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We study junctions between superconductors mediated by the edge states of a quantum-spin-Hall insulator.
We show that such junctions exhibit a fractional Josephson effect, in which the current phase relation has a 4�

rather than a 2� periodicity. This effect is a consequence of the conservation of fermion parity—the number of
electron mod 2—in a superconducting junction and is closely related to the Z2 topological structure of the
quantum-spin-Hall insulator. Inelastic processes, which violate the conservation of fermion parity, lead to
telegraph noise in the equilibrium supercurrent. We predict that the low-frequency noise due these processes
diverges exponentially with temperature T as T→0. Possible experiments on HgCdTe quantum wells will be
discussed.
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Proposals for fault tolerant topological quantum computa-
tion have motivated intense current interest in finding robust
physical systems that host excitations with non-Abelian
statistics.1,2 Recent experiments on the quantum Hall effect
have shown encouraging indirect evidence for such
excitations,3,4 but the direct observation of non-Abelions has
so far remained elusive. Recently we showed that the prox-
imity effect between a superconductor and a three-
dimensional �3D� topological insulator leads to a two-
dimensional �2D� interface state that supports non-Abelian
Majorana fermions.5 A first step toward implementing this
proposal would be to demonstrate experimentally the topo-
logical order responsible for Majorana fermions.

In this Rapid Communication we study Josephson junc-
tions mediated by a 2D topological insulator, known as a
quantum-spin-Hall insulator �QSHI�.6–9 We predict such
junctions exhibit a fractional Josephson effect, which is re-
lated to the presence of Majorana fermions. The signature of
the fractional Josephson effect is that the current phase rela-
tion has a 4� rather than a 2� periodicity. This behavior was
first predicted by Kitaev10 using an idealized model of a
one-dimensional �1D� spinless p-wave superconductor.
Kwon et al.11 proposed that a related effect can occur at
junctions between unconventional 3D superconductors. They
argued that it leads to an ac Josephson effect with half the
usual Josephson frequency, and that in a weak tunneling limit
the Josephson current is carried by electrons rather than Coo-
per pairs. Michelson et al.12 proposed a related effect in spin
active Josephson junctions. The 4� periodicity can occur be-
cause the junction has two states with different Josephson
currents that are interchanged when the phase is advanced by
2�. At finite temperature inelastic processes can cause tran-
sitions between the states, leading to telegraph noise in the
Josephson current. We will show that in our setup these tran-
sitions are forbidden by the local conservation of fermion
parity �FP�, which counts the number of electron mod 2.
This leads to an exponential suppression of the transition rate
at low temperature. This can be probed by measuring the
low-frequency current noise S��→0�, which we predict di-
verges exponentially at low temperature.

The QSHI is a time-reversal invariant insulating state with

a bulk energy gap generated by spin-orbit interactions.6,8 It
has recently been observed in HgCdTe quantum wells.9 The
QSHI is distinguished from an ordinary insulator by a Z2
topological invariant,6 which requires the existence of gap-
less edge states. The edge states form a unique 1D system
that is essentially half of an ordinary spin degenerate 1D
electron gas. In the simplest case it consists of a single band
of right moving electrons paired via Kramers theorem with a
left moving band with the opposite spin. These states are
robust against disorder because time-reversal symmetry pre-
vents elastic backscattering. In the absence of inelastic scat-
tering the edge state transmission is perfect.

Suppose the edge is in intimate contact with an s-wave
superconductor. The edge states will become Andreev states,
which decay into the superconductor, and may be described
with a 1D theory with an induced pairing potential
�=�0ei�. �0 depends on the coupling t between the edge
and the superconductor.13 For strong coupling it is of order
the bulk gap �bulk, while perturbatively it is of order of
t2 /�bulk. � is the phase of the bulk superconductor. We write5

H=�†H� /2, where �= ���↑ ,�↓� , ��↓
† ,−�↑

†�� is expressed in
terms of field operators �↑�↓� describing the right �left� mov-
ers and

H = − iv�z	z�x − 
�z + �0�cos ��x + sin ��y� . �1�

	 j are the Pauli matrices acting in the space of right and left
movers �↑,↓ and � j are the Pauli matrices which mix the �
and �† blocks of �. v is the velocity of the edge states, 
 is
the chemical potential, and we set �=1. The eigenstates of
Eq. �1� come in pairs at �E. Due to the redundancy in �,
these states are not independent, and the Bogoliubov quasi-
particle operators satisfy 
−E=
E

† .
Equation �1� is similar to Kitaev’s model of superconduct-

ing spinless electrons in 1D.10 In Kitaev’s model there are
zero energy Majorana bound states associated with the ends
of the sample. In our system, the edge—which is the bound-
ary of the 2D QSHI—cannot have an end. By breaking the
time-reversal symmetry, however, a Zeeman field can intro-
duce a mass term into H of the form
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VZ = M�†	x� = M�†	x�/2. �2�

When M �
, VZ opens an insulating gap in the edge state
spectrum. VZ could arise either from an applied magnetic
field �as in Ref. 9� or due to proximity to a magnetic mate-
rial. Zero energy Majorana bound states will exist at the
interface between regions with gaps dominated by � and M.5

In the presence of both � and M the gap is the smaller of
��0�M�. When �0= �M� a single band is gapless and for
�0��M� the low-energy sector of Eq. �1� has the form of a
Su-Schrieffer-Heeger model,14 which has a well known zero
energy bound state where �0− �M� changes sign. The Bogo-
liubov quasiparticle operator associated with this state is a
Majorana fermion, which satisfies �0=�0

†.
Consider a superconductor/QSHI/superconductor �S/

QSHI/S� junction in which the edge states of a QSHI connect
two superconductors separated by a distance L. Figure 1
shows an rf superconducting quantum interference device
�SQUID� geometry, in which the phase difference across the
junction �= �2e /��� is controlled by the magnetic flux �.
We also assume that the QSHI forms a Corbino disk which
circles the flux. This geometry is not essential, but we will
see that it has considerable conceptual value. We will also
include a Zeeman term in the gap between the superconduct-
ors, which will make the connection with Majorana bound
states transparent. We emphasize, however, that there will be
a nontrivial effect even when this term is absent. To deter-
mine the characteristics of the junction we solve the
Bogoliubov–de Gennes �BdG� equation �H+VZ��=E�, with

��x� = �0���− x − L/2� + ei���x − L/2�� ,

M�x� = M0��x + L/2���− x + L/2� . �3�

By enforcing continuity of � at x= �L /2 we determine the
spectrum of Andreev bound states in the junction. The cal-
culation is similar to Ref. 11, as well as the theory of super-
conducting quantum point contacts�SQPCs�.15,16 However,
we shall see that there is a fundamental difference with those
theories.

Figure 2�a� shows the spectrum as a function of � for
M0=0. For L�v /�0 there is a single pair of bound states
E= ��0���. For L�v /�0 our model reduces to the � func-

tion model solved in Ref. 11, where the normal-state trans-
mission probability is D=1 / �1+ �M0 sinh��L� /��2�, with �
=�M0

2−
2. In that case

�0��� = �D�0 cos��/2� . �4�

Figure 2�b� shows a case where M0��0, so the normal-state
transmission D�1. When D�1 there are two weakly
coupled Majorana end states at x= �L /2. When L�v /�0
there will be additional Andreev bound states in the junction
with a level spacing of order of v /L. Figure 2�c� shows the
case where L=3v /�0 with M0=0, in which time-reversal
symmetry requires Kramers degeneracies when �=0 or �.
Figure 2�d� shows the effect of finite M0 and 
, which lifts
most of the degeneracies. However, the crossing at E=0 re-
mains and is of special significance.

To understand the crossing consider E��0. The eigen-
vectors �0� of Eqs. �1�–�3� with energy ��0��� define Bo-
goliubov operators 
0�=�T�0�. Due to particle-hole sym-
metry, 
0+=
0−

† �
0. The low-energy Hamiltonian is thus

H = �0����
0
†
0 − 1/2� = 2i�0����1�2, �5�

where �1= �
0+
0
†� /2 and �2=−i�
0−
0

†� /2 are the Majo-
rana operators. For D�1 �1,2 describe Majorana end states
at x= �L /2 coupled by weak electron tunneling. The cross-
ing at �=� follows from the destructive interference of the
left and right tunneling processes. Equation �5� describes two
states distinguished by N0�
0

†
0=0 ,1. Mixing these states
requires an interaction that changes N0. Due to the pairing
term in Eq. �1�, the total charge is not conserved. However,
the FP, defined as the number of electron mod 2, is con-
served in Eqs. �1�–�3�. This forbids the coupling between the
two states and protects the crossing at �0���=0.

There is a problem, however, with the FP. The junction
Hamiltonian �Eqs. �1�–�3�� is invariant under a 2� phase
change, but when �→�+2�, the system passes through a
single level crossing and can only return to the initial state by
a process which changes N0 by 1. The FP thus apparently
changes when �→�+2�. This has to do with the un-
bounded spectrum as E→−� and reflects a fermion parity
anomaly similar to the SU�2� anomaly in four-dimensional
�4D� field theory.17 This anomaly is related to non-Abelian
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FIG. 1. �Color online� A S/QSHI/S junction in an rf SQUID
geometry where the QSHI forms a Corbino disk.
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FIG. 2. Spectrum of Andreev bound states in the junction as a
function of phase difference � for parameters indicated in each
panel. L is in units of v /�0 and M0 and 
 are in units of �0. �a� and
�c� are independent of 
.
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statistics. When � advances by 2�, �1→�1 and �2→−�2. In
the tunneling limit this can be interpreted as Ivanov’s rule18

for braiding a vortex between the Majorana bound states.
The physical origin of the FP anomaly lies in the topo-

logical structure of the QSHI. Consider first the Corbino disk
in Fig. 1 without the superconductor. In Ref. 19 we showed
that the Z2 invariant characterizing the QSHI describes the
change in the Z2 “time-reversal polarization” �TRP� when
flux h /2e is threaded through the hole. A nonzero TRP speci-
fies a many-body Kramers degeneracy localized at either
edge of the disk. Since an odd number of fermions has a
Kramers degeneracy, the TRP is precisely the FP. With the
superconductor present, start in the ground state at �=0.
When flux h /2e is threaded through the hole, � advances by
2� and a unit of FP is transferred from the inner edge of the
disk to the junction on the outer edge. Although Eqs. �1�–�3�
is invariant under �→�+2�, the global Hamiltonian, which
includes the bulk QSHI, is physically distinct when �=0 and
h /2e.

The local conservation of FP has important consequences
for the current and noise in a S/QSHI/S junction. This is
most striking near the degeneracy point for �0��0 and T
��0. For the remainder of this Rapid Communication we
will focus on that regime. We will also consider the limit L
�v /�0, where there is a single Andreev bound state and Eq.
�4� applies although the results can straightforwardly be gen-
eralized to the case with multiple Andreev levels provided
T�v /L. In this case, N0 distinguishes two states, with Jo-
sephson currents I�= � I0, with

I0��� =
1

2
�De�0 sin �/2. �6�

In the absence of transitions that violate local FP conserva-
tion there can be no transitions between I+ and I−, signaling a
fractional Josephson effect.

Elastic-scattering processes can be incorporated into the
BdG Hamiltonian from the start and will not lead to viola-
tions of the FP. However, at finite temperature, inelastic
processes20,21 can lead to a transition between I+ and I− pro-
vided an available fermion is present to switch the FP. This
could be either due to a thermally excited quasiparticle or
due to hopping from a bulk localized state. These processes,
however, will be exponentially suppressed at low tempera-
ture. On a time scale longer than the switching time the
current will thermalize with an average value11,22

	I���
 = I0���tanh �0���/2T . �7�

On shorter times, the current will exhibit telegraph noise, as
it switches between I�.

In order to model the inelastic processes responsible for
the telegraph noise we consider the interaction of the An-
dreev level 
0 with a bath of fermions cn �e.g., quasiparti-
cles� and bosons bm �e.g., phonons�. We thus write

H = �0
0
†
0 + �

n

Encn
†cn + �

m

�mbm
† bm

+ �
mn

��Vnm
1 cn

†bm + Vnm
2 cnbm

† �
0 + H.c.� . �8�

Here En ,�n�0, and we have ignored terms which create �or
annihilate� both fermions and bosons. The transition rates
��

−1��0 ,T� between the states N0 and N0�1 follow from Fer-
mi’s golden rule. For �0 ,T��0 we find

��
−1 = e��0/2T�w1�T�e�0/2T + w2�T�e−�0/2T� , �9�

where

w1,2�T� = 2��
n,m

e−En/T�Vnm
1,2�2��En − �m� . �10�

If either the Zeeman term vanishes �M0=0� or the system is
symmetric under x→−x, then w1�T�=w2�T��w�T�. We will
assume this below although the results are only slightly
modified otherwise. w�T� depends on the dominant source of
fermions, which we take to be either thermally activated qua-
siparticles or Mott variable range hopping from bulk local-
ized states,

w�T� � �e−�0/T quasiparticles

e−�T0/T�1/3
hopping. 
 �11�

T0 depends on the density of states and localization length,
and we assume the hopping is 2D.

The transition rate is exponentially suppressed for T→0.
At sufficiently low temperature the resulting telegraph noise
could be observed in the time domain. At higher temperature
there is a signature in the noise spectrum S���. We determine
S��� semiclassically by solving a kinetic equation for the
probability p�t� that N0=1.20,21 This has the form dp /dt=
−�p− p̄� /�, where �−1=�+

−1+�−
−1=4w cosh2 �0 /2T. p̄= �1

+exp �0 /T�−1 follows from the detailed balance condition
�+ /�−=e�0/T. Temporal correlations in I�t� decay exponen-
tially on a time scale w−1, and the noise spectrum S���
=2�−�

� ei�t	I�t�I�0�
 is given by20,23

S��� =
4I0

2

cosh2 �0���/2T

�

1 + �2�2 . �12�

In the zero-frequency limit we have

S�� → 0� =
I0

2

w�T�cosh4 �0���/2T
. �13�

For D=1, these results are similar to the theory of a
SQPC.20–23 However, the current in Eq. �6� is half the value
of a perfect single-channel SQPC. A SQPC is similar to two
copies of a S/QSHI/S junction. This leads to a fundamental
difference because in the SQPC there is no conservation law
to prevent scattering between the �I0 states, which can occur
via low-energy processes that transfer an electron between
the two pairs. Elastic backscattering in the SQPC leads to an
avoided crossing of the states near E=0, so the Andreev
states carry no current at �=�. It is also of interest to com-
pare with the theory of Ref. 11. In that work, multichannel
junctions were considered. Independence of the different
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channels requires translational symmetry, so impurity scatter-
ing will lead to the violation of the conservation FP within a
given channel. In Ref. 12 it was argued that a 4� periodicity
of the Josephson current is possible for a spin active junction
with mirror symmetry although similar to the SQPC perfect
symmetry is required. In addition, FP protected E=0 level
crossings can occur in that system, which could exhibit tele-
graph noise. However they occur at two distinct phases �
and 2�−� and are not topologically guaranteed. The low-
temperature behavior predicted by Eqs. �11� and �13� is
unique to the S/QSHI/S junction and is a signature of the FP
anomaly.

We now briefly consider junctions at finite voltage bias.
There are two cases, depending on M0. For M0=0, the per-
fect edge state transmission causes the Andreev levels to
merge with the continuum. This leads to a finite dc current,
which for eV��0 can be understood semiclassically in
terms of multiple Andreev reflections.23 For w�T��eV��0,
the current is I�V�= �2 /��Ic sgn V, where Ic=�De�0 /2. For
M0�0, there is an energy gap � separating the Andreev lev-
els from the continuum, as in Figs. 2�b� and 2�d�. For w�T�
�eV�� there will be a fractional ac Josephson current with
frequency eV /�.11 For eV�� Landau-Zener tunneling pro-
cesses through � will lead to a damping of the ac Josephson
current as well as a finite dc current.

We close by discussing the feasibility of experiments us-
ing the QSHI in HgCdTe quantum wells,8,9 which has a bulk
gap of order of 20 meV.24 The desired geometry would be
similar to Ref. 25, where a 2D InAs quantum well was con-
tacted with Nb. The gap �0 will depend on the contact, and if
optimized could be of order the bulk gap of the supercon-
ductor. The electrode that is currently used in HgCdTe quan-
tum wells is indium, which becomes an s-wave supercon-
ductor below Tc=3.4 K.26 Using v=3.6 eV Å �Ref. 24� and
�0=0.1 meV we find L�v /�0�3 
m sets the scale for
having a single Andreev level. The simplest experiment
would be to study a single-current-biased junction, which is
predicted to have a critical current Ic=e�0 /2�10 nA. Mea-
suring the equilibrium telegraph noise at ��� requires an
inductive measurement on a rf SQUID.16 The physics at
M0�0 requires a magnetic field in the junction region. An
appropriately aligned field induces a gap B� �3.1 meV /T�
�Ref. 24� in the edge states, so a field of order of 0.03T could
suppress the normal-state transmission D as well as the mag-
nitude of the Josephson current.
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