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We present a theory for second-order nonlinear light scattering from spherical particles using source waves
of arbitrary frequency and direction based on a combination of linear Mie scattering and reciprocity theory. The
theory presented in this work extends existing theory applied to second-harmonic scattering by allowing
noncollinear excitation waves of unequal frequency. The absence of an intrinsic symmetry axis was overcome
by using a nonstandard expansion for the linear interaction. Numerical results obtained for water droplets in air
show an increase in the number of observed maxima in the sum-frequency scattering pattern compared to
index-matched theories, as well as a strong backscatter peak, which eventually dominates the scattering pattern.
Our method opens up possibilities for studying increasingly complex colloidal systems with nonlinear light
scattering spectroscopy.
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I. INTRODUCTION

Nonlinear light scattering �NLS� is a combination of light
scattering and nonlinear optics. In the case of second-order
techniques NLS allows for the in situ study of nonplanar
surfaces, such as micro- and nanoscopic particles in a sus-
pension. Electronically enhanced surface resonances were
measured with second harmonic generation �SHG� scattering
to probe the adsorption behavior of �dye� molecules on par-
ticle surfaces in �soft� condensed media.1–10 In these studies
colloidal dispersions were illuminated by a single pulsed la-
ser beam, and the generated second-harmonic �SH� light was
detected in a wide angle in the direction of the laser beam.
Also, it was recognized that the angular dependence of the
scattered light holds information on the physical origin of the
scattering process and the size and shape of the particles.2

To model the scattered light several approximations can be
used, such as the Rayleigh-Gans-Debye �RGD� approx-
imation,2,11–20 the small particle �electrostatic� limit16,21–32

and the small index contrast �Wentzel-Kramers-Brillouin
�WKB�� limit.16,19 An exact theory, nonlinear Mie theory, has
also been proposed.33 Although exact, this treatment relies on
the existence of a cylindrical symmetry axis, which is only
the case in a collinear experimental setup.

Vibrational resonances of surfaces of dispersed particles
can be measured with vibrational sum-frequency generation
�SFG�. This allows us to extract information from the vibra-
tional surface spectrum, which can be recorded at each scat-
tering angle. The resulting data then contain information
about the chemical structure, orientation, and order of mol-
ecules on the particle surface.15,20,34,35 An exact theoretical
description for this type of scattering does not exist. Al-
though analogous to that of SHG scattering, this description
is complicated by the fact that the employed laser beams are
typically different in frequency, propagation direction, and
propagation velocity. The absence of double degeneracy in-
terferes with the requirement for cylindrical symmetry for
the SHG scattering theory. Thus, a revision of the theoretical
treatment is required.

An exact treatment would be extremely valuable because
it allows for a description of any linear light-matter interac-

tion with any type of surface second-order nonlinear light
scattering process as long as the particle is spherical so that a
diverse range of NLS processes can be described. This would
be of use for the study of complex colloidal systems such as
metallic, semiconductor, and biological particles embedded
in condensed media.

Here, we present an approach that allows us to calculate
nonlinear Mie scattering for noncollinear NLS, with incom-
ing beams that have a difference in frequency �i.e., complete
absence of degeneracy�. The absence of cylindrical symme-
try in the propagation direction requires an alternative expan-
sion of the local electric fields. This expansion is accom-
plished by choosing spherical coordinates with respect to the
axis perpendicular to all propagation directions. Knowing the
fields at the surface, we proceed to calculate the exact scat-
tered far field by applying the reciprocity theorem. We end
by comparing our model to several known approximations
and calculate NLS patterns from water droplets in air.

II. THEORY

Nonlinear optical effects are usually described in terms of
a multipolar expansion of the nonlinear polarization, which
is generated by the interaction of the incoming electromag-
netic fields with a material. The leading order of this expan-
sion, the electric dipole contribution, is nonvanishing at in-
terfaces or in a noncentrosymmetric bulk. The magnitude of
this second-order polarization P�2� is determined by the non-
linear susceptibility following the relation Pi

�2�=�ijk
�2�E1,jE2,k.

The numerical subscripts �0,1,2� denote the participating
fields by order of decreasing wavelength so that the sum-
frequency field is denoted by the index 0.

The nonlinear polarization depends on the local field
strengths of the incoming waves. For collinear SHG, a single
electromagnetic field is taken as the source, but for SFG two
waves with a different frequency are combined, which are
generally noncollinear and possess different propagation
speeds inside the particle. We describe the incoming fields as
plane waves of the type E=Euei�k·r−�t�, where E is the field
amplitude, u is the unit polarization vector, k is the wave
vector, and � is the angular frequency of the field. At the
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surface of the particle, these fields are modified due to linear
optical interactions, which depend on the different frequen-
cies of the fields. It is these distorted fields that contribute to
the nonlinear polarization.

