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Graphene nanoribbons are one-dimensional multimode systems with quasilinear electron dispersion. We
discuss why they are direct analogs of broad photonic crystal waveguides. Three kinds of dispersion regions
found in band structure of the latter �Fabry-Perot region, mini-stopband region, and coupled-zone-edge re-
gions� are traced to their equivalent in zigzag graphene nanoribbons whose edges are periodically modified.
For a superperiod of �1 nm, the zone folding arising across the nearly linear low-energy part of the electronic
dispersion induces these equivalent band structures. A last analogy is the capability to induce a form of
localization characterized by minigap stripes and collective flatband edges through a limited modification
localized within a pair of edge rows of the nanoribbon, representing typically less than 1% of the ribbon atoms.
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I. INTRODUCTION: PHOTONIC CRYSTALS AND
GRAPHENE NANORIBBONS

A. Common lower dimensional aspects

Model systems of lower dimensionality are a welcome
playground in condensed matter and in photonics as well,
making timely comparisons1 instructive for a broader audi-
ence. One-dimensional systems exist for a long time in both
domains, e.g., polydiacetylene or carbon nanotubes in the
former, and optical fibers and channel waveguides in the lat-
ter. Multimode one-dimensional systems bring the general
feature of interaction among their own modes. The periodic-
ity that is either intrinsic or deterministically imprinted on
such systems is a perturbation, causing the free modes to
couple, as it arises in the Kronig-Peney model or quasi-free-
electron models, or in corrugated waveguides commonly
used for frequency selective operation in optoelectronics,
e.g., in so-called distributed feedback �DFB� laser diodes.

But graphene emerges2 as a splendid playground most
notably because of the remarkable constant velocity of
graphene electronic states near the Dirac points of the band
structure. Furthermore, the mobility, when not limited by im-
purities, leads to impressive mean-free paths ��1 �m,
hence across �104 carbon atoms. The prospect of this paper,
amid the blooming graphene related works, is to underline
the analogies and prospects between broad photonic crystal
waveguides and graphene nanoribbons �GNR�. It is written
from an outsider perspective �vs graphene� but we hope that
the opportunity of a cross fertilization is nevertheless wel-
come.

The basic analogy of graphene dispersion in two dimen-
sions �2D� with that of 2D free photons is well known. GNR
are studied in great detail since the beginning of experimen-
tal graphene studies of isolated single sheet a few years ago.
At first order, a GNR is thus the analog of a straight optical
waveguide �well documented in textbooks3�, and more pre-
cisely of a multimode waveguide. The energetic separation
of GNR branches �modes� at the K points of the Brillouin
zone �BZ� �Dirac points� is on the order of t /Nz: here t is the
tight-binding �TB� parameter,4 around 2.5 eV, leading for-
mally to a total electronic bandwidth of �3t �hence 6t

�15 eV in graphene�, and Nz is the GNR width parameter,
i.e., the number of atoms along an atomic row across the
GNR.

Periodicity is nevertheless a key ingredient of GNR be-
havior, as identified in Nakada et al.’s5 seminal work. These
authors identified the role of the GNR orientation in deter-
mining the band-structure features, and through it, the role of
the edge pattern. The useful GNR period may be either ca-
nonically determined following the cut along the rows of the
corresponding orientation or determined by other aspects of
the system such as reconstruction,6 graphene warping,6 or
externally imposed potential7 �substrate, electrodes, etc.�.

Note that, to help the reader through terminology, we
tabulated in Table I a set of concepts and expressions used in
either of the domains or both. The text below assumes some
overall knowledge of both domains but does not explicitly
refer to the table, this possibility being at the reader’s discre-
tion.

If we seek the analogy with periodic waveguides, a big
difference between electrons and photons is the perfect con-
finement offered by the crystal ions to the former particles,
whereas dielectric waveguides are unable to confine all pho-
ton states. One can see laterally through a glass fiber because
so many of the photon states in such a fiber are easily leaking
to the outside. Furthermore, multimode fibers are mostly
used as light pipes for low bandwidth uses, where coherent
phenomena are undesired.

The advent of photonic crystals �PhC�, during the last two
decades, revealed that properly carved dielectric patterns are
able to confine light in a lossless fashion thanks to their
apparent omnidirectional Bragg reflection, or more precisely
thanks to their band gap, a frequency range with zero photo-
nic density of states �DOS�. Hence a photonic crystal wave-
guide �PhCWG� consisting of dielectric surrounded by such
a photonic band-gap structure is able to confine all light
states, much as electrons in solids, or also much as a con-
finement of photons inside a perfect metal enclosure �this
latter version of confinement is unfortunately hampered, at
optical frequencies, by losses of real metals; hence we do not
consider it here in spite of its interest at microwave and
terahertz frequencies�.
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Studies of photonic crystal waveguides have been suc-
cessfully carried out in 2D, and we therefore argue here that
this circumstance makes the analogy easier with GNRs. The
third degree of freedom is best frozen thanks to a more clas-
sical guiding scheme, such as total internal reflection due to
the index contrast in this third direction, as is well docu-
mented �see, e.g., Refs. 8–12�. This vertical confinement
plays essentially the same role as the single graphene sheet.

Interaction of propagating waves with periodic structures
gives rise to coherent scattering, e.g., Bragg diffraction of x
rays. For waves that are discretized by confinement in one or
two of the three spatial directions, a quantitative account
must deal with mode coupling. The coupled mode theory
�CMT� is a workhorse of optoelectronics studies of periodic
lightwave devices; it nowadays has innumerous applications.

It is especially interesting to compare zigzag GNRs
�ZGNRs� with broad waveguides consisting of a dielectric
core surrounded by two PhC claddings made of air columns
drilled in the same dielectric �Fig. 1�a��. This geometry is
favorable for high-performance integrated devices. There is a
small paradox here in the fact of considering periodicity in
the cladding, whereas a GNR has periodicity built in its
core—compare Figs. 2�a� and 2�b�—and a vacuum cladding.
The main ingredient for our analogy however is in essence
the interaction of basic waves in the core with the engineered
periodicity along the edge, pictured in Figs. 2�c� and 2�d�.
These basic guided waves may notably have very simple
underlying plane-wave decompositions. Then, to quite some
extent, we shall see that diffraction of these plane waves on
the edge is a correct vision of the main interaction step.

Confinement is nevertheless critical, sieving only discrete
modes from a continuum. Hence, the diffraction efficiency of
the guided wave then differs from that of an underlying plane
wave: it is heavily modulated by the discretization of bands
in these systems.

While our analogy focuses on the comparison with the
�dielectric core + air hole PhC cladding� multimode
waveguides, it does not preclude other possible analogies.

TABLE I. Concept correspondence between photonic crystal waveguides and graphene nanoribbons.

Photonic crystal/optoelectronic terms Graphene/GNR terms

Broad periodic waveguide guided modes,
dispersion branches

Graphene nanoribbon �GNR� electronic bands,
Bloch states

2D free dispersion Graphene ideal dispersion

�=k�c /ng=k�vg Energy=E=��k� −kDirac�vFermi

Light cone for a given �cladding� index Graphene cone �Fermi velocity�
n :��k�c /n E���k� −kDirac�vFermi

� point of Brillouin zone �minima,
long-wavelength modes�

Dirac points of Brillouin zone �K points in 2D
graphene�

Band of omnidirectional reflection Energy band gap

Constant frequency contour �2D� Fermi surface �3D� /Fermi contour �2D�
Littrow diffraction, zone-edge mode coupling Zone-edge degeneracy lifting

Fabry-Perot modes �transverse� Stationary electron states at k� =0

Grating diffraction efficiency in �back� reflection electron �back�-scattering efficiency

Slow light �up to localization� Heavy electrons �up to localization�
Monolithic system: photons are confined in a
given material

Monolithic device: electrons are confined in an
engineered GNR

Grating teeth shape, grating phase portrait Edge reconstruction shape, edge modifications

Mini-stopband, anticrossing of slow Electron notch filter �energywise�
and fast modes

“stripe of minigaps” Electron comblike filter �idem�
Collective slow light, critical coupling Selective comb filter �idem�
Photonic conductance Ballistic conductance
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FIG. 1. �Color online� �a� Waveguide based on photonic crystal
confinement, with air holes; �b� band structure for a waveguide
consisting of 15 missing rows �W15� with its main features indi-
cated, n2=3.21, and an air fraction in the PhC, f �35%.
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But with our choice, we find a consistent ensemble of mode
coupling effects in GNRs, similar to those recently proposed
and analyzed in the targeted category of PhC waveguides. To
our knowledge, other guide systems have not been subjected
to equally intense investigations concerning their internal
mode coupling.

B. Prospects prompted by the analogy

Once the basis of our analogy is settled, we exploit it to
propose different possibilities and functions in the frame of
GNR-based electronic devices. The large degree of coher-
ence and the observation of Fabry-Perot-type phenomena in
single wall carbon nanotube �SWNT� �Refs. 1, 13, and 14�
lead us to admit that the band structure largely governs trans-
port phenomena in graphene and related systems, much as
light in waveguides.13

We also assume that, sooner or later, it will be possible to
modulate a GNR potential periodically at the �1–10 nm
scale, selectively on its edges. This may demand nanometer-
controlled systems, such as arrays of SWNT, metal-like
fullerene assemblies, “peapod” variants of fullerene, etc.,
seemingly out of reach today but that can be envisioned

given today’s pace in related nanotechnologies. The demand
on accuracy of potential modulation restricted to the sole
edge region may ease the challenge because no 2D unifor-
mity is required.

The particular phenomena that we propose to use essen-
tially select discrete electron energies across broad momen-
tum distributions. To this end, they involve either a single
dispersive band with well defined minigaps �also called mini-
stopbands or mode gaps�, or a plurality of bands that are
remarkably flat within a substantial fraction of the Brillouin
zone. The corresponding optical phenomena thus fall in the
category recently coined as slow light phenomena.

One first case is a notch filter for electrons, which may
reject narrow energy windows. It is based on the selective
diffraction of the GNR fundamental �extended� mode by the
periodicity, this diffracted power being heavily modulated by
the confined fate of the diffracted wavelets. Only wavelets
fitting the momentum discretization may deplete energy from
the fundamental mode and affect its momentum, hence the
electrical current in the GNR. One may then expect specific
dips in the transmission. Equivalent phononic15 and photonic
phenomena have been recently documented, notably in the
author’s group under the name of mini-stopband, as further
discussed later16–19 in relation to the generic Fig. 1�b� pre-
senting the dispersion relation of a broad PhC waveguide.

A second case, somewhat more challenging, is analogous
to a phenomenon that we recently identified under the term
of Littrow lasing in broad PhCs waveguide.20 We furthered
this concept by a theoretical study21 and by an experimental
test of the heavily modulated photonic DOS.22 The core of
this effect is the ability of diffraction at the guide edge to
localize light along the waveguide, notably if diffraction
scatters waves back,. This case is known as Littrow configu-
ration in optics, and much used in spectrometer �blazed grat-
ings� and external cavity lasers. The advent of Littrow dif-
fraction in broad waveguides results in the formation of
“stripe of minigaps” �seen in Fig. 1�b��, whereby bands at the
Brillouin-zone edge take a global form of a set of hyperbola.
The bands are now squeezed between these stripes, as a re-
sult of all forward modes being coupled to all backward
modes �within symmetry allowance�. For a proper coupling
value �a large value relative to the energetic band separation,
and logically a high equivalent diffraction efficiency�, the
bands become very flat in a relatively extended region of the
band structure, spanning a number of the interacting
branches sketched in Fig. 2�d�, and flattening them. We be-
lieve that this can be exploited to produce narrow energy
electronic transmission windows for transport in GNR de-
vices.

Furthermore, assuming ballistic transport, we shall pro-
pose open resonators based on this phenomenon. One of
their interests, based on ongoing evolutions of microresona-
tors in optics and in photonic crystals,23 would be the ability
to implement an electronic version of a Fabry-Perot �FP�
resonator, e.g., with narrow peaks in transmission mode, but
without having to physically traverse any “contact” or “bar-
rier” �mirror� layer. More cascaded electronic devices could
then be more easily envisioned, allowing ultimately the ex-
ploration of geometries much richer than the popular elec-
tronic islands often fabricated for recent mesoscopic trans-
port studies.
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FIG. 2. �Color online� �a� Zigzag graphene nanoribbon; the light
gray arrow represents wave vectors and local reflection; �b� the
interaction with edge corrugation in the PhC waveguide; �c� disper-
sion of a generic uncorrugated waveguide, up to higher order
modes, as sketched on the right of the graph; �d� Effect of period-
icity, some interactions to be discussed �Littrow, near Littrow, and
mini-stopband� have been circled; �e� picture of contradirectional
mode coupling, either of different nature �	k��	� 	k�	� or of same
nature, the case of Littrow regime.
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We note that several theoretical works2,14,24–29 have
already proposed analogies between photonic crystal
waveguides and GNRs. They relate to different, and gener-
ally more sophisticated aspects of transport, to specificities
of particle description and of electron-hole pictures in
graphene �e.g., valleys�, which are not our direct purpose
here. We nevertheless anticipate that the potential of the
present photonic analogy combined with the powerful tools
for description of charged particles in graphene opens vast
perspectives.

It may also be useful to remind the reader that in optics,
whereas the multimode nature was primarily considered to
plague device use, causing dispersion, etc., multimode
waveguides �rather than waveguide arrays� were nevertheless
of interest in the frame of recent studies of photonic imple-
mentations for fundamental phenomena �localization,30,31 as-
sisted tunneling32� or in relation with clever interaction
schemes.33

In the following, Sec. II outlines the ZGNR tight-binding
calculation, in the spirit of Ref. 7. Section III provides results
from ZGNRs with various superperiods and various periodic
modulations of the edge atom potential. Simple choices
shown here are aimed at feeding, in Sec. IV, the basic analo-
gies between PhC waveguides and ZGNRs: mini-stopbands,
and role of edge symmetries and of superperiod. In Sec. V,
we apply the concept of flatbands induced at a critical cou-
pling condition and observe the formation of minigap stripes
in graphene and ZGNRs, the counterpart of the analog pho-
tonic phenomenon. In Ref. 22, we had only hinted at the
unnoticed appearance of the minigap stripe in the reconstruc-
tion study of Ref. 6 and to the relation with the superlattice
concepts of Ref. 34. Section V concludes these studies.

II. TIGHT-BINDING CALCULATION

We define a supercell for TB band-structure calculation in
a ZGNR as outlined in Fig. 3, and in the spirit of Cresti et
al.’s7 approach. The basic unit cell we use has four atoms.
The interatomic dimension is a0 and the four-atom unit-cell
size along the GNR is az=a0


3. The supercell tiles Nx cells
in width and Nz cells along the small dimension, along the
ZGNR. The superperiod is thus Nz


3a0 and there are Nat
=4NxNz atoms in a supercell. The TB-related dispersion can
be computed simply by setting up the proper matrix elements
among the Nat�Nat atom pairs. Here, the translation operator
only imposes a k� �kz value. The matrix element of the TB
Hamiltonian between neighbor atoms m and n simply reads
hmn=E0	mn+ t exp�ik��xm−xn��, where E0=0 is the conve-
nient energy of the nonbonded carbon atom and t is the stan-
dard �per bond� tight-binding energy, so that the overall en-
ergy spans �E0−3t ,E0+3t�. Depending on the matrix size
and desired eigenmode range, we use “full” or sparse matri-
ces �under MATLAB®�. The simplest computation providing
a ZGNR band structure is for Nz=2, and is thus folded with
respect to the canonical representation.

The simplest modifications of the ZGNR consist of off-
setting atom energies to some specific values E0�0 for se-
lected edge atoms, either abruptly or gradually starting a few
atoms away from the edge. Atoms at the edge can also be
merely removed.

Due to folding, the Dirac point lies at some fractional
position of the supercell BZ for values such as Nz
=2,4 ,8 ,16. For Nz=3,6 , . . ., the Dirac point lies at the very
zone center. If no atom is modified or removed, the supercell
of course results in a mere folding, in analogy with the
empty-lattice band pictures. The introduction of modified
edge atom potential affects the band structure in those re-
gions where folded modes cross unfolded modes.

The generic effects are sketched in Fig. 2, with the Dirac
point taken as the origin and only positive energies are
shown. Starting from a basic dispersion �Fig. 2�c��, the fold-
ing causes crossings either between modes of similar nature
or of more different nature, e.g., fundamental and higher or-
der modes in Fig. 2�d�, with some coupling pointed out by
circle markers. Figure 2�e� shows a real-space picture of this
coupling, together with momentum conservation. These
simple rules hold for both systems and will allow us to carry
on the analogy in more detail below. We calculate the bands
for the various configurations discussed below, in order to
assess the depth of the analogy with broad photonic crystal
waveguides.

III. GENERIC EFFECTS OF ZGNR EDGE MODULATION

We first present in Fig. 4�a� the basic folded known
ZGNR band structure as a reference. Here we used Nx=50
and Nz=2 �400 atoms�. As said, it is folded at the specific BZ
edge, in this form of TB calculation. The Dirac point lies at
two-thirds of the BZ and the waveguide-like bands can be
recognized, with their locally hyperbolic shape.

At high energies, the nearest-neighbor �NN� TB calcula-
tion is not accurate. However to describe the basic Floquet-
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FIG. 3. �a� ZGNR with a graphene rectangular unit cell and with
supercell definition; �b� supercells with modified atoms �pointed by
small arrows� of asymmetric type �cell A� or of symmetric type
�cell B�; �c� supercell with antisymmetric modification �cell C� or
smooth symmetric modification �cell B�, the gray triangles indicat-
ing the imposition of some local bias to the atoms only in these
areas.
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Bloch modes that are likely to participate to conduction and
that are essentially endowed with a constant Fermi velocity
in an unconfined graphene sheet, we believe that NN TB is
sufficient. We present our data in normalized units of t
throughout, remaining universal enough.

Next, as shown in Fig. 4�b�, we consider the change in-
troduced by a modulation of the potential of E0= + t instead
of E0=0 in three of the eight edge atoms of a superperiodic
ZGNR with Nx=50 and Nz=4 �800 atoms�. This twice larger
cell now induces a folding at ka0=
 /4
3.

In general, an edge modification may take the form of a
mere carbon atom removal, or a change in energy, which
decouples gradually the biased atoms from their unbiased
neighbors. Any such modification introduces anticrossings in
the indicated conduction-band region of Fig. 2�d�, near the
zone edge. Of course, the formerly dispersionless state at
zero energy becomes here a slowly varying branch. This is
logical since the modification disrupted the singular proper-

ties of the GNR edge atoms causing this special branch.
The results are shown in Figs. 4�c�–4�e�. For the ZGNR

fundamental modes and the few first-excited modes �all
folded above E / t�0.24�, only tiny gaps, regularly spaced,
decorate the original dispersion �Fig. 4�e��. The wavy pattern
in Fig. 4�d� will be analyzed as a stripe of minigaps in the
next section.

Next, we introduce a symmetrical perturbation, with twice
more atoms affected, at both edges instead of a single edge,
as shown in Fig. 5�b�, with the same supercell of 800 atoms.
The band structure, Fig. 5�a�, now takes the shape of inter-
twined necklacelike branch pairs. Every other anticrossing is
forbidden, and crossings take place instead. Thus, the tiny
gaps on the fundamental branch and first-excited modes are
now formed only at every other mode crossing. We had
pointed out in Ref. 22 that a similar phenomena occurred,
albeit unnoticed, in recent reports of periodically modulated
GNR due to edge reconstruction,6 and could also arise due to

FIG. 4. �Color online� �a� ZGNR dispersion relation for a 50�2 supercell �400 carbon atoms�, normalized to the tight-binding parameter
t; the fundamental mode is underlined by a gray thick line; the inset shows the band structure repeat pattern spanning ��
 /2a0


3�
� ��3t�; �b� edge modification by an excess bias +t of the three indicated atoms of a 50�4 supercell �800 atoms�, whose dispersion relation
would otherwise be the folded version of �a� as indicated; �c� small energy region of the dispersion of modified ZGNR; �d� stripe of minigaps
starting to form around zone edge; �e� small anticrossings �mini-stopbands� affecting the fundamental and few next modes.

GRAPHENE NANORIBBONS: PHOTONIC CRYSTAL… PHYSICAL REVIEW B 79, 155409 �2009�

155409-5



mesoscopic regular undulations34 of the graphene sheet.
We checked that, upon calculating an antisymmetric

rather than a symmetric structure �for example, by having the
modified atoms at each edge shifted by a half period�, the
overall scheme is the same but the pattern of interaction is
the alternate of the previous one. The glide/mirror symmetry
induces a 
 phase shift in the relevant perturbing potential’s
Fourier components.35

The same kind of perturbations may also be applied to the
case of the longer superperiod Nz=6 �Fig. 6�a��. For such
multiples of three, the crossings of interest now fall at the �
point of the supercell Brillouin zone. The results �Fig. 6�b��
follow the same trends for single-sided or symmetric varia-

tions but it is not as easy to distinguish various regimes as it
was in Fig. 4.

IV. ANALOGIES FROM PHOTONIC CRYSTALS TO
GRAPHENE NANORIBBONS

These first results are in clear analogy with band-structure
features of broad Wn waveguides defined in a triangular lat-
tice of holes in a dielectric matrix, as reminded in Fig. 1.
Typical refractive indices for such matrices are in practice
taken as the effective indices of semiconductor heterostruc-
tures. For example, one has neff�3.21 in the InP-based cases
common in telecom optoelectronic devices. A lower value
neff�2.8 applies to popular semiconductor membranes �sili-
con, GaAs, InP�. This quantity neff best describes the fate of
waves in a two-dimensional view. It is well suited to the
graphene sheet analogy that we want to carry out here. The
analogy does not require, on the contrary, identifying air
holes with carbon atoms. Rather, the ingredients are the pho-
tonic guided waves in the unpatterned heterostructure �seen
as scalar in the most simplified instances�, and the Floquet-
Bloch electronic modes of graphene sheet. Then, the ZGNR
edge is well mimicked by a PhC patterning. Photons/
electrons are forbidden to leave the guide/ZGNR medium,
constituting a periodic boundary on which diffraction in a
few discrete grating orders is allowed. The local description
of the interaction of plane waves with periodic boundaries
has its usefulness but we believe that the analogy between
modes encompassing the whole system is better suited to the
analogy and presently richer.

We start here by the region occupying the largest fraction
of the band structure, from the BZ edge on. We examine next
the case of the fundamental mode, as it is a less general case
in terms of phase-space volume.

The optical situation known as the Littrow mount is analo-
gous to the Brillouin-zone-edge situation; it rests on exactly
the same k� wave-vector configuration, and periodicity-
induced coupling. From the generic case of Fig. 2�e�, we
now have the ray/wave pictures of Fig. 7, whereby guided
modes are identified through their two Cartesian k compo-
nents. Exact zone-edge situations amount to exact Littrow
diffraction �back reflection� events, with the anticrossing lift-
ing the perfect degeneracy of these points. Near the BZ edge,
anticrossings involve guided modes of different quantum
number but not too different. This can be termed “near-
Littrow” diffraction. The general resulting situation is what
we have termed a stripe of minigaps,22 appearing clearly in
Fig. 1 on one hand, and in Figs. 4�d� and 5�a� on the other
hand. This accumulation of zero DOS minigaps means a siz-
able DOS reduction in the concerned region of k space. In
the optical regime, we have recently been able to visualize a
strong DOS modulation associated with these stripes thanks
to a specially designed experiment.22 We elaborate on ways
to exploit this further below, going to a “critical coupling
regime”21 �already apparent in Fig. 6 but this case is not so
analog to Fig. 1 then�.

In terms of band structure, the ZGNR phenomena identi-
fied above are thus completely analogous to those met in
guided modes of a broad PhC waveguide. We note that, even

FIG. 5. Dispersion relation �a� of a 4�50 ZGNR �800 atom
cell� with symmetric edge modification of 3+3 atoms by + t shown
in �b�. Note the paired bands resulting in more clear stripe of mini-
gaps. The antisymmetric configuration gives the same pattern, with
paired band degeneracies located at zone edge rather than the situ-
ation here.

FIG. 6. Dispersion relation �a� of a 6�50 ZGNR �800 atom
cell� with symmetric edge modification of 3+3 atoms by + t shown
in �b�. For this superperiod, Dirac points are brought back to �
point.
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on the optics side, these phenomena are not specific of PhC:
the