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We study junctions between superconductors mediated by the edge states of a quantum-spin-Hall insulator.
We show that such junctions exhibit a fractional Josephson effect, in which the current phase relation has a 47
rather than a 27 periodicity. This effect is a consequence of the conservation of fermion parity—the number of
electron mod 2—in a superconducting junction and is closely related to the Z, topological structure of the
quantum-spin-Hall insulator. Inelastic processes, which violate the conservation of fermion parity, lead to
telegraph noise in the equilibrium supercurrent. We predict that the low-frequency noise due these processes
diverges exponentially with temperature 7 as 7— 0. Possible experiments on HgCdTe quantum wells will be

discussed.
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Proposals for fault tolerant topological quantum computa-
tion have motivated intense current interest in finding robust
physical systems that host excitations with non-Abelian
statistics.!> Recent experiments on the quantum Hall effect
have shown encouraging indirect evidence for such
excitations,>* but the direct observation of non-Abelions has
so far remained elusive. Recently we showed that the prox-
imity effect between a superconductor and a three-
dimensional (3D) topological insulator leads to a two-
dimensional (2D) interface state that supports non-Abelian
Majorana fermions.> A first step toward implementing this
proposal would be to demonstrate experimentally the topo-
logical order responsible for Majorana fermions.

In this Rapid Communication we study Josephson junc-
tions mediated by a 2D topological insulator, known as a
quantum-spin-Hall insulator (QSHI).®*® We predict such
junctions exhibit a fractional Josephson effect, which is re-
lated to the presence of Majorana fermions. The signature of
the fractional Josephson effect is that the current phase rela-
tion has a 47 rather than a 27 periodicity. This behavior was
first predicted by Kitaev'? using an idealized model of a
one-dimensional (ID) spinless p-wave superconductor.
Kwon et al.!! proposed that a related effect can occur at
junctions between unconventional 3D superconductors. They
argued that it leads to an ac Josephson effect with half the
usual Josephson frequency, and that in a weak tunneling limit
the Josephson current is carried by electrons rather than Coo-
per pairs. Michelson et al.'> proposed a related effect in spin
active Josephson junctions. The 4 periodicity can occur be-
cause the junction has two states with different Josephson
currents that are interchanged when the phase is advanced by
21r. At finite temperature inelastic processes can cause tran-
sitions between the states, leading to telegraph noise in the
Josephson current. We will show that in our setup these tran-
sitions are forbidden by the local conservation of fermion
parity (FP), which counts the number of electron mod 2.
This leads to an exponential suppression of the transition rate
at low temperature. This can be probed by measuring the
low-frequency current noise S(w— 0), which we predict di-
verges exponentially at low temperature.

The QSHI is a time-reversal invariant insulating state with
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a bulk energy gap generated by spin-orbit interactions.®® It
has recently been observed in HgCdTe quantum wells.® The
QSHI is distinguished from an ordinary insulator by a Z,
topological invariant,® which requires the existence of gap-
less edge states. The edge states form a unique 1D system
that is essentially half of an ordinary spin degenerate 1D
electron gas. In the simplest case it consists of a single band
of right moving electrons paired via Kramers theorem with a
left moving band with the opposite spin. These states are
robust against disorder because time-reversal symmetry pre-
vents elastic backscattering. In the absence of inelastic scat-
tering the edge state transmission is perfect.

Suppose the edge is in intimate contact with an s-wave
superconductor. The edge states will become Andreev states,
which decay into the superconductor, and may be described
with a 1D theory with an induced pairing potential
A=Aye’®. A, depends on the coupling ¢ between the edge
and the superconductor.'® For strong coupling it is of order
the bulk gap A, while perturbatively it is of order of
12/ Apyik. ¢ is the phase of the bulk superconductor. We write’
H=Y"HW/2, where ¥=[(i;, wi),(z,bj,—d/%f)] is expressed in
terms of field operators (|, describing the right (left) mov-
ers and

H

—ivT,0,0, — uT, + Ag(cos ¢, +sin ¢7,). (1)
o; are the Pauli matrices acting in the space of right and left
movers ¢, | and 7; are the Pauli matrices which mix the ¢
and ¢ blocks of W. v is the velocity of the edge states, u is
the chemical potential, and we set Z=1. The eigenstates of
Eq. (1) come in pairs at =E. Due to the redundancy in W,
these states are not independent, and the Bogoliubov quasi-
particle operators satisfy F_Ezfz.