Once the local fields and the nonlinear polarization are
known, it is possible to calculate the scattering pattern in the
far field. This can be done by solving the nonlinear boundary
conditions at the particle surface and subsequently calculat-
ing the signal in the far field as has been done in the case of
SHG Mie scattering.33 Some controversy remains, however,
as to the correct form of these boundary conditions27,36

Alternatively, the scattering pattern can be calculated by
applying the reciprocity theorem16,37 which circumvents the
need to consider nonlinear near field interactions. In short,
the reciprocity theorem is based on the principle of time
reversal of electromagnetic waves: the light emitted from a
polarization distribution P will, at a point of detection r0 in
the far field, resemble a spherical wave. Time reversal sug-
gests that this is equivalent to a spherical wave returning
from the direction of r0, which induces a �linear� polarization
itself. The integrated inner product of this returning electro-
magnetic wave E� with the original polarization can there-
fore be interpreted as the extent to which a polarization P
contributes to a far-field signal in the direction of r0. In the
case of a scattering particle, the reciprocity relation is for-
mally given by16

E�r0� · u = eik0r0
k0

2

r0
� i�P · E�d3r�, �1�

where E is the �real� electromagnetic wave arriving in the far
field, k0 is its wave number, and E� is the theoretical return-
ing spherical wave from the direction of r0, which is subject
to regular linear interactions. The integration is taken over
the volume of the particle �d3r��.

For the purpose of a nonlinear light scattering experiment,
P takes the form of the nonlinear polarization P�2� that is the
result of the interactions of the two incoming source fields
with the surface region �given by Pi

�2�=�ijk
�2�E1,jE2,k�. E�r0� is

the sum-frequency field arriving at the detector, and E� is the
time-reversed counterpart of E �i.e., a spherical wave coming
in from the position of the detector with wave number k0�.
The reciprocity relation then results in an almost symmetri-
cal interaction between three linear electromagnetic near
fields as follows:

E0�r0� · u = i�0eik0r0
k0

2

r0
� �

j,k,l
E0,j� �r��� jkl

�2��r��

�E1,k�r��E2,l�r��d3r�, �2�

where it should be noted that E0� is a unity amplitude field.
The emitted electric field can therefore be obtained by

considering the linear interactions of three incoming
waves—two for the source wave and one for the returning
wave at the nonlinear frequency—and combining the results
using the nonlinear susceptibility tensor. The reciprocity
treatment circumvents nonlinear boundary conditions and
shows the symmetric relation between source and nonlinear
electromagnetic fields. To obtain the nonlinear scattering pat-

tern, the first step is to obtain expressions for each of the
individual electromagnetic near fields separately.

A. Local fields

An exact solution for the electric field at the surface of a
dielectric particle is given by linear Mie theory.38 Many dif-
ferent but equivalent treatments of the theory exist in
literature,38–44 which vary slightly but are all based on the
same concept: an expansion of the electric field into vector
spherical harmonics �VSH� is used for the incoming field,
which is then coupled to an internal and a scattered field
using boundary conditions that follow from the Maxwell
equations.

We use an orthogonal expansion in spherical coordinates
in terms of the spherical harmonics Ylm. The local electro-
magnetic field can be represented as

E = �
lm

AlmMlm + BlmNlm, �3�

Mlm = jl�nkr��
1

sin ��

dYlm���,���
d��

e��

− jl�nkr��
dYlm���,���

d��
e��, �4�

Nlm = l�l + 1�
jl�nkr��Ylm���,���

nkr�
er�

+
d�r�jl�nkr���

nkr�dr�

dYlm���,���
d��

e��

+
d�r�jl�nkr���

nkr�dr�

1

sin ��

dYlm���,���
d��

e��, �5�

where we have temporarily dropped the subscripts �0,1,2� for
convenience. Here, jl is a spherical Bessel function of the
first kind and should be replaced by a spherical Hankel func-
tion of the first kind �hl� for the scattered field, k is the wave
number, and n is the index of refraction of the particle di-
vided by that of the medium. Ylm is the spherical harmonic
function. The coordinates r�, ��, and �� are spherical coor-
dinates with respect to the particle center and a symmetry
axis. Usually this axis is chosen to be lined up with the
incoming field �the z axis�, reducing the expansion coeffi-
cients Alm and Blm to simple expressions that are both non-
zero only42 for m= �1.

