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We investigated theoretically the phonon thermal conductivity of single-layer graphene. The phonon disper-
sion for all polarizations and crystallographic directions in graphene lattice was obtained using the valence-
force field method. The three-phonon Umklapp processes were treated exactly using an accurate phonon
dispersion and Brillouin zone, and accounting for all phonon relaxation channels allowed by the momentum
and energy conservation laws. The uniqueness of graphene was reflected in the two-dimensional phonon
density of states and restrictions on the phonon Umklapp scattering phase-space. The phonon scattering on
defects and graphene edges has also been included in the model. The calculations were performed for the
Gruneisen parameter, which was determined from the ab initio theory as a function of the phonon wave vector
and polarization branch, and for a range of values from experiments. It was found that the near room-
temperature thermal conductivity of single-layer graphene, calculated with a realistic Gruneisen parameter, is
in the range �2000–5000 W /mK depending on the flake width, defect concentration and roughness of the
edges. Owing to the long phonon mean free path the graphene edges produce strong effect on thermal con-
ductivity even at room temperature. The obtained results are in good agreement with the recent measurements
of the thermal conductivity of suspended graphene.
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I. INTRODUCTION

Graphene, a planar single sheet of sp2-bonded carbon
atoms arranged in honeycomb lattice, has attracted major
attention of the physics and device research communities
owing to a number of its unique properties.1–5 From the
practical point of view, some of the most interesting
characteristics of graphene are its extraordinary high
room-temperature �RT� carrier mobility �, in the range
��15000–27000 cm2 V−1 s−1,1,2 and recently discov-
ered very high thermal conductivity K exceeding
�3080 W /mK.6,7 The reported values of the thermal con-
ductivity of graphene are on the upper bound of those ex-
perimentally found for carbon nanotubes �CNTs� or higher.
The outstanding electrical current and heat-conduction prop-
erties are beneficial for the proposed electronic and thermal
management applications of graphene.7 There exists an in-
herent ambiguity with the thermal-conductivity definition for
a single atomic plane due to the uncertainty of the thickness.
The latter, together with the fundamental science and practi-
cal importance of understanding heat conduction in a strictly
two-dimensional �2D� system such as graphene, motivated
the present theoretical study.

We report a detail theoretical investigation of the thermal
conductivity of single-layer graphene �SLG� and compare
our results with available experimental data. Using our the-
oretical formalism we analyze the factors, which lead to spe-
cific values of the thermal conductivity K, and consider their
dependence on graphene flake parameters such as width,
edge roughness, and defect concentration. As it follows
from the recent graphene investigation6,7 and published
experimental8–11 and theoretical12–16 studies of thermal con-
duction in CNTs, the heat in graphene should be mostly car-

ried by acoustic phonons rather than by electrons. Experi-
mentally, this conclusion is based on the observation that the
contributions of charge carriers to the thermal conductivity,
estimated from the Wiedemann-Franz law, is extremely small
compared to the overall thermal conductivity.7 We consider
the thermal transport in graphene to be at least partially dif-
fusive. It this sense, it is similar to Klemens’ treatment of
heat conduction in basal planes of graphite17 as well as Hone
et al.8 and Kim et al.9 assumptions in their analysis of ther-
mal conduction in CNTs.

Near RT and above the phonon thermal conductivity is
limited by the three-phonon Umklapp processes. The
Umklapp-limited thermal conductivity has been studied
theoretically in graphite13,17–20 and in CNTs.21 The important
observation from these and related works is that the phonon
Umklapp processes have negligible effect on the heat flux
consisting of the low-energy phonons with the small phonon
wave vector q. The latter would lead to the extremely high
thermal conductivity unless the presence of other phonon-
scattering mechanisms, e.g., rough boundary scattering, be-
comes effective in the region of small q. For larger q the
intensity of Umklapp processes increases and this scattering
mechanism starts to dominate in limiting the flux of higher
energy phonons. The calculated thermal conductivity de-
pends on the initial �low-q� integration region where the
main scattering mechanisms are not Umklapp processes. For
this reason, even though we are interested in the values of the
thermal conductivity near RT and above, we carefully in-
cluded the boundary and defect scattering into consideration.

Despite the importance of the phonon Umklapp scattering
in thermal conduction in semiconductors, the commonly
used expressions for the phonon relaxation rates in these pro-
cesses are approximate.17–22 Normally, one makes the fol-
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lowing simplifications while calculating Umklapp scattering
rates: �i� substitution of the phonon velocities with an effec-
tive value obtained by averaging over the acoustic phonon
polarization branches; �ii� omission of the Umklapp pro-

cesses characterized by the reciprocal-lattice vectors b� i,
which are not parallel to the heat flux direction; �iii� approxi-
mate accounting of the phonon selection rules and simplified
description of the regions of the allowed phonon transactions
in the Brillouin zone �BZ�. For conventional semiconductors
and nanostructures these simplifications are in many cases
justified and lead to results in agreement with experiment at
RT.23–26 The latter is mostly due to the overall strong scatter-
ing and weak anisotropy in such systems, which makes the
specifics of the Umklapp relaxation channels less important.
At the same time, these assumptions become unacceptable
for anisotropic materials with very high thermal conductivity
where phonon scattering is much weaker. The situation is
further complicated for graphitic materials due to a large
discrepancy in the reported values of the Gruneisen param-
eter, which results in substantial differences in the calculated
thermal conductivity.

In order to capture the specifics of the phonon heat con-
duction in graphene, we treated the three-phonon Umklapp
scattering rigorously avoiding the common simplifications.
Our approach uses the calculated phonon dispersion along all

directions in BZ and pertinent reciprocal-lattice vectors b� i.
We considered all combinations of the phonon states in the
three-phonon Umklapp scattering processes allowed by the
momentum and energy conservation laws. The accounting of
possible phonon-scattering channels was done with help of
the scattering diagrams, which depict the allowed phonon
states in BZ for each relevant phonon-scattering process. The
rest of the paper is organized as follows. In Sec. II we de-
scribe the calculation of the phonon dispersion. Section III
provides details of our method for determining the Umklapp
scattering rates of the first �with absorption of the phonon q���
and second �with emission of the phonon q��� kind. In Sec. IV
we calculate the thermal conductivity of graphene and ana-
lyze its dependence on the flake width, defect density, and
temperature. Discussion of the obtained values and compari-
son with the thermal conductivity in other carbon allotropes
are given in Sec. V. We present our conclusions in Sec. VI.