Equation (1) is similar to Kitaev’s model of superconduct-
ing spinless electrons in 1D.!° In Kitaev’s model there are
zero energy Majorana bound states associated with the ends
of the sample. In our system, the edge—which is the bound-
ary of the 2D QSHI—cannot have an end. By breaking the
time-reversal symmetry, however, a Zeeman field can intro-
duce a mass term into H of the form
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FIG. 1. (Color online) A S/QSHI/S junction in an rf SQUID
geometry where the QSHI forms a Corbino disk.

V=M o= MY o, V/2. (2)

When M > pu, V, opens an insulating gap in the edge state
spectrum. V, could arise either from an applied magnetic
field (as in Ref. 9) or due to proximity to a magnetic mate-
rial. Zero energy Majorana bound states will exist at the
interface between regions with gaps dominated by A and M.}
In the presence of both A and M the gap is the smaller of
|Ag*=M|. When Ay=|M| a single band is gapless and for
Ay~ |M]| the low-energy sector of Eq. (1) has the form of a
Su-Schrieffer-Heeger model,'* which has a well known zero
energy bound state where Ay—|M| changes sign. The Bogo-
liubov quasiparticle operator associated with this state is a
Majorana fermion, which satisfies y,= y(T).

Consider a superconductor/QSHI/superconductor (S/
QSHI/S) junction in which the edge states of a QSHI connect
two superconductors separated by a distance L. Figure 1
shows an rf superconducting quantum interference device
(SQUID) geometry, in which the phase difference across the
junction ¢=(2e/h)P is controlled by the magnetic flux ®.
We also assume that the QSHI forms a Corbino disk which
circles the flux. This geometry is not essential, but we will
see that it has considerable conceptual value. We will also
include a Zeeman term in the gap between the superconduct-
ors, which will make the connection with Majorana bound
states transparent. We emphasize, however, that there will be
a nontrivial effect even when this term is absent. To deter-
mine the characteristics of the junction we solve the
Bogoliubov—de Gennes (BdG) equation (H+V,)E=E¢, with

Ax) = Ag[ O(=x = L/2) + €0(x — L/2)],

M(x)=My0(x+ LI2)6(— x + L/2). (3)

By enforcing continuity of ¢ at x=* L/2 we determine the
spectrum of Andreev bound states in the junction. The cal-
culation is similar to Ref. 11, as well as the theory of super-
conducting quantum point contacts(SQPCs).!>!® However,
we shall see that there is a fundamental difference with those
theories.

Figure 2(a) shows the spectrum as a function of ¢ for
My=0. For L=<wv/A, there is a single pair of bound states
E=*¢g)(¢). For L<v/A, our model reduces to the & func-
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FIG. 2. Spectrum of Andreev bound states in the junction as a
function of phase difference ¢ for parameters indicated in each
panel. L is in units of v/A, and M and u are in units of Ay. (a) and
(c) are independent of wu.

tion model solved in Ref. 11, where the normal-state trans-
mission probability is D=1/[1+(M, sinh(xL)/ k)], with
_szpz y [1+(M, sinh(kL)/ k)*] K
=\VMy—pu”. In that case

€() = DA, cos(¢/2). (4)

Figure 2(b) shows a case where M~ A, so the normal-state
transmission D<<1. When D<1 there are two weakly
coupled Majorana end states at x=*L/2. When L>v/A,
there will be additional Andreev bound states in the junction
with a level spacing of order of v/L. Figure 2(c) shows the
case where L=3v/A, with My=0, in which time-reversal
symmetry requires Kramers degeneracies when ¢=0 or .
Figure 2(d) shows the effect of finite M, and w, which lifts
most of the degeneracies. However, the crossing at E=0 re-
mains and is of special significance.

To understand the crossing consider E<<A,. The eigen-
vectors &+ of Egs. (1)—(3) with energy *¢y(¢) define Bo-
goliubov operators [y.=W7&,.. Due to particle-hole sym-
metry, F0+=F$_EF0. The low-energy Hamiltonian is thus

H= eIy~ 1/2) =2iex($) 175, (5)

where y,=(y+T})/2 and y,=—i(I',=T)/2 are the Majo-
rana operators. For D<1 v, , describe Majorana end states
at x= = L/2 coupled by weak electron tunneling. The cross-
ing at ¢=1r follows from the destructive interference of the
left and right tunneling processes. Equation (5) describes two
states distinguished by NOEFSF():O, 1. Mixing these states
requires an interaction that changes N,. Due to the pairing
term in Eq. (1), the total charge is not conserved. However,
the FP, defined as the number of electron mod 2, is con-
served in Egs. (1)—(3). This forbids the coupling between the
two states and protects the crossing at €y(¢)=0.