Here, however, our aim is to describe scattering from a set
of noncollinear waves, and we have to use a less common
orientation, perpendicular to the direction of incidence: we
take the y axis as polar axis �see Fig. 1�. This results in a
more complicated expansion of coefficients Alm and Blm but
this is traded off by a more convenient expression for rota-
tion around the y axis, which for this expansion can be con-
veniently obtained for an arbitrary angle 	 by multiplying
each coefficient with a factor eim	. The expansion terms for a
plane wave traveling along the positive z axis are45

ALEX G. F. DE BEER AND SYLVIE ROKE PHYSICAL REVIEW B 79, 155420 �2009�

155420-2



Alm
inc =

2
il+1

l�l + 1�
���l + m + 1��l − m�Ylm+1

� �
/2,
/2�

+ ��l − m + 1��l + m�Ylm−1
� �
/2,
/2�� , �6�

Blm
inc =

4
il

l�l + 1�
mYlm

� �
/2,
/2� , �7�

for a polarization along the x axis �p polarization�. For po-
larization along the y axis �s polarization�, the expansion
coefficients have to be interchanged and multiplied by an
additional complex phase factor i.

Unchanged from original Mie theory, the incoming elec-
tromagnetic field �Einc� can now be coupled to the field in-
side the particle �Epart� and the scattered field �Escat� by using
the boundary conditions for the case of linear light-matter
interaction,40

r� � �Einc + Escat� = r� � Epart, �8�

r� � �Hinc + Hscat� = r� � Hpart, �9�

which for the internal field gives expansion coefficients

Alm
part = Alm

inc� jl�kr��
�r�hl�kr��

�r�
− hl�kr��

�r�jl�kr��
�r�

jl�nkr��
�r�hl�kr��

�r�
− hl�kr��

�r�jl�nkr��
�r�

�
�r�=R�

,

�10�

Blm
part = Blm

inc� njl�kr��
�r�hl�kr��

�r�
− nhl�kr��

�r�jl�kr��
�r�

n2jl�nkr��
�r�hl�kr��

�r�
− hl�kr��

�r�jl�nkr��
�r�

�
�r�=R�

,

�11�

where R is the radius of the spherical particle.
The nonlinear surface process takes place on a thin film

on the outside of the particle surface. The local electric field
on the outside surface is equal to the internal field Epart in the
direction of �� and ��. The radial part needs to be adjusted
for the jump of the electric field across the interface by a

factor of the dielectric constant �=n2. This expansion has to
be obtained for each of the incoming fields at the three fre-
quencies involved.

B. Nonlinear polarization

The next step in obtaining an expression for nonlinear
scattering pattern is combining the three near fields with the
nonlinear susceptibility tensor ��2�. For an electric dipole
contribution, the scattering amplitude is given by

E0�r0� · u = i�0eik0r0
k0

2

r0
� �

j,k,l
E0,j� �r��� jkl

�2��r��

�E1,k�r��E2,l�r��d3r�, �12�

where each of the electric near fields is represented by an
expansion in VSHs. In a centrosymmetric medium ��2� van-
ishes in the bulk. The nonlinear susceptibility will therefore
be of the form ��2�=�surf

�2� ��r�−R�, which reduces the above
expression to a surface integral.

The nonlinear susceptibility tensor of a surface follows
the local curvature of the surface. For a spherical particle
with an isotropic surface and with a curvature that is large
compared to the atomic scale, this surface has a local C


symmetry. In this case, the nonvanishing ��2� elements are
����

�2� , ��	 	
�2� , �	�	

�2� , �	 	�
�2� , �

�	 	�
�2� =−�

�	 �	
�2� , �	 	��

�2� =−�	 �	�
�2� , and

�	 ��	
�2� =−�	 � 	�

�2� ,46 where �, 	, and 	� denote the perpendicular
and two mutually orthogonal parallel directions with respect
to the local surface so that �� , 	 , 	�� forms a right-handed
coordinate system. For such a surface, the number of inde-
pendent nonvanishing tensor components is seven. In the
presence of a plane of mirror symmetry, the number of inde-
pendent components is reduced to four. Since ��2� can be
related to the molecular hyperpolarizability ��2�, the relative
magnitudes of the susceptibility tensor elements contain in-
formation on molecular orientation.47

The first nonvanishing terms in a centrosymmetric bulk
material are the electric quadrupole and magnetic dipole con-
tributions. Distinguishing the higher-order bulk contributions
from those of the surface dipole remains a challenge due to
the nonuniqueness in separation between the two.48,49 The
pure surface contribution can only be isolated when higher-
order contributions are negligible compared to those of the
surface dipole. An analysis by Held et al.50 showed separa-
tion is possible when either thickness of the molecular sur-
face layer is large compared to the size of an electronic wave
function or vibrational amplitude or in cases where there is a
distinct difference in directionality between the molecules at
the surface and in the bulk. Also, when spectroscopic differ-
ences exist between bulk and surface, the different contribu-
tions can be separated. Additionally, in a dispersion the ratio
of surface molecules to bulk molecules is increased com-
pared to a planar interface. A possible contribution from a
quadrupole term will therefore be much smaller in a scatter-
ing experiment compared to an experiment conducted on a
planar interface. Though a treatment of the bulk quadrupole
contribution to the nonlinear scattering signal is of interest, a
full analysis is beyond the scope of this paper. We will, for
the remainder of this paper, assume that the higher-order

FIG. 1. Overview of the relevant parameters in the model: the
sum frequency and source waves have k vectors k0, k1, and k2 in
order of decreasing frequency. The angle between the propagation
direction of the lowest frequency wave and the positive z axis is �,
the opening angle between source waves �. Local fields are ex-
pressed in spherical coordinates �r� ,�� ,���, which are defined with
respect to the y axis. The sum-frequency scattering pattern is pa-
rametrized using the scattering angle �.
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bulk contributions are negligible compared to the electric
dipole surface contribution. A short treatment of the formal-
ism for quadrupole scattering is given in the Appendix.

