotted in Fig. 4. It must be
realized that we are only dealing with evanescent states,
which correspond to a negative energy. Thus, for a given
energy E�0, we have two possible Q values �
Q�, each
associated with a given spin subband.

Finally, we find that, at a given energy, we have exactly
four possible states, with wave vectors �Q
 iK� for spin ↑
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and �−Q
 iK� for spin ↓, with the latter obtained from the

former through K̂. In short

E↑�k� = E↑�k�� = E↓�− k� = E↓�− k�� . �A14�

APPENDIX B: CONTINUITY EQUATION AND
DEFINITION OF THE PROBABILITY CURRENT

1. Definition of the probability current

Consider a Hamiltonian given by

Ĥ = �
j

ajp̂j + �
j,k

bjkp̂jp̂k + �
j,k,l

cjklp̂jp̂kp̂l + V , �B1�

where aj, bjk, and cjkl are Hermitian matrices, invariant under
permutation of the indices i, j, and k, and where V is real. We
define the velocity operator

v̂ j =
�Ĥ

�pj
= aj + 2�

k

bjkp̂k + 3�
k,l

cjklp̂kp̂l. �B2�

It will be useful to take the following notations:

����� = �1�r�↑ + �2�r�↓ = 
�1�r�
�2�r� � ,

����� = �1�r�↑ + �2�r�↓ = 
�1�r�
�2�r� � ,

����� = ��1
��r� �2

��r� �, ����� = ��1
��r� �2

��r� �, �����

= �1
��r��1�r� + �2

��r��2�r� ,

����� = �1
��r��1�r� + �2

��r��2�r� = ���r��2 = ���2,

��p̂��� = 
p̂�1�r�
p̂�2�r�

�, ��p̂���

= �p̂��1
��r� p̂��2

��r� � = �− p̂�1
��r� − p̂�2

��r� � ,

�p̂��p̂�� = �p̂��1
��r���p̂�1�r�� + �p̂��2

��r���p̂�2�r��

= �− p̂�1
��r���p̂�1�r�� + �− p̂�2

��r���p̂�2�r�� .

�B3�

The Schrödinger equation is

i�
������

�t
= �

j

ajp̂j����� + �
j,k

bjkp̂jp̂k����� + �
j,k,l

cjklp̂jp̂kp̂l�����

− i�
������

�t
= �

j

��p̂j���aj + �
j,k

��p̂jp̂k���bjk

+ �
j,k,l

��p̂jp̂kp̂l���cjkl. �B4�

The continuity equation can be written as

i�
���
�

�t
�� + � �

�t
����� = i�

� ���2

�t
= �

j

����ajp̂j��

− �p̂j��aj��� + �
j,k

����bjkp̂jp̂k��

− �p̂jp̂k��bjk���

+ �
j,k,l

����cjklp̂jp̂kp̂l��

− �p̂jp̂kp̂l��bjk��� . �B5�

Note that

���ajp̂j�� = �ajp̂j����� = �p̂j��aj��� �B6�

or

�p̂j��aj�� = ���ajp̂j���. �B7�

Similarly

�p̂jp̂k��bjk�� = ���bjkp̂jp̂k���, �p̂jp̂kp̂l��bjk��

= ���cjklp̂jp̂kp̂l���. �B8�

Therefore

� ���2

�t
=

2

�
Im
�

j

���ajp̂j�� + �
j,k

���bjkp̂jp̂k��

+ �
j,k,l

���cjklp̂jp̂kp̂l��� . �B9�

The probability current J has to satisfy

� · J = −
2

�
Im
�

j

���ajp̂j�� + �
j,k

���bjkp̂jp̂k��

+ �
j,k,l

���cjklp̂jp̂kp̂l��� = � · J�1� + � · J�2� + � · J�3�.

�B10�

From the expression of the velocity operator, we tentatively
define the j component of the probability current as

J̃ j = 
1

2
���aj�� + �

k

���bjkp̂k�� +
3

2�
k,l

�p̂k��cjklp̂l��� + c.c.,

�B11�

where c.c. refers to the complex conjugate. We calculate

� · J̃ = �
j

� jJ̃ j =
i

�
�

j

p̂jJ̃ j . �B12�

Let us consider the first term

J̃ j
�1� =

1

2
���aj�� + c.c. = ���aj�� , �B13�
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�
j

� jJ̃ j
�1� =

i

�
�

j

p̂j���aj�� =
i

�
�

j

���ajp̂j�� − �p̂j��aj��

= −
2

�
Im�

j

���ajp̂j�� = � · J�1�. �B14�

The second term gives

J̃ j
�2� = �

k

���bjkp̂k�� + c.c. = �
k

����bjkp̂k�� + �p̂k��bjk��� ,

�B15�

�
j

� jJ̃ j
�2� =

i

�
�
j,k

����bjkp̂jp̂k�� − �p̂j��bjkp̂k�� + �p̂k��bjkp̂j��

− �p̂jp̂k��bjk��� = −
2

�
Im�

j

���bjkp̂jp̂k��

= � · J�2�. �B16�

Concerning the third term

J̃ j
�3� =

3

2�
k,l

�pk��cjklp̂l�� + c.c. = 3�
k,l

�pk��cjklp̂l�� ,

�B17�

�
j

� jJ̃ j
�3� =

3i

�
�
k,l

��p̂k��cjklp̂jp̂l�� − �p̂jp̂k��cjklp̂l���

� � · J�3�. �B18�

Let us now consider the quantity

�
jkl

p̂jp̂kp̂l���cjkl�� = �
jkl

����cjklp̂jp̂kp̂l�� − �p̂jp̂kp̂l��cjkl���

− 3�
jkl

��p̂j��cjklp̂kp̂l�� − �p̂jp̂k��cjklp̂l���

= �
j

p̂j�
kl

p̂kp̂l���cjkl��

=
�

i
�

j

� j�
kl

p̂kp̂l���cjkl�� . �B19�

We have

�
j

� j
�
k,l

p̂kp̂l���cjkl�� + J̃ j
�3�� = −

2

�
Im�

j,k,l
���cjklp̂jp̂kp̂l��

= � · J�3�. �B20�

Thus, we can define

J j
�3� = J̃ j

�3� + �
k,l

p̂kp̂l���cjkl�� . �B21�

Finally, the j component of the probability current can be
taken as

J j = 
1

2
���aj�� + �

k

���bjkp̂k�� +
3

2�
k,l

�p̂k��cjklp̂l��

+
1

2�
k,l

p̂kp̂l���cjkl��� + c.c. �B22�

or

J j = J j
f + ���aj�� + 3�

k,l
�p̂k��cjklp̂l�� + �

k,l
p̂kp̂l���cjkl�� .

�B23�

2. Quantum well grown in the [110] direction

To illustrate some simple consequences, we apply the pre-
ceding results to the practical case of quantum wells grown
in the �110� direction. First, let us point out that, in this case,
a direct calculation of the current of probability is straight-
forward;

i�
��

�t

= − �c
�2�

�z2 


1

2
i�

�3�

�z3 ,

− i�
��


�

�t
= − �c

�2�


�z2 	
1

2
i�

�3�

�

�z3 . �B24�

Multiplying the first equation by �

� , the second equation

by �
 and subtracting them, we obtain

i���
� ��

�t

+ �

��


�

�t
�

= − �c��
� �2�

�z2 − �


�2�

�

�z2 �



1

2
i���
� �3�


�z3 + �

�3�


�

�z3 � �B25�

or

− � · J
 =
� ���2

�t
= −

�c

i�
��
� �2�


�z2 − �

�2�


�

�z2 �
+

1

2

�

�
��
� �3�


�z3 + �

�3�


�

�z3 � =

− � · 
J

f 


�

2�
�3 �

�z
�
2

−
�2

�z2 ��
�2�� .

�B26�

We consider a well made of a spin-split semiconductor
�GaAs� confined between infinite walls located at z=0 and
z=a. At energy E, for a given spin, the wave function ��z�
consists of a combination of eigenstates associated to the
wave vectors q�E� and −q��E� �see Fig. 6, upper part� which
satisfy

�cq
2 +

1

2
�q3 = �cq�2 −

1

2
�q�3. �B27�

The wave function writes
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��z� = Aeiqz + Be−iq�z �B28�

and verifies the boundary condition ��0�=��a�=0, so that
A=−B and q+q�=n 2�

a or

��z� = 2iA sin�n�

a
z�e−i�qz. �B29�

A straightforward calculation gives

− � · J =
� ���2

�t
= −

2

�
�A�2sin��q + q��z�
�c�q2 − q�2�

+
1

2
��q�3 + q3�� = 0 �B30�

due to the energy expression �Eq. �B27��. The probability
current J is conserved as it should. However, a calculation of
J according to Eq. �B26� yields

J
 = 

1

2�
��A�2�q + q��2. �B31�

Obviously, we should have J
=0. This inconsistency
arises due to a lack in the modelization relative to the singu-
lar case of infinite wall. Note that, if dealing with a finite
barrier, �� /2���A�2�q+q��2= �2�c /���A�2Q�q+q��2 /K2,
where q and Q are small. In the case of an infinite well, we
are in a situation where K tends to infinity. Because of this
inconsistency �the infinite well cannot meet the criteria used
in our approximations�, this term should certainly be dis-
carded. The problem can also be circumvented when build-
ing the function

� = �↑ + K̂��↑� = �↑ + ��↓ = 2 sin�n�

a
z��iAe−i�qz↑

+ �iA��ei�qz↓� �B32�

which properly describes a solution with a spin lying in the
plane perpendicular to the DP field and for which J=0.

APPENDIX C: [100]-ORIENTED BARRIER
ZEROTH-ORDER WAVE-FUNCTION COEFFICIENTS

The continuity of the wave function defined by Eq. �4.12�
and of its derivative at z=0 and z=a for the two spin chan-
nels provides the following linear system:

− B1 + A2 + B2 −
i�

2K�
Ã2 +

i�

2K�
B̃2 = A1, �C1a�

i
q

K
B1 − A2 + B2 +

i�

2K
Ã2 +

i�

2K
B̃2 = i

q

K
A1, �C1b�

A2e−Ka + B2eKa −
i�

2K�
Ã2e−K�a +

i�

2K�
B̃2eK�a − A3eiqa = 0,

�C1c�

− A2e−Ka + B2eKa +
i�

2K
Ã2e−K�a +

i�

2K
B̃2eK�a − i

q

K
A3eiqa = 0,

�C1d�

− B̃1 +
i�

2K
A2 −

i�

2K
B2 + Ã2 + B̃2 = Ã1, �C1e�

i
q

K�
B̃1 −

i�

2K�
A2 −

i�

2K�
B2 − Ã2 + B̃2 = i

q

K�
Ã1, �C1f�

i�

2K
A2e−Ka −

i�

2K
B2eKa + Ã2e−K�a + B̃2eK�a − Ã3eiqa = 0,

�C1g�

−
i�

2K�
A2e−Ka −

i�

2K�
B2eKa − Ã2e−K�a + B̃2eK�a − i

q

K�
Ã3eiqa = 0.

�C1h�

The coefficients A1 and Ã1 which define the intensity of
the two spin components of the incident wave are known
�initial conditions�. It could be verified that the determinant
of this system is nonzero. We can calculate the eight coeffi-

cients B1, B̃1, A2, B2, Ã2, B̃2, A3, and Ã3 from the eight
relations �Eq. �C1��. We begin to solve these eight equations
to the zeroth order in � /K0 or, in other words, by writing
� /K0=0. We note that the eight equations are then divided
into two sets: the first four equations are uncoupled to the
last four ones.

The first four equations are related to the spin �1 1�t and
write as

A1 = − B1 + A2 + B2, �C2a�

iqA1 = iqB1 − KA2 + KB2, �C2b�

A3eiqa = A2e−Ka + B2eKa, �C2c�

iqA3eiqa = − KA2e−Ka + KB2eKa, �C2d�

and the last four ones are related to the spin �1 −1�t. The
equations are the same by altering �A1 ,B1 ,A2 ,B2 ,K� into

�Ã1 , B̃1 , Ã2 , B̃2 ,K��. This is the usual formulation of the tun-
nel effect. Because Eq. �C1� is written to the first order in
� /K0, we are looking for a solution to the same order.

To give an example, we look for the results when the

incident wave has a spin �1 1�t �A1�0, Ã1=0�. Consider-
ing Eq. �2.25�, we note that the approximation given by the
last term of each equation is almost valid as soon as Ka
�2. In Ref. 13, K is of the order of magnitude of 0.1 Å−1

which gives a of the order of magnitude of 20 Å in order
that the inequality holds, a value which is quite reasonable.

As Ã1=0, this shows that to the zeroth order in � /K0, the
results may be summarized by

A2/A1 = f2
�0�, Ã2 = 0,

A3/A1 = f3
�0�, Ã3 = 0,

B1/A1 = g1
�0�, B̃1 = 0,
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B2/A1 = g2
�0�, B̃2 = 0, �C3�

where f j
�0�= f j

�0��q ,K� and gj
�0�=gj

�0��q ,K� correspond to the
standard case �Sec. II D� and can be deduced from Eq.
�2.25�. This means that, up to the first order in � /K0, the
results are of the shape

A2/A1 = f2
�0� + ��/K�f2

�1�, Ã2/A1 = ��/K� f̃2
�1�,

A3/A1 = f3
�0� + ��/K�f3

�1�, Ã3/A1 = ��/K� f̃3
�1�,

B1/A1 = g1
�0� + ��/K�g1

�1�, B̃1/A1 = ��/K�g̃1
�1�,

B2/A1 = g2
�0� + ��/K�g2

�1�, B̃2/A1 = ��/K�g̃2
�1�, �C4�

where the factors of f j
�1�= f j

�1��q ,K ,K��, gj
�1�=gj

�1��q ,K ,K��,
f̃ j

�1�= f̃ j
�1��q ,K ,K��, and g̃j

�1�= g̃j
�1��q ,K ,K�� may be equal to

zero. In fact, a calculation up to the first order in � /K0 via

Eq. �C1� involves terms of �� /K�Ã2 type, which are of sec-
ond order in � /K0. Therefore f j

�1�=gj
�1�=0 and Eq. �C4� writes

as

A2/A1 = f2
�0� + ��/K�2f2

�2�, Ã2/A1 = ��/K� f̃2
�1�,

A3/A1 = f3
�0� + ��/K�2f3

�2�, Ã3/A1 = ��/K� f̃3
�1�,

B1/A1 = g1
�0� + ��/K�2g1

�2�, B̃1/A1 = ��/K�g̃1
�1�,

B2/A1 = g2
�0� + ��/K�2g2

�2�, B̃2/A1 = ��/K�g̃2
�1�, �C5�

where f j
�2�= f j

�2��q ,K ,K�� and gj
�2�=gj

�2��q ,K ,K��.
Of course if A1=0 and Ã1�0, the results are to be in-

verted. f j
�2� �gj

�2�� is comparable to, or smaller than, f j
�0� �gj

�0��.
In Sec. IV C, it can be seen that f̃ j

�1�A1 is of the order of
magnitude of Aj and g̃j

�1�A1 is of the order of magnitude of
Bj.
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