There is a problem, however, with the FP. The junction
Hamiltonian [Egs. (1)—(3)] is invariant under a 27 phase
change, but when ¢— ¢+2m, the system passes through a
single level crossing and can only return to the initial state by
a process which changes N, by 1. The FP thus apparently
changes when ¢— ¢+2. This has to do with the un-
bounded spectrum as E— — and reflects a fermion parity
anomaly similar to the SU(2) anomaly in four-dimensional
(4D) field theory.!” This anomaly is related to non-Abelian
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statistics. When ¢ advances by 2, y; — 7y, and y, ——7,. In
the tunneling limit this can be interpreted as Ivanov’s rule'd
for braiding a vortex between the Majorana bound states.

The physical origin of the FP anomaly lies in the topo-
logical structure of the QSHI. Consider first the Corbino disk
in Fig. 1 without the superconductor. In Ref. 19 we showed
that the Z, invariant characterizing the QSHI describes the
change in the Z, “time-reversal polarization” (TRP) when
flux h/2e is threaded through the hole. A nonzero TRP speci-
fies a many-body Kramers degeneracy localized at either
edge of the disk. Since an odd number of fermions has a
Kramers degeneracy, the TRP is precisely the FP. With the
superconductor present, start in the ground state at ®=0.
When flux //2e is threaded through the hole, ¢ advances by
2 and a unit of FP is transferred from the inner edge of the
disk to the junction on the outer edge. Although Eqgs. (1)—(3)
is invariant under ¢ — ¢+27r, the global Hamiltonian, which
includes the bulk QSHI, is physically distinct when ®=0 and
hl2e.

The local conservation of FP has important consequences
for the current and noise in a S/QSHI/S junction. This is
most striking near the degeneracy point for €,<A, and T
<A,. For the remainder of this Rapid Communication we
will focus on that regime. We will also consider the limit L
<uv/A,, where there is a single Andreev bound state and Eq.
(4) applies although the results can straightforwardly be gen-
eralized to the case with multiple Andreev levels provided
T<v/L. In this case, N, distinguishes two states, with Jo-
sephson currents /. = = [, with

Io(¢) = %V’Ber sin ¢/2 (6)

In the absence of transitions that violate local FP conserva-
tion there can be no transitions between 7, and I_, signaling a
fractional Josephson effect.

Elastic-scattering processes can be incorporated into the
BdG Hamiltonian from the start and will not lead to viola-
tions of the FP. However, at finite temperature, inelastic
processes?%2! can lead to a transition between I, and I_ pro-
vided an available fermion is present to switch the FP. This
could be either due to a thermally excited quasiparticle or
due to hopping from a bulk localized state. These processes,
however, will be exponentially suppressed at low tempera-
ture. On a time scale longer than the switching time the
current will thermalize with an average value''??

(I(¢)) = Ip($)tanh €)($)/2T. (7

On shorter times, the current will exhibit telegraph noise, as
it switches between /-..

In order to model the inelastic processes responsible for
the telegraph noise we consider the interaction of the An-
dreev level 'y with a bath of fermions ¢, (e.g., quasiparti-
cles) and bosons b,, (e.g., phonons). We thus write
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H= EOFZ)FO + E Enczcn + 2 wmbjnbm
n m

+ 2 [(V) clbyy+ V2, cabl )T+ Hee.]. (8)

mn

Here E,, w,>0, and we have ignored terms which create (or
annihilate) both fermions and bosons. The transition rates
73! (€, T) between the states N, and Ny = 1 follow from Fer-
mi’s golden rule. For €;,,T<A, we find

T;I — eieo/2T[Wl(T)eEO/2T+ WZ(T)e_EO/ZT], (9)
where
wio(T) =27, e BTV S(E, - w,,). (10)

If either the Zeeman term vanishes (M;=0) or the system is
symmetric under x — —x, then w(T)=w,(T)=w(T). We will
assume this below although the results are only slightly
modified otherwise. w(T) depends on the dominant source of
fermions, which we take to be either thermally activated qua-
siparticles or Mott variable range hopping from bulk local-

ized states,
20T
w(T) =

e T/D"* hopping.

quasiparticles

(11)

T, depends on the density of states and localization length,
and we assume the hopping is 2D.