For a spherical particle, an isotropic surface locally has a
C
 symmetry so that only the components ����

�2� , ��	 	
�2� , and

�
�	 	�
�2� and their index permutations can have nonvanishing

contributions. When these terms are combined, only three
different types of integral arise from the combinations of M
and N,

Umm�m�
ll�l� = �

0

2
 �
0




YlmYl�m�Yl�m� sin ��d��d��, �13�

Vmm�m�
ll�l�

= �
0

2
 �
0




Ylm
dYl�m�

d��

dYl�m�

d��
−

dYl�m�

d��

dYl�m�

d��
�d��d��,

�14�

Wmm�m�
ll�l�

= �
0

2
 �
0




Ylm
dYl�m�

d��

dYl�m�

d��
+ csc2 ��

dYl�m�

d��

dYl�m�

d��
�

�sin ��d��d��. �15�

As an example, for polarization combination ppp �all po-
larizations parallel to the plane of scattering� the part involv-
ing ��	 	

�2� generates the following expression:

E0,ppp = ��	 	
�2� �

ll�l�mm�m�

n0
l�l + 1�B0,lm

part j0,l

k0R
ei�m�+m���−��+m���

���B1,l�m�
part A2,l�m�

part j1,l�
� j2,l�

− A1,l�m�
part B2,l�m�

part j1,l�j2,l�
� �Vmm�m�

ll�l�

+ �A1,l�m�
part A2,l�m�

part j1,l�j2,l�

+ B1,l�m�
part B2,l�m�

part j1,l�
� j2,l�

� �Wmm�m�
ll�l� � . �16�

Here, jl� is short for
d�r�zl�nkr���

nkr�dr�
and the subscripts �0,1,2�

again denote the waves with different frequency. The angles
� and � determine the scattering geometry: � is the angle of
the lowest frequency wave with the forward-scattering direc-
tion, and � is the opening angle between the source waves.
Finally, � is the scattering angle �see Fig. 1�. The term
exp�i�m�+m���−��+m���
 is a basic property of scattering:
we can interpret the angular dependence of Eq. �16� as a
Fourier series of the type �Cmeim�, which means that for
higher expansion numbers l �which restrict the maximum
value of m�, sharper features may appear in the scattering
pattern.

The integrals U, V, and W have been evaluated in studies
relating to geomagnetism and meteorology and can be de-
scribed as products of Wigner 3j and 6j symbols,51–53

Umm�m�
ll�l� =��2l + 1��2l� + 1��2l� + 1�

4


 l l� l�

m m� m�
�

�
 l l� l�

0 0 0
� , �17�

Vmm�m�
ll�l� = − i��2l + 1��2l� + 1��2l� + 1�

4


���l + l� + l� + 2��l + l� + l� + 4�
4�l + l� + l� + 3�

���l + l� − l� + 1��l − l� + l� + 1���− l + l� + l� + 1�

�
 l l� l�

m m� m�
�
l + 1 l� + 1 l� + 1

0 0 0
� , �18�

Wmm�m�
ll�l� = −��2l + 1��2l� + 1��2l� + 1�

4


��l��l� + 1�l��l� + 1��2l� + 1��2l� + 1��l� l� 1

l� l� l
�

�
 l l� l�

m m� m�
�
 l l� l�

0 0 0
� . �19�

A converging solution requires summation over all pos-
sible combinations of l , l� , l� , m , m� and m� up to a
maximum value l= lmax. The total number of summation
terms that is required therefore grows with lmax as lmax

6 . The
cutoff value increases linearly with particle size so that for
large particles computation times become extremely large. In
practice, for particles larger than k0R=5 it is much faster to
calculate the linear electromagnetic fields for a large set of
points at the particle surface and numerically integrate them
for the correct scattering amplitude rather than relying on the
analytical expression.