II. PHONON DISPERSION IN GRAPHENE

In this section we describe the theoretical approach and
calculation of the phonon dispersion in SLG. The honey-
comb crystal lattice of graphene is presented in Fig. 1. The
rhombic unit cell, shown as a dashed region, can be defined
by two basis vectors a�1=a�3,�3� /2 and a�2=a�3,−�3� /2,
where a=0.142 nm is the distance between two nearest car-
bon atoms. The empty and black circles in Fig. 1 denote
the atoms, which belong to the first and second Bravais
lattice, respectively. The atom 10 of the first Bravais lattice

is surrounded by three atoms �1̄0 , 2̄ , 3̄� of the second Bravais
lattice. The inside dashed circle indicate the first interaction
sphere, which includes the nearest-neighbor �N� atoms of
the atom 10 with the coordinates given by the radius vectors

R� �1̄0 ;10�=a�1,0� and R� �2̄�3̄� ;10�=a�−1, ��3� /2. The at-
oms of the second interaction sphere, shown by a dashed
circle with a larger diameter, are denoted as the far-distance-
neighbors �F�. They belong to the same Bravais lattice as
the central atom 10 and defined by the radius-vectors

R� �1�4� ;10�= �a�0,�3�, R� �2�5� ;10�= �a�−3,�3� /2, and

R� �3, �6� ;10�= �a�3,�3� /2.
In order to find the phonon dispersion in graphene we

used the valence-force field �VFF� method.27–29 In this
method all interatomic forces are resolved into bond-
stretching and bond-bending forces. The potential energy for
the deformed lattice can be written as27–29

V = Vr + V2r + V� + V�� + V2�� + Vrr, �1�

where Vr is the stretching potential of the N-type interac-
tions, which is given by

Vr =
1

2
�r�

ī,j

��rīj�2. �2�

Here �rīj is the elongation of the bond between the nearest

neighbors ī and j without a change in the angle between
bonds. The stretching potential of the F-type interactions
�atom interactions within the second sphere shown in Fig. 1�
is written as

V2r =
1

2
�2r�

i,j
��rij�2, i, j = 1,2,3,4,5,6. �3�

The in-plane bending potential for the N-type interactions is
given by

V� =
a2

2
��� �

j,ī�k̄

���ī jk̄�2 + �
j̄,i�k

���i j̄k�2� �4�

where ��ī jk̄ is a change of the angle � between the bonds

�j− ī , j− k̄�. The out-of-plane bending potential for the N-type
interactions has the form
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FIG. 1. �Color online� Graphene crystal lattice. The rhombic
unit cell is shown as a shaded region.

NIKA et al. PHYSICAL REVIEW B 79, 155413 �2009�

155413-2



V��N =
���

2 �
j
��

ī

uz�ī� − 3uz�j�	2
, �5�

where u	�i� and u
�k̄� are the components of the displace-

ment vectors of the atoms in the i , k̄ nodes, respectively. The
out-of-plane bending potential for the F-type interactions is
given by

V2�� =
�2��

2 �
j
��

i

uz�i� − 3uz�j�	2
, �6�

The higher-order stretching-stretching interaction is de-
scribed by the following expression:

Vrr = �rr � �rij̄�rkj̄ . �7�

Using the force constants defined as

�	
�i, j� =
�2V

�u	�i� � u
�j�
, �8�

we can create the following dynamic matrices:

D	

N �1̄010
q�� = �

k=1,2,3
�	
�1̄0,k�eiq�r��k�

D	

F �1010
q�� = �

k=1,. . .,6
�	
�10,k�eiq�r��k�

D	
�1010� = − D	

N �1̄010
q = 0� − D	


F �1010
q = 0� . �9�

Taking into account that graphene crystal structure con-
sists of two Bravais lattices, one can define the displace-

ments of the atoms from their equilibrium sites as u	�i�ī��
=u	�10�1̄0��eiq�r��i�, where u	�10� and u	�1̄0� are the ampli-
tudes of the displacement in the first and second Bravais
lattice, correspondingly. Introducing the new variables

u�1̄0� + u�10� � w ,

i�u�1̄0� − u�10�� � v , �10�

we obtain a system of six equations

�2w	 = �



�D	
�10,10� + Re D	

N �10,1̄0
q��

+ Re D	

F �10,10
q��w
� + �




�Im D	

N �10,1̄0
q��

− Im D	

F �10,10
q���v
, 	,
 = x,y,z ,

�2v	 = �



�Im D	

N �10,1̄0
q�� + Im D	


F �10,10
q���w


+ �



�D	
�10,10� − Re D	

N �10,1̄0
q��

+ Re D	

F �10,10
q���v
. �11�

In these equations, in the limit of small q, the vectors w�

describe the acoustic �atoms 10 and 1̄0 move in phase� vibra-

tions while the vectors v� represent the optical �atoms 10 and

1̄0 move counter phase� vibrations in graphene. For large q,
the distinction between the acoustic and optical vibrations,
i.e., phonons, becomes approximate.

The eigenfrequencies �s�q�� are found by setting the de-
terminant of the six equations in Eqs. �11� equal to zero. The
parameters �r ,�2r ,�� and ��� ,�2�� ,�rr, which define the
interaction potentials �see Eqs. �2�–�7��, are found from the
comparison of the calculated dispersion to the experimental
data. The in-plane force constants for graphene and graphite
are assumed to be the same although the equations governing
lattice vibrations are different allowing one to capture the
specifics of 2D system. The required force constants have
been determined using the available experimental data for
graphite.30–33 The wave vector q� is selected within the
boundaries of the graphene’s first BZ shown in Fig. 2. The

unit vectors of graphene’s reciprocal lattice are given as b�1

= 2
3a �1,�3� and b�2= 2

3a �1,−�3�. These vectors, together with

their sum, a vector b�3= 4
3a �1,0�, are indicated in Fig. 2 with

b� i=��� i , i=1, . . . ,6. The distance between the high-
symmetry point � in the BZ center and the point M in the
middle of the honeycomb side is equal to b3 /2=2 / �3a�.