The transition rate is exponentially suppressed for 7— 0.
At sufficiently low temperature the resulting telegraph noise
could be observed in the time domain. At higher temperature
there is a signature in the noise spectrum S(w). We determine
S(w) semiclassically by solving a kinetic equation for the
probability p(¢) that No=1.2%2! This has the form dp/dt=
—(p-p)/7, where 7'=7'+7"=4w cosh? /2T. p=(1
+exp €/T)~! follows from the detailed balance condition
7./ 7_=e'T, Temporal correlations in I(f) decay exponen-
tially on a time scale w™', and the noise spectrum S(w)
=27 e (I(1)I(0)) is given by?*?

41% T

S(w) = . 12

(@) cosh? €()/12T 1 + 0’7 (12)
In the zero-frequency limit we have
2

S(w—0) = 0 (13)

w(T)cosh* €)()/2T"

For D=1, these results are similar to the theory of a
SQPC.?-23 However, the current in Eq. (6) is half the value
of a perfect single-channel SQPC. A SQPC is similar to two
copies of a S/QSHI/S junction. This leads to a fundamental
difference because in the SQPC there is no conservation law
to prevent scattering between the =1 states, which can occur
via low-energy processes that transfer an electron between
the two pairs. Elastic backscattering in the SQPC leads to an
avoided crossing of the states near E=0, so the Andreev
states carry no current at ¢=1r. It is also of interest to com-
pare with the theory of Ref. 11. In that work, multichannel
junctions were considered. Independence of the different
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channels requires translational symmetry, so impurity scatter-
ing will lead to the violation of the conservation FP within a
given channel. In Ref. 12 it was argued that a 47 periodicity
of the Josephson current is possible for a spin active junction
with mirror symmetry although similar to the SQPC perfect
symmetry is required. In addition, FP protected E=0 level
crossings can occur in that system, which could exhibit tele-
graph noise. However they occur at two distinct phases ¢
and 27— ¢ and are not topologically guaranteed. The low-
temperature behavior predicted by Egs. (11) and (13) is
unique to the S/QSHI/S junction and is a signature of the FP
anomaly.

We now briefly consider junctions at finite voltage bias.
There are two cases, depending on M. For M(;=0, the per-
fect edge state transmission causes the Andreev levels to
merge with the continuum. This leads to a finite dc current,
which for eV<A, can be understood semiclassically in
terms of multiple Andreev reflections.?® For w(T) <eV<A,,
the current is I(V)=(2/m)I. sgn V, where I,=\DeAy/2. For
M >0, there is an energy gap O separating the Andreev lev-
els from the continuum, as in Figs. 2(b) and 2(d). For w(T)
<eV< 6 there will be a fractional ac Josephson current with
frequency eV/A.!! For eV~ & Landau-Zener tunneling pro-
cesses through 6 will lead to a damping of the ac Josephson
current as well as a finite dc current.
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We close by discussing the feasibility of experiments us-
ing the QSHI in HgCdTe quantum wells,®® which has a bulk
gap of order of 20 meV.?* The desired geometry would be
similar to Ref. 25, where a 2D InAs quantum well was con-
tacted with Nb. The gap A, will depend on the contact, and if
optimized could be of order the bulk gap of the supercon-
ductor. The electrode that is currently used in HgCdTe quan-
tum wells is indium, which becomes an s-wave supercon-
ductor below 7,=3.4 K.26 Using v=3.6 eV A (Ref. 24) and
Ap=0.1 meV we find L<v/Ay~3 um sets the scale for
having a single Andreev level. The simplest experiment
would be to study a single-current-biased junction, which is
predicted to have a critical current I,=eAy/2~ 10 nA. Mea-
suring the equilibrium telegraph noise at ¢~ 7r requires an
inductive measurement on a rf SQUID.!® The physics at
M, # 0 requires a magnetic field in the junction region. An
appropriately aligned field induces a gap BX (3.1 meV/T)
(Ref. 24) in the edge states, so a field of order of 0.037 could
suppress the normal-state transmission D as well as the mag-
nitude of the Josephson current.
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