III. NUMERICAL RESULTS

We used custom written Matlab routines to generate the
required Legendre polynomials and Bessel coefficients. Us-
ing these coefficients, a program was written in C#, a pro-
gramming language similar to C�� and JAVA. This program
calculates radial and tangential components of the linear sur-
face electric fields for a set of points on the particle surface.
The source fields were then combined into a nonlinear sur-
face polarization, which in turn was combined with the sum-
frequency field. Rotations were achieved by shifting the sur-
face points to eliminate the need for calculating a new field
for every angle. Figure 2 shows the resultant field for a
single calculation: here, the radial interactions �via ����

�2� � of
a low frequency wave �left picture� and higher frequency
wave �middle picture� were combined to generate a nonlinear
polarization �right picture�. The calculations were acceler-
ated by offloading all image calculations to the graphics pro-
cessor. In this way, a full set of high-resolution scattering
patterns �in all possible polarization combinations� could be
generated within a few minutes on a regular desktop com-
puter.

ALEX G. F. DE BEER AND SYLVIE ROKE PHYSICAL REVIEW B 79, 155420 �2009�

155420-4



A lower limit on the number of data points required to
correctly resolve the local electric fields depends on the num-
ber of expansion terms used: as this number increases, the
corresponding spherical harmonics harbor an increasing
amount of oscillations that need to be represented accord-
ingly. The number of expansion terms needed can be esti-
mated by considering the value of k0,1,2R: the expansion co-
efficients for the linear fields vary only minimally for l
�k0,1,2R and drop off rapidly for l�k0,1,2R, which provides
a good estimate for an appropriate cutoff value lmax. A dis-
crete representation of the local electric field must be able to
capture all oscillations contained in a expansion up to lmax. In
the �� direction, for instance, this is determined by the
spherical harmonic Ylm��� ,���, which contains a factor
eim��. In this direction, the maximum number of attainable
oscillations is m= lmax. According to the Nyquist criterion,54

we therefore need at least 2lmax data points to describe this
oscillation.

The number of data points needed to describe the angular
scattering intensity is also subject to a lower limit: the term
ei�m�+m���−��+m��� in Eq. �16� oscillates with a frequency de-
termined by m, the value of which is limited by lmax. The
number of angular samples to correctly represent a scattering
pattern is therefore also determined by the Nyquist criterion:
a sampling of at least 2lmax scattering angles is required to
correctly represent the pattern. For the largest radius �R
=1600 nm� used in this article, a cutoff of lmax=30 was
used. The Nyquist criterion therefore requires a resolution of
at least 60 pixels in the �� direction to describe the electric
field, as well as at least 60 angular samples of the scattering
pattern. The resolution we used �512 pixels for both the elec-
tric field representation as well as the angular sampling of
the scattering pattern� was well above these values.

A. Verification of the algorithm

Although no treatments exist for generalized nonlinear
scattering from noncollinear sources of different frequency, a

number of limiting cases exist for which exact, analytical
solutions are available. These limiting cases allow us to
verify the correctness of our algorithm. Exact treatments ex-
ist for negligible index of refraction differences ��n0,1,2
�0�, where the RGD regime applies16,18 as well as in the
limit of small particles �k0R�1�.16,27 Moreover, using a col-
linear set of source waves of equal frequency should yield
results that are in correspondence with earlier work on SHG
scattering theory.

In the first case, the RGD regime, interactions of the par-
ticle with the source fields are neglected and the surface field
is taken as a plane wave. In the present theory, a negligible
index of refraction causes the linear scattered wave to vanish.
As a result, the electric field on the surface of the particle is
equal to the incoming electric field. For vanishing index of
refraction differences �for all three different wavelengths� the
current theory is analytically identical to the RGD theory. In
the RGD limit our Mie calculations should therefore corre-
spond exactly to earlier RGD calculations.

Figure 3�a� shows a comparison to earlier presented scat-
tering patterns.18 Here, we simulated scattering for a sphere
with radius R=500 nm, and a single ��2� component ����

�2�

=1, using source waves of wavelength �1=800 nm and �2
=3447 nm for the incoming waves, respectively, and polar-
ization combination ppp. The opening angle � between the
source waves was 15°; the index of refraction was set to
unity for all wavelengths. Figure 3�a� shows the scattering
pattern as calculated with RGD theory18 and compares it to
the pattern calculated by our nonlinear Mie algorithm. As
can be seen both patterns are identical, which confirms the
assumptions based on the analytical expressions. These re-
sults also provide a validation for our approach: the asym-
metry in the scattering pattern caused by the noncollinear
geometry can only be obtained if a nonzero angle between
source beams is allowed. In collinear NLS, no such opening
angle is present, and all scattering patterns are symmetric as
a result of the symmetry of the geometry.

Analytical expressions for the small particle limit have
been derived for SHG scattering,25,27 as well as in more gen-

FIG. 2. �Color� Illustration of the nonlinear polarization built up
by combining source waves of �1=800 nm and �2=3447 nm. The
radial components of the local electric fields E1 and E2, represented
by the left and middle spheres, couple according to the relation
P�=����

�2� E1,�E2,�, represented in the right sphere. The electric
fields, as well as the polarization vary in phase �represented by
color� and amplitude �represented by the saturation of the color�.
The inner product of the polarization with the sum-frequency wave
yields the sum-frequency amplitude. For both source waves, a unity
index of refraction was taken, though the procedure also applies for
nonunity values. The rightmost image shows a legend for the colors
used: blue and red correspond to positive and negative real compo-
nents, while green corresponds to the amplitude of imaginary
components.

FIG. 3. Comparison of results obtained with numerical Mie
simulation to previous analytical expressions: �a� Scattering pattern
of sum-frequency generation by source beams at an opening angle
� of 15° for which �1=800 nm and �2=3447 nm at the surface of
a particle of radius R=500 nm, for which ����

�2� =1. Numerical
results �solid curve� correspond exactly to analytical results �dashed
curve; offset for clarity�. �b� Scattering pattern corresponding to the
small particle limit �R=10 nm�. A second-harmonic scattering pat-
tern was simulated using a source wavelength of 800 nm and
����

�2� =1 �solid curve�, which corresponds exactly to analytical re-
sults in the small particle limit �dashed curve; offset for clarity�. In
both cases, the polarization combination was ppp.
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eral terms for other nonlinear processes.16 Both treatments
consider an expansion of the source fields into a leading-
order term, a second-order term, and subsequent higher or-
ders with respect to particle size. The leading-order term
represents the electrostatic limit, whereas the second-order
term represents the first correction to this limit. The scatter-
ing pattern is obtained by combining the expansions of
source waves with the nonlinear wave. Combining the
leading-order terms of the three expansions results in a van-
ishing contribution. The lowest nonvanishing terms are those
that consist of a single second-order term �either from a
source or a nonlinear wave� and two leading-order terms. For
a collinear setup, this results in a scattering pattern consisting
of a dipole term combined with a quadrupole term.25,27 Our
altered Mie expansion has no effect on the validity of this
claim, and the results obtained in the small particle limit are
identical. Figure 3�b� compares SHG scattering in the small
particle limit to our Mie treatment, using ����

�2� =1 and wave-
lengths of 800 and 400 nm for the source waves and sum-
frequency wave, respectively. Here, as well as in the RGD
limit, our Mie treatment corresponds exactly to analytical
results.

B. Water droplets

In order to compare our model to earlier presented non-
linear Mie theories to describe SHG scattering, we have cal-
culated SFG scattering patterns from water droplets in air.33

SFG experiments on the planar water/air interface have
shown that the vibrational SFG spectrum contains a single
sharp peak at 3693 cm−1 and broader features at lower wave
numbers.55 The sharp peak at 3693 cm−1 is ascribed to a
dangling OH-bond, a mode that can exist only at the inter-

face. We have therefore simulated SFG scattering from
spherical water droplets using wavelength �1=800 nm and
�2=2708 nm ��3693 cm−1� and a resulting SFG wavelength
of �0=617 nm. At these wavelengths, the bulk indices of
refraction of water are56 n0=1.33−1.3·10−8i at the sum fre-
quency, n1=1.33−1.25·10−7i at the visible, and n2=1.19
−0.019i at the infrared wavelength. The relative surface ��2�

components were derived from experiments by Gan et al.55

as ����
�2� =1, �	 	�

�2� =0.50+0.017i, and �	�	
�2� =��	 	

�2� =0.089
−0.011i.

Figure 4 shows scattering patterns as a function of particle
size for two cases: the top image shows sum-frequency scat-
tering in the RGD approximation, with indices of refraction
set to unity for all wavelengths. The bottom image shows
sum-frequency scattering from water droplets in air, using
the wavelength-dependent indices of refraction of water.

The particle size increases from 10 �bottom of image� to
1600 nm �top of image�. For clarity, every scattering pattern
has been normalized to its respective peak value.

The number of expansion terms required for describing
the electric field on a particle with nonunity index of refrac-
tion is determined by the value of n0,1,2k0,1,2R. An increased
index of refraction therefore requires the inclusion of more
expansion terms. This higher number of terms in turn causes
a more sharply peaked scattering pattern compared to the
RGD approximation. This effect can be clearly seen in Fig.
4: the first-order scattering peak, for instance, is much
sharper and shifted further forward for water droplets than
for the RGD approximation. Also, a larger fraction of the
scattered energy is scattered to higher orders. In the RGD
case, the amount of energy scattered in orders higher than the
second is negligible, while water droplets cause the visibility
of up to five distinct scattering orders.

FIG. 4. �Color� Simulations of nonlinear scat-
tering intensities for the ppp polarization as a
function of scattering angle �horizontal axis� and
particle size �vertical axis�, using a noncollinear
scattering setup consisting of source waves of
wavelength �1=800 nm and �2=2708 nm under
an angle at 15° with respect to each other. The
topmost image shows scattering intensities in the
case of a spherical particle of unity index of re-
fraction ���n0,1,2�0��, the bottom image those of
spherical water droplets, with n0=1.33
−1.3·10−8i, n1=1.33−1.25·10−7i, and n2=1.19
−0.019i. In both cases, the particle surfaces were
chosen to be isotropic with ��2� components
taken from literature: ����

�2� =1, �	 	�
�2� =0.50

+0.017i, and �	�	
�2� =��	 	

�2� =0.089−0.011i. For
clarity, each scattering pattern has been normal-
ized to its peak intensity.
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Another interesting aspect of these data is the presence of
beats in the intensity. For scattering from larger droplets �R
=1100–1600 nm�, the size can have a dramatic effect on the
observed scattering pattern. These beats are most likely the
result of shape resonance phenomena. Similar beats were
also generated in the SH Mie calculations by Pavlyukh and
Hübner.33 The qualitative characteristics of our scattering
patterns are in agreement with that work. We did, however,
not attempt to recreate these values due to ongoing discus-
sion on the correctness of the boundary conditions used in
this paper.27

C. Total scattered intensity

Figure 5 shows the total intensity of in-plane scattered
second-order light from a spherical particle �ppp polariza-
tion� in the case of the RGD approximation �left� and the
exact, nonlinear Mie case for water droplets �right�. In col-
loidal dispersions, the total scattered energy depends on the
number of scattering centers, as well as the scattering cross
section of a single particle. In the small particle limit �k0R
�1�, the surface polarization itself depends linearly on the
radius25 so that in this regime the scattering cross section
follows a R6 dependence. At larger sizes, we can expect that
the nonlinear scattering cross section is proportional to the
square of the surface area and therefore follows an R4 depen-
dence.

In Fig. 5 all intensity values have been divided by R4 so
that this power-law dependence can be quickly identified as
being larger than �rising curve� or smaller than �falling
curve� the R4 dependency expected for a proportionality to
surface area. Additionally, we have separated backscatter
peaks from forward scattered peaks by plotting forward-
scattering �gray curves; scattering angles between −90 and
90°� and backscattering �dashed curves; complementary
angles� intensities. The insets show the same curves without
the R4 correction so that absolute scattered intensities can be
compared.

In the RGD case �left�, we can see that the three regimes
lie in the ranges 0–250 nm for R6 dependence and 250–500
nm for the R4 dependence. At higher radii, the total intensity
follows a power law of �slightly� less than 4. Light is scat-
tered mainly in the forward direction. Even though two back-
scatter maxima can be observed for R=120 nm and R
=330 nm, these are just the first-order scattering maximum
and the second-order scattering maximum appearing at high
angles and moving toward the forward direction �as can be
seen in Fig. 4�. In the Mie simulation for scattering from
water droplets �Fig. 5, right�, the total scattered intensity fol-
lows the same power law as the RGD case for small particle
radii but rapidly drops below a R4 dependence once particle
size is larger than R=280 nm. As size increases even further
the total intensity shows large size-dependent oscillations,
though the average value remains roughly constant.

The total backscattered intensity, though initially of
smaller magnitude than the forward scattered intensity, re-
mains closer to an R4 dependence and eventually becomes
larger than the forward scattering. As can be seen in Fig. 4
�bottom�, the angular distribution of backscattered signal is
concentrated in an angular range between 120 and −120° for
radii above 1.4 �m and shows a trend toward even narrower
distributions. At large particle sizes, for which resolving a
scattering pattern experimentally may prove impractical, the
integrated intensity in the backward angular range will still
provide reliable size information.

IV. CONCLUSIONS

We have presented a method for calculating nonlinear
light scattering using a Mie formalism for spherical particles
in a general scattering setup consisting of noncollinear, non-
degenerate source waves. The absence of appropriate sym-
metry conditions was compensated by expanding the electro-
magnetic source fields in a spherical coordinates system
relative to an axis perpendicular to the propagations direc-
tions of both the source waves. The surface polarization
could then be calculated from which the scattered electric
field could be derived with reciprocity theory. Though in this
work we limit this method to second-order processes, there is
no limitation to the number of multiple-wave interactions to
which it can be applied: as long as the nonlinear source term
can be described by a surface polarization, the numerical
algorithm can be applied directly by combining the larger
number of interaction waves. Moreover, a bulk polarization
can be treated in a similar way by an additional integration
over the polarization in the radial direction. Furthermore,

FIG. 5. Comparison of size-dependent integrated scattering in-
tensities �solid black curves� as well intensities integrated over the
forward �gray curves; −90 to 90°� and backward �dashed black
curves; 90 to −90°� semicircle. The scattering geometry as well as
the wavelength used were identical to those used in Fig. 4. All
intensities have been divided by R4 and normalized with respect to
the resulting maximum value of the total scattered intensity. The
insets show the same curves without dividing by R4. In the case of
water droplets, the curve has been offset for clarity. All graphs show
values for the ppp polarization combination. The left graph repre-
sents the RGD limit. Here, the dominant backscattering contribu-
tions are due to initial appearance of first- and second-order scat-
tering maxima, which appear at low radii and whose position shifts
forward as the particle radius increases. At larger radii, the domi-
nant scattering direction is forward. The graph on the right repre-
sents the intensities for water droplets. In the limit of small par-
ticles, the intensities follow a similar dependence on radius, though
at larger radii a backscatter peak appears along with size-dependent
oscillations in overall intensity due to shape resonances. At larger
radii, the scattered energy is divided between forward and backward
scatterings of which the backward contribution eventually
dominates.
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nonisotropic surfaces can be modeled by altering the compo-
nents of ��2� accordingly. Our simulations were verified in
the limits for which previous results exist. We then compared
scattering patterns of index-matched particles and water
droplets as a function of particle size. In both cases, the
scattering cross sections in the small particle limit were com-
parable, showing an R6 dependence on particle radius. Clear
differences in scattering patterns could be observed for larger
particle radius �k0R�5�: compared to the RGD limit, water
droplets showed a sharper forward-peaked scattering pattern,
a higher number of scattering side maxima, and a strong
backscatter peak. In the case of water droplets, the scattering
cross section follows a nontrivial oscillatory dependence on
size, though the backscattered energy, which eventually
dominates the cross section, shows an overall smoother de-
pendence.

The noncollinear Mie theory presented in this work ex-
tends existing nonlinear Mie theory applied to second-
harmonic scattering and allows for a theoretical description
of two-beam SHG and SFG scattering experiments. As such,
it opens up additional possibilities for the study of increas-
ingly complex colloidal systems such as metallic, semicon-
ductor, and biological particles, with noncollinear nonlinear
light scattering spectroscopy.
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APPENDIX: QUADRUPOLAR BULK CONTRIBUTION

For centrosymmetric materials, the second-order dipole
contribution vanishes and the higher-order terms include
magnetic dipole and electric quadrupole contribution. Of
these terms, the electric quadrupole can have a significant
contribution. The nonlinear polarization derived from an
electric quadrupole consists of a nonlocally excited dipole
and a locally excited quadrupole contribution,49

Pi = �ijkl
�2�Q1�l�E1,j�E2,k + �ijkl

�2�Q2E1,j�l�E2,k�

− �l��ijkl
�2�Q0E1,jE2,k� , �A1�

where � is the del operator ��i=d /dxi� and the �ijkl
�2�Q0,1,2 are

the relevant quadrupole susceptibility tensors. For an isotro-
pic, centrosymmetric bulk, these tensors contain only the el-
ements �iij j

�2�Q0,1,2 ,�ij ji
�2�Q0,1,2 ,�ijij

�2�Q0,1,2 and �iiii
�2�Q0,1,2 =�iij j

�2�Q0,1,2

+�ij ji
�2�Q0,1,2 +�ijij

�2�Q0,1,2 �no summation over indices i and j�. The
resulting contraction E0 ·P then contains terms of the type
E0 ·�E1 ·E2. In terms of vector spherical harmonics, the vec-
tor gradient diadic ��jl��kr��Yl,l�

m � can be expressed in tensor
harmonics as defined by James,53

��jl��kr��Yl,l�
m � =

1

2l� + 1
�k�l��1/2jl�−1�kr��Yl,l�,l�−1

m

+ k�l� + 1�1/2jl�+1�kr��Yl,l�,l�+1
m � . �A2�

Here, Yl,l�
m is a vector spherical harmonic, which is non-

vanishing only for �l�− l��1. Equivalently Yl,l�,l�
m denote ten-

sor spherical harmonics. The vector spherical harmonic Mlm
and Nlm can be expressed in terms of this system as

Mlm�r�,��,��� =
i

l�l + 1�
jl�kr��Yl,l

m ���,��� , �A3�

Nlm�r�,��,��� = �l + 1�
 l

2l + 1
�1/2

jl−1�kr��Yl,l−1
m ���,���

− l
 l + 1

2l + 1
�1/2

jl+1�kr��Yl,l+1
m ���,��� .

�A4�

Finally, the integral �E0 ·�E1 ·E2d� is expressed in terms
of

Zl0,. . .,l2�
m0,m1,m2 =� Yl0,l0�

m0 · Yl1,l1�,l1�
m1 · Yl2,l2�

m2 d�

=
�− 1�l0�+l1+l2�

�4
�1/2 �2l0 + 1�1/2�2l0� + 1�1/2 . . .

��2l2� + 1�1/2�l0 l0� 1

l1� l1� l2
��l1 l1� 1

l2� l2 l0
�

�
l0� l1� l2�

0 0 0
�
 l0 l1 l2

m0 m1 m2
� . �A5�

Combining the appropriate integrals and integrating over
the particle radius then yields the electric quadrupole bulk
contribution to the scattering pattern.
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