By solving Eqs. �11� we obtained six phonon polarization
branches, enumerated with an index s=1, . . . ,6, which are
shown in Fig. 3. These branches are �i� out-of-plane acoustic
�ZA� and out-of-plane optical �ZO� phonons with the dis-
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FIG. 2. �Color online� Reciprocal lattice of graphene.

FIG. 3. Phonon dispersion in graphene calculated using the VFF
method.
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placement vector along the Z axis; �ii� transverse-acoustic
�TA� and transverse-optical �TO� phonons, which corre-
sponds to the transverse vibrations within the graphene
plane; �iii� longitudinal-acoustic �LA� and longitudinal-
optical �LO� phonons, which correspond to the longitudinal
vibrations within the graphene plane. We simulated the
phonon-dispersion curves for directions between the high-
symmetry � point and a large number of points on the line
M-K �see Figs. 2 and 3� with an angle step of 0.10. The latter
ensured accuracy in determining the three-phonon selection
rules of about �2%. The graphene dispersion, which we
obtained with VFF method, is in excellent agreement with
the ab initio calculations and other available theoretical and
experimental data.33–35

III. PHONON SCATTERING IN GRAPHENE

The Boltzmann equation for the spatially nonuniform
phonon distribution can be written as36,37

� �N

�t
	
drift + � �N

�t
	
scatt = 0, �12�

where N is the number of phonons in the �q� ,s� mode. Using
the standard approach, we can perform differentiation and
write the scattering term in the relaxation time � approxima-
tion, i.e., ��N /�t� 
Scatt=−n /�. This leads to the following
equation:

n = − ��v� � T�
�N0

�T
, �13�

where n is the nonequilibrium part of the phonon distribution
function N=N0+n, N0=1 / �Exp��� / �kBT��−1 is the Bose-
Einstein distribution function, �T is the temperature gradi-
ent, and v� =�� /�q� is the phonon group velocity. It is well-
known that all phonon-scattering processes in crystals can be
divided into the momentum-destroying processes, which di-
rectly contribute to the thermal resistance, and the normal
processes, which do not contribute to the thermal resistance
but affect the thermal conductivity through redistribution of
the phonon modes.18,37–39 Here we follow the Klemens’ ap-
proach for graphite basal planes,17 and focus on the phonon
momentum-destroying scattering processes such as three-
phonon Umklapp scattering, point-defect, and boundary scat-
tering.

We consider two types of the three-phonon Umklapp scat-
tering processes.37,38 The first type is the scattering when a
phonon with the wave vector q� ��� absorbs another phonon
from the heat flux with the wave vector q������, i.e., the pho-
non leaves the state q� . Another possibility is when a phonon
with the wave vector q�� ���� decays into two phonons with
the wave vectors q���� and q������, which corresponds to the
phonon coming to the state q� . For this type of scattering
processes the momentum and energy conservation laws are
written as follows:

q� + q�� = b� i + q��� ,

� + �� = ��, �14�

where b� i , i=1,2 ,3 is one of the vectors of reciprocal lattice
�see Fig. 2�. The processes of the second type are those when
the phonons q� of the heat flux decay into two phonons with
the wave vectors q�� and q�� leaving the state q� , or, alterna-
tively, two phonons q������ and q������ merge together form-
ing a phonon with the wave vector q����, which correspond
to the phonon coming to the state q����. The conservation
laws for the second type of the processes are given as

q� + b� i = q�� + q��, i = 4,5,6,

� = �� + ��. �15�

The wave vector q� of the phonon, which carries heat, is
considered to be directed along the �→�3 line �see Fig. 2�.
Thus, for the scattering events of the first type we have

�q�b� i��0, while for the scattering processes of the second

type the inequality becomes �q�b� i��0. The systems of Eqs.
�14� and �15� consist of three equations each with four un-
knowns qx� ,qy� ,qx� and qy�. The phonon dispersions required
for solving Eqs. �14� and �15� have been obtained in the
previous section using VFF method taking into account the
anisotropy of BZ in all directions.

We account for all allowed three-phonon Umklapp pro-
cesses using the phonon-scattering diagrams, which repre-
sent a set of points, i.e., curve segments, l�qx�qy�� in BZ, for
which the energy and momentum conservation conditions of
Eqs. �14� and �15� are met. The representative phonon-
scattering diagrams are shown in Fig. 4–6. The captions to
these figures indicate the specific phonon relaxation chan-
nels. Figure 4 presents the curve segments corresponding to
the processes of absorption and decay of a phonon with the
wave vector q� of the LA branch. For example, a segment
denoted by index 1 is a set of points in BZ for which the LA
phonon decay through the channel LA→ZO+TA is allowed
by the conservation laws. Analogously, a segment denoted by
index 12 indicates two segments �disconnected sets of
points� in BZ for which the LA phonon can convert to TO
phonon by absorbing another TA phonon, i.e., LA+TA
→TO. Overall, the processes with the absorption of all types
of phonons, e.g., ZA, TA, LA, and ZO, are allowed. The
decay of LA phonons can also go via ZA, TA, LA, and ZO
channels. For the small phonon wave vectors q�3 nm−1,
the most active processes are those that involve absorption of
LA and TA phonons. The use of the phonon-scattering dia-
grams for taking the relevant line integrals for the scattering
rates is outlined below.

In Fig. 5 we show the diagram of the allowed scattering
processes for TA phonons. The diagram reads in the same
way as the one in Fig. 4. These phonons, similar to LA
phonons, can interact, i.e., absorb and decay, with ZA, TA,
LA, and ZO phonons. For the small q�3 nm−1, the most
active processes are those that involve ZA, LA, and TA
phonons. The upper optical branches shown in Fig. 6 can
decay into acoustic, e.g., LA, ZA, and TA, and optical, e.g.,
ZO and TO, phonons. The TO branch can also absorb TA and
LA phonons and decay into LA, TA, and ZO phonons for the
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large values of the phonon wave vector q. The calculations
show that the contribution of all optical phonon branches and
ZA modes to the thermal conductivity is negligible due to
their small group velocities. At the same time, the out of

plane vibrations are important for coupling the phonon
modes in the single and, particularly, few-layer graphene and
provide scattering phase-space for the three-phonon Um-
klapp processes. The use of the phonon-scattering diagrams
allowed us to treat the three-phonon Umklapp processes in
graphene accurately without simplifications in order to cap-
ture the specifics of the phonon transport in this low-
dimensional system.

Let us now consider Umklapp processes of the first and
second type separately and establish their relative importance
in the scattering. For simplicity we assume that the initial
heat flux consists of phonons in the given direction q� ↑↑ ��
−M�.17,18 Under this assumption we can write N=N0+n,
N�=N0� ,N�=N0�. For the processes of the first type, the dif-
ference in the probability that the phonon comes to or leaves
the state with the wave vector q� is ��N+1��N0�+1�N0�
−NN0��N0�+1�= �N0+1��N0�+1�N0�−N0N0��N0�+1�+n�N0�−N0��
=n�N0�−N0��. Taking into account that at equilibrium n=0,
this equation simplifies to �N0+1��N0�+1�N0�−N0N0��N0�+1�
=0. Analogously, for the scattering processes of the second
type, the difference in the probability that the phonon comes
to or leaves the state with the wave vector q� through the
phonon decay is given as −�N�+N�+1�n.

Using the general expression for a matrix element of the
three-phonon interaction18,37,38 and taking into account all
relevant phonon branches and their dispersion as well as all

unit vectors of the reciprocal lattice b�1 . . .b�6, directed from
the � point to the centers of neighboring unit cells �see Fig.
2�, one obtains for the Umklapp scattering rates
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FIG. 4. �Color online� Three-phonon-scattering diagrams used
for accounting of the LA phonon Umklapp scattering processes
with participation of the following phonons: �1� LA→ZO+TA, q
=11.8 nm−1 ��4�; �2� LA→ZO+ZA, q=11.8 nm−1 ��4�; �3� LA
→TA+ZO, q=11.8 nm−1 ��4�; �4� LA→ZO+ZA, q=11.8 nm−1

��5 ,�6�; �5� LA+ZA→LO, q=13.25 nm−1 ��3�; �6� LA+ZA
→TO, q=11.8 nm−1 ��3�; �7� LA+ZA→LA, q=8.8 nm−1 ��3�;
�8� LA+ZO→TO, q=5.8 nm−1 ��3�; �9� LA+LA→TO, q
=1.2 nm−1 ��3�; �10� LA+TA→LA, q=5.8 nm−1 ��3�; �11� LA
+ZA→TA, q=4.3 nm−1 ��1 ,�2�; �12� LA+TA→TO, q
=1.2 nm−1 ��1 ,�2�.
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FIG. 5. �Color online� Three-phonon-scattering diagrams used
for accounting of the TA phonon Umklapp scattering processes with
participation of the following phonons: �1� TA→ZA+ZA, q
=10.27 nm−1 ��4�; �2� TA→ZA+ZA, q=11.8 nm−1 ��4�; �3�
TA→ZA+ZA, q=13.25 nm−1 ��4�; �4� TA→TA+ZA, q
=11.8 nm−1 ��5 ,�6�; �5� TA→ZA+ZO, q=13.25 nm−1 ��4�; �6�
TA+TA→LO, q=11.8 nm−1 ��3�; �7� TA+ZA→TA, q
=8.8 nm−1 ��3�; �8� TA+TA→LA, q=8.8 nm−1 ��3�; �9� TA
+TA→LO, q=11.8 nm−1 ��3�; �10� TA+ZA→ZA, q=4.3 nm−1

��1 ,�2�; �11� TA+LA→LO, q=2.8 nm−1 ��3�.
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FIG. 6. �Color online� Three-phonon-scattering diagrams used
for accounting of the TO and LO phonon Umklapp scattering pro-
cesses with participation of the following phonons: �1� TO→TA
+ZO, q=5.8 nm−1 ��4�; �2� LO→ZA+ZA, q=5.8 nm−1 ��4�; �3�
TO→TA+ZO, q=5.8 nm−1 ��4�; �4� TO→TA+TA, q
=11.8 nm−1 ��4�; �5� LO→ZO+TA, q=5.8 nm−1 ��5 ,�6�; �6�
TO→TA+ZO, q=11.8 nm−1 ��4�; �7� TO→LA+TA, q
=11.8 nm−1 ��4�; �8� LO→TA+LA, q=13.2 nm−1 ��4�; �9� LO
→TA+ZO, q=11.8 nm−1 ��5 ,�6�; �10� TO→TA+ZO, q
=5.8 nm−1 ��5 ,�6�.
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1

�U
�I�,�II��s,q��

=
��s

2�q��
3�vs

2�q�� �
s�s�;b� i

� � �s�q���s��q����s��q���

��N0��s�
� �q���� � N0��s�

� �q���� +
1

2
�

1

2
�

� �„�s�q�� � �s��q��� − �s��q���…dql�dq�� .

�16�

Here �s�q�� is the mode-dependent Gruneisen parameter,
which is determined for each phonon wave vector and polar-
ization branch, � is the mass density, and ql� and q�� are the
components of the vector q�� parallel or perpendicular to the
lines defined by Eqs. �14� and �15�, correspondingly. The
Gruneisen parameter is a tensor of third rank, which deter-
mines anharmonicity of the crystal lattice. In general it de-
pends on the phonon state, i.e., branch and wave vector,
�s ,q�� and temperature. The mode-dependent Gruneisen pa-
rameters can be calculated as �s�q��=−�d ln��s�q��� /d ln V.
In this sense, the mode-dependent Gruneisen parameters are
a measure of the sensitivity of the phonon frequencies to
changes in the system volume. In Eq. �16� the upper signs
correspond to the processes of the first type while the lower
signs correspond to those of the second type.

Unlike previous studies for conventional bulk and thin-
film semiconductors we do not make rough assumption for
calculation of the integral in Eq. �16�. Instead we use our
phonon-scattering diagram technique to account for the se-
lection rules and BZ features. The integrals for ql ,q� are
taken along and perpendicular the curve segments, corre-
spondingly, where the conditions of Eqs. �14� and �15� are
met �see Figs. 4–6�. After integration along q� we obtain the
line integral

1

�U
�I�,�II��s,q��

=
��s

2�q���s�q��
3�vs

2�q�� �
s�s�;b�

�
l

���s�
� − �s��s�

�

v���s�
� �

�N0� � N0�

+
1

2
�

1

2
	dq�l. �17�

The integration in Eq. �17� is carried out along the curve
segments l depicted in the phonon-scattering diagrams �see
Figs. 4–6�.

The combined scattering rate in both types of the three-
phonon Umklapp processes for a phonon in the state �s ,q��
can be calculated as

1

�U�s,q��
=

1

�U
I �s,q��

+
1

�U
II�s,q��

. �18�

One should note here that for the small phonon wave vectors,
q→0, the Umklapp-limited phonon lifetime �U→�. For this
reason, the calculation of the thermal conductivity with just
Umklapp scattering is not possible without an arbitrary trun-
cation procedure. To avoid unphysical assumptions about the
limits of integration we accurately include the phonon scat-
tering on boundaries.37,38 In the case of graphene, the bound-
ary scattering term correspond to scattering from the rough
edges of graphene flakes. No scattering happens from the top

and bottom sides of graphene flake since it is only one
atomic layer thick and the phonon flux is parallel to the
graphene plane. We evaluate the rough edges scattering using
the standard equation37–39

1

�B�s,q�
=

vs��s�
d

1 − p

1 + p
. �19�

Here d is the width of the graphene flake, p is the specularity
parameter, which depends on the roughness at the graphene
edges. Equation �19� can be further extended to take into
account the dependence of the relaxation time on the direc-
tion of the phonon wave vector.39

Another phonon-scattering mechanism, which we take
into account is scattering on point defects. The scattering rate
for this mechanism can be written as37

1

�PD�s,q�
=

S0�

4

qs��s�
vs��s�

�s
2, �20�

where S0 is the cross-section area per one atom of the lattice
and � is the measure of the strength of the point-defect scat-
tering. In the case when the point-defect scattering is only
due to the difference in the mass of atoms it is given as �

=�i f i�1−Mi /M̄�2, where f i is the fractional concentration of
impurity atoms, Mi is the mass of ith impurity atom of de-

fect, and M̄ =�iMif i is the average atomic mass. This scat-
tering term is nonzero in natural carbon materials even if
there are no defects or impurities owing to the presence of
the isotopic scattering. After the scattering rates in separate
relaxation processes are written one can express the com-
bined phonon relaxation rate as

1

�tot�s,q�
=

1

�U�s,q�
+

1

�B�s,q�
+

1

�Pd�s,q�
. �21�

IV. THERMAL CONDUCTIVITY OF GRAPHENE

The heat flux along a graphene flake can be calculated
according to the expression37

W� = �
s,q�

v��s,q����s�q��N�q� ,�s�q��� = �
s,q�

v��s,q����s�q��n�q� ,�s� ,

�22�

where v��� is the energy carried by one phonon and N�� ,q��
is the number of phonons in the flux. Substituting Eq. �13�
into Eq. �22� one has

W� = − �



��T�
�
s,q�

�totv
�s,q��
�N0��s�

�T
v��s,q����s�q�� .

�23�

Using the macroscopic definition of the thermal conductivity

W	 = − �	
��T�
 hLxLy , �24�

we obtain the following expression for the thermal-
conductivity tensor:
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�tot�s,q��v	�s,q��v
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�N0��s�

�T
��s�q�� .

�25�

Here Lx=d is the sample width �graphene flake width� and Ly
is the sample length. We can write the diagonal element of
the thermal-conductivity tensor, which corresponds to the
phonon flux along the temperature gradient, as

�		 =
1

hLxLy
�
s,q�

�tot�s,q��v2�s,q��cos2 �
�N0��s�

�T
��s�q�� .

�26�

Finally, making a transition from the summation to integra-
tion, we take into account the two-dimensional density of
phonon states and obtain the expression for the scalar ther-
mal conductivity

� =
1

4kT2h
�

s=1. . .6
�

0

qmax ���s��q�vs�q�2�tot�s,q��

�
exp���s�q�/kT�

�exp���s�q�/kT� − 1�2q�dq . �27�

Using Eq. �27� we calculated the thermal conductivity of
graphene as a function of temperature. The important fea-
tures of our theoretical approach are that �i� the actual pho-
non dispersion of graphene obtained with VFF method was
used; �ii� all phonon polarization branches have been taken
into account in determining the thermal conductivity; �iii�
and three-phonon Umklapp scattering processes were con-
sidered without simplifications. The 2D nature of the mate-
rial system was reflected via the proper phonon density of
states �DOS� arising from the actual phonon dispersion and
three-phonon Umklapp scattering space determined with
scattering diagrams. The phonon DOS and relation rates en-
ter the expressions for the thermal conductivity.

First, we examined the sensitivity of the thermal conduc-
tivity to the value of the Gruneisen parameter �see Fig. 7�.
The phonon mode-dependent Gruneisen parameter for
graphene as functions of the phonon wave vector and phonon
polarization, �s�q�, was taken from the ab initio calculations
of Mounet and Marzari34 who determined it for all six pho-
non polarization branches.29 We used the mode-dependent
�s�q� in most of our calculations so that the phonon interac-
tions �decay and absorption� were accounted with the Grun-
eisen parameter specific for an each given phonon state
�s ,q��. In the theory of conventional semiconductors it is
more common to treat Gruneisen parameter as a scalar con-
stant, �, characteristic for a given material and independent
of the phonon mode or temperature.17–19 There is substantial
discrepancy in the reported values of the Gruneisen param-
eter for graphene, graphite, and CNTs.17,31,40–44 The Grun-
eisen parameters as high as �=2.0 have been suggested in
Ref. 17 and measured to be as low as 1.06 �Refs. 31 and 43�
and 1.11 �Ref. 45� for graphite basal planes, which are con-
sidered to be similar to graphene. In Ref. 34 the lowest char-
acteristic value for Gruneisen parameter was determined to
be 0.8. Moreover, it was suggested that the in-plane Grun-

eisen parameter for graphite basal planes decreases substan-
tially with increasing temperature.46,47 The latter suggests
that the sample heating during the measurements may lead to
a reduction in the Gruneisen parameter of graphene and in-
crease of graphene’s thermal conductivity.48 For this reason,
the thermal-conductivity curves shown in Fig. 7 were calcu-
lated for a range of realistic Gruneisen parameters. Some of
them came from the first-principle calculations, others from
the measurements for graphene or closely related material
systems such as CNTs or graphite.

One can see from Fig. 7 that the calculated values of the
thermal conductivity at RT may vary from �3000 W /mK
��=2� to �6500 W /mK ��=0.8�. The results for the mode-
dependent Gruneisen parameter �s�q� are in the middle giv-
ing the RT thermal conductivity of �4000 W /mK. The
choice of � produces a rather pronounced effect but not as
strong as one would expect for the pure Umklapp-limited
phonon thermal conductivity. The phonon lifetime in three-
phonon Umklapp process �U is proportional to 1 /�2 �see Eq.
�17��. Our results indicate that the variation in � value in the
range 0.8���2 leads to an average change of the thermal
conductivity in the considered temperature interval by a fac-
tor of �2. The dependence of the thermal conductivity on �
is weakened due to the presence of other scattering mecha-
nisms. For comparison, we also show the experimental data
point with the vertical error bar indicating the data spread for
a set of graphene flakes.6,7 Although the measurements, re-
ported in Refs. 6 and 7, were conducted at RT, there was a
substantial heating induced at the center of graphene flake so
that the measured thermal conductivity can be referred to the
temperature of about 350 K.48 It follows from Fig. 7 that the
thermal conductivity calculated with the mode-dependent
Gruneisen parameter �s�q� from Ref. 34 gives the best agree-
ment with the measurements.6,7

The calculated high values of the thermal conductivity
suggest that the phonon mean free path �MFP� in graphene is
long even at RT. The latter may result in the strong depen-

Temperature (K)

�
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/m
K

)

�=0.8
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� �=
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( )q d=5 m�

T=300 K

FIG. 7. �Color online� Thermal conductivity of graphene as a
function of temperature plotted for different values of Gruneisen
parameter. The results were calculated for the graphene flake with
the width of 5 �m and specularity parameter p=0.9. An experi-
mental data point after Refs. 6 and 7 is also shown for comparison.
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dence of the thermal conductivity on the width d of the flake
and roughness of its edges since the phonon boundary scat-
tering starts to play a prominent role when d is comparable to
MFP. Figure 8 shows the thermal conductivity as a function
of temperature as the width of the flake varies from d=3 to
9 �m. In order to analyze the effect of the graphene flake
edges one has to define the specularity parameter p �see Eq.
�19��. For the ideally specular phonon reflection from the
edges �p=1� the boundary scattering does not add to the
thermal resistance. For Fig. 8 the specularity parameter was
taken to be p=0.9. This value was estimated from the geom-
etry considerations following Ziman’s method39 and avail-
able scanning electron microscopy data for graphene thermal
experiments.6,7,48 The variation of the flake width from d
=3 to 9 �m leads to the RT thermal conductivity change by
about a factor of 1.8. Several flakes examined in Refs. 6 and
7 had the width of about 5 �m. It is interesting to note that
the experimental data point indicated in Fig. 8 is closest to
the theoretical curve obtained for d=5 �m. The sensitivity
of the calculated RT thermal conductivity of graphene to the
width of the flakes and roughness of their edges may explain
a rather wide range of the experimentally measured values.

The strong effect of the specularity parameter and the
flake width on the thermal conductivity near RT can be at-
tributed to the very large phonon MFP and the fact that large
fraction of the heat is carried by the low-energy phonons,
which are strongly affected by the boundary scattering. The
phonon MFP in graphene at RT extracted from the experi-
mental data was about 775 nm.7 Since it is rather close to the
width of the examined graphene flakes one can expect on
effect on thermal conductivity even at RT. In this regard, our
calculations are in agreement with the experimental findings.
Another conclusion from these results is that since edges
produce a very strong effect on the thermal conductivity of
graphene one needs to either determine the specularity pa-
rameter very accurately from the experiment or develop an

atomistic model for the graphene flake edge scattering.
Figure 9 presents the calculated thermal conductivity of

graphene over a wide temperature range. In the low-
temperature limit the thermal conductivity increases rapidly
with increasing temperature as the number of phonons in-
crease. The decrease in the thermal conductivity with tem-
perature, which starts around 80 K is due to the growing
strength of the Umklapp scattering processes. It is interesting
to note that the thermal conductivity in the low-temperature
limit is proportional to T2. Indeed, for the curve calculated
with p=0.9, the ratio K�T=80 K� /K�T=50 K�=2.50, while
the ratio of the temperatures squared is �80 /50�2=2.56. This
is a manifestation of the 2D nature of graphene. In bulk the
low-temperature thermal conductivity is proportional to �T3.
The low-temperature T2 dependence of the graphene thermal
conductivity can be obtained from Eq. �27� analytically
through a standard procedure by extending the upper integra-
tion limit to infinity. The difference in the temperature de-
pendence between the 2D graphene and bulk materials is
related to the different phonon density of states. Small devia-
tion from T2 dependence in our case is explained by the fact
that the considered temperature is not low enough
��50–80 K� and by the presence of other scattering mecha-
nisms, e.g., phonon-boundary scattering. The latter is con-
firmed by the growing deviation as p decreases farther down
from unity. For example, the deviation from T2 dependence
is somewhat larger for the curve with p=0.8 shown in Fig. 7.

One should note here that our calculations included the
isotopic effect through the point-defect scattering term �see
Eq. �20�� on the thermal conductivity. The two stable iso-
topes of carbon, 12C and 13C, have natural abundances of
98.9% and 1.1%, respectively. The overall trend obtained in
our calculations is in line with the results reported for an-
other allotrope of carbon, diamond,49,50 although the depen-
dence is weaker. A more accurate accounting of normal pho-
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FIG. 8. �Color online� Thermal conductivity of graphene as a
function of temperature shown for different graphene flake widths.
The results were calculated for the specularity parameter p=0.9. An
experimental data point after Refs. 6 and 7 is also shown for com-
parison. The best agreement is observed for the curve calculated
with the mode-dependent Gruneisen parameter �Ref. 34�.

�� ��==
SS
(( ))qq

dd=5 m=5 m��

pp = 0.8= 0.8

pp = 0.9= 0.9

ÃÃ = 0= 0

��
(W

/m
K

)
(W

/m
K

)

TTemperaturemperature (K)e (K)

ÃÃ =0.1=0.1

FIG. 9. �Color online� Thermal conductivity of graphene over a
wide temperature range calculated for the graphene flake with the
width of 5 �m and mode-dependent Gruneisen parameter �Ref.
34�. The results are obtained for two values of the specularity pa-
rameter p=0.9 and point-defect scattering strength �. An experi-
mental data point after Refs. 6 and 7 is also shown for comparison.

NIKA et al. PHYSICAL REVIEW B 79, 155413 �2009�

155413-8



non processes might be needed to determine the exact scale
of the isotope effects in graphene. From our calculations we
were also able to estimate the contributions of different pho-
non polarizations �see Fig. 3� to thermal transport. At tem-
perature T=100 K, TA modes transfer about �28.5% of
heat while LA modes carry about 71.0%. The remaining
�0.5% are the contributions of all other phonon polariza-
tions �vibrational modes� of graphene. As the temperature
increases above RT, the relative contributions of different
phonons change. At T=400 K, TA and LA modes carry
�49% and 50% of heat, correspondingly. The rest of the
modes, including out-of-plane phonons, carry �1% of heat
in graphene.

V. COMPARISON WITH OTHER CARBON ALLOTROPES

In this section we rationalize the obtained values of the
thermal conductivity and compare them with those for other
carbon allotropes. The first thing to note is that there is in-
herent ambiguity in the definition of the thermal conductivity
of an individual atomic plane due to the uncertainty of the
thickness. In our calculation we used h=0.35 nm as a thick-
ness of an individual graphene layer. This value corresponds
to the interlayer spacing of graphite, i.e., bond length, and is
usually taken as a thickness of CNT as well. The only re-
ported experimental studies of the thermal conductivity of
graphene6,7 used the same value, which facilitated our com-
parison. At the same time, this definition is not unique.51 If
one introduces the thickness directly from the interatomic
potential it can be as low as h=0.06 nm.51 The alternative
approach, which uses proper values of the Young’s modulus
and tensile strength as the starting points, leads to another
thickness of graphene giving the values as large as h
=0.69 nm.52 It is clear that depending on the chosen defini-
tion one may have substantial discrepancy in the calculated
or measured thermal conductivity. The important conclusion,
which follows from this ambiguity, is that one can rather
accurately compare the thermal conductivity of graphene
with that of CNT provided the same thickness definition was
used. A comparison with bulk allotropes such as diamond or
amorphous carbons is less accurate and has to be treated with

reservations. For this reason we mostly focus on comparison
with CNTs. The values of the thermal conductivity of few-
layer graphene, involving at least several atomic planes, are
much less ambiguous.

In Table I we summarize experimental RT thermal con-
ductivity of graphene �the only measurement reported to
date� and CNTs. One can see that there is substantial discrep-
ancy in the reported data from as low as 1500 W/mK �Ref.
53� to as high as 7000 W/mK.10 The highest thermal conduc-
tivities obtained in the experiments were attributed to com-
pletely ballistic transport regime achieved in some CNTs.
The mostly quoted values for CNTs, which we consider to be
commonly accepted, are 3000–3500 W/mK.9,11 In this sense,
the measured thermal conductivity of graphene6,7 is on the
upper bound of what was reported for CNTs. Our modeling
results are in good agreement with the experimental data of
Refs. 6 and 7 although there is rather substantial range of the
obtained values due to the ambiguity in the Gruneisen pa-
rameter and strong dependence on the graphene flake width.
In our calculations, the best match to the measured thermal
conductivity6,7 is obtained with the mode-dependent Grun-
eisen parameter from the first-principle theory of Ref. 34.
The “recommended value” of the in-plane �basal plane� ther-
mal conductivity of high-quality pyrolitic graphite compiled
on the basis of many experimental reports is 2000 W/mK at
RT.54 Many commercial samples have the in-plane thermal
conductivity in the range from �500 to 1700 W/mK. At the
same time, the RT experimental values as high as 3000
W/mK were reported for basal planes of graphite.55 There is
also a clear continuing trend that the thermal conductivity of
graphite increases with the improvements in processing tech-
nology as the crystallinity improves, e.g., the granular size
becomes larger.56 The use of the suspended graphene
samples in the experiments helped to select the best crystal-
line graphene layers, with the highest thermal conductivity
since the lower quality samples collapse.

The theoretical treatment of the thermal conductivity of
the graphite basal planes, graphene and CNTs can be roughly
divided into two groups. The first is the molecular-dynamics
�MD� simulations, which usually utilize the Tersoff-Brenner
potential for C-C interactions and Green-Kubo relation for
the extraction of the thermal conductivity from the heat cur-

TABLE I. Experimental thermal conductivity of graphene and CNTs near room temperature.

Sample
K

�W/mK� Method Comments Reference

Graphene �3080–5300 Optical; noncontact Single atomic layer; diffusive Balandin et al.a

MW-CNT �3000 Electrical; self-heating Individual; diffusive transport Kim et al.b

SW-CNT �3500 Electrical; self-heating Individual; boundary-limited Pop et al.c

SW-CNT 1750–5800 Thermocouples Bundles; diffusive transport Hone et al.d

SW-CNT 3000–7000 Thermocouples Individual; ballistic transport Yu et al.e

CNTs 1500–2900 Electrical; nanosensors Individual Fujii et al.f

Bulk graphite 500–2000 max: �2000 Variety In-plane �basal�; high quality Ho et al.g

aReference 6.
bReference 9.
cReference 11.
dReference 8.

eReference 10.
fReference 53.
gReference 55.
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rent correlation functions.12–16 The second is based on the
solution of the Boltzmann’s equations with the phonon-
scattering rates determined from the perturbation theory or
fitted to the experimental data. The second approach is com-
monly referred to as Callaway-Klemens.17–19,37,38,57 Its accu-
racy can vary depending on the assumptions, particularly, in
the treatment of Umklapp processes. Table II gives theoreti-
cal RT thermal conductivity for CNTs obtained with MD
calculations12–14 as well as a data point for the basal graphite
plane obtained using the Callaway-Klemens model.17 The
cited calculations for CNTs also had results or extrapolations
for the thermal conductivity in graphene. Mostly the conclu-
sion, based on MD calculations, was that the thermal con-
ductivity in graphene should be somewhat higher than that in
CNTs near RT.13,14 Overall, the theoretical data scatter for
CNTs is large, giving values from 1500 to 6600 W/mK at
RT.

Berber et al.13 used the equilibrium and nonequilibrium
MD simulations to obtain some of the highest thermal con-
ductivities of graphene with RT values as high as 6600
W/mK. Based on their MD simulations and Green-Kubo ex-
pression for the thermal conductivity, the authors concluded
that once graphene layers are stacked in bulk graphite, the
interlayer interactions quench the thermal conductivity by
“nearly one order of magnitude.”13 This fact was checked by
simulating the thermal conductivity of the high-quality
graphite along basal planes. The quenching may correspond
to the increased Umklapp scattering in bulk graphite as the
scattering phase-space becomes larger. Thus, we expect that
addition of the atomic layers will lead to gradual reduction in
the thermal conductivity of few-layer graphene and conver-
gence of the thermal conductivity with the in-plane bulk
graphite value.

The sound velocity, or phonon group velocity, used in the
calculations is a parameter, which may strongly affect the
final result. For example, Klemens obtained rather high ther-
mal conductivity of graphite basal planes on the order of �
�4400 W /mK with the very large average Gruneisen pa-
rameter �=2.0.17 The obtained high thermal conductivity
was likely a result of the overestimated sound velocities used
in his calculation: v�LA�=23.6 km /s, v�TA�=15.9 km /s.
In our calculations we used the phonon velocities from the

dispersion obtained with the VFF method. These velocities
closely coincided with the recent experimental data obtained
for in-plane graphite velocities.33 The measured longitudinal
and transverse velocities were v�LA�=21.3 km /s and
v�TA�=13.6 km /s. Since the Umklapp-limited thermal con-
ductivity is proportional to the phonon velocity to the power
of four �see Eqs. �16� and �17� in conjunction with Eq. �27��
the above mentioned difference in the velocities leads to the
thermal conductivity change by a factor of �1.7. In
graphene, unlike in CNTS, there is no size quantization of
the phonon modes along the circumference. The latter may
result in the higher population averaged phonon group veloc-
ity and, correspondingly, thermal conductivity.

It is interesting to note that carbon allotropes reveal an
extremely wide range of the thermal conductivities: from the
lowest values in the “thermal insulators” such as amorphous
carbon �a-C� to the highest in the “heat superconductors”
such as graphene and CNTs. The peak of the thermal con-
ductivity of the best bulk crystal heat conductor—diamond—
reaches the value of �41000 W /mK at T=104 K �obtained
for 99.9% pure sample�.58 The RT thermal conductivity of a
typical Type IIa diamond is in the range 2000–2500 W/mK.59

The thermal conductivity of CNTs and graphene are even
higher �see Table I and II�. From the other side, a-C, dia-
mondlike carbon �DLC� or nanocrystalline diamond �n-D�
are very bad conductor of heat with the RT thermal conduc-
tivities in the range 0.1–10 W/mK.60–62 According to the
measurements and theory the low thermal conductivity of
disordered carbon allotropes is associated with large disorder
or phonon scattering on the polycrystalline granular
interfaces.62 Another observation is the strong effect pro-
duced by graphene edges on the phonon transport. The latter
is yet another manifestation of the importance of graphene
edges in addition to the edge effect on the electric current
and spin transport in graphene.63

VI. CONCLUSIONS

We studied theoretically the phonon thermal conductivity
of single-layer graphene. The model and calculation proce-
dure did not use any hidden fitting parameters. The only
parameters fitted to experimental data were force constants in

TABLE II. Theoretical thermal conductivity of graphene and CNTs near room temperature.

Sample
K

�W/mK� Method Comments Reference

Graphene 2000–5000 Klemens type with accurate dispersion Diffusive; exact Umklapp; strong edge
dependence

Nika et al.a

CNT �6600 MD and Green-Kubo for �10,10� nanotube Predicted higher K for graphene than for CNTs Berber et al.b

CNT �2980 MD and Green-Kubo Strong defect dependence Che et al.c

CNT 1500–2500 MD with Tersoff-Brener Comparable with graphene Osman et al.d

Bulk graphite �2000 Callaway-Klemens type; no dispersion Basal plane; approximate Umklapp Klemens et al.e

aNika, Pokatilov, Askerov, and Balandin �this work�.
bReference 13.
cReference 12.
dReference 14.
eReference 17.
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the VFF method used to determine the phonon dispersion for
all polarizations and crystallographic directions in graphene.
The obtained dispersion is in good agreement with the cal-
culations by other methods and available experimental data.
The three-phonon Umklapp processes were treated exactly,
without common simplifications, using an accurate phonon
dispersion and accounting for all phonon relaxation channels
allowed by the momentum and energy conservation laws.
The latter was made possible with the help of the phonon-
scattering diagram technique. The unique 2D nature of
graphene was reflected in the proper phonon density of states
and restrictions on the phonon Umklapp scattering space.
Most of the calculations were performed for a mode-
dependent Gruneisen parameter taken from the ab initio
theory. We also examine the variations in the thermal con-
ductivity calculated with different values of the Gruneisen
parameter taken from experiments. The results of the calcu-
lations have been compared with the available experimental
and theoretical results for graphene and CNTs. Possible rea-
sons for high thermal conductivity were discussed in details.

Note added. We became aware of the direct measurement
of the Gruneisen parameter of graphene for the optical �E2g�
phonons.64 The measured values were in excellent agreement
with the calculated mode-dependent Gruneisen parameter.34

This suggests that the Gruneisen parameters34 for acoustic
phonons, which we used in our calculations, are also accu-
rate.

We recently learned about two theoretical studies. Jiang et
al.65 calculated thermal conductance of graphene in the bal-
listic limit. The authors obtained a very high value, which
translates to the thermal conductivity in excess of 6600
W/mK. It is expected for the ballistic transport regime and,
thus, in line with our calculations. Kong et al.66 obtained the
thermal conductivity of 2200 W/mK. We note however that
the calculation in Ref. 66 utilizes a bulk fitting truncation
procedure for the low-frequency phonons, which determines
the final result. The model expression for the Umklapp pho-
non scattering used in this work disregards the three-phonon
selection rules and specifics of graphene BZ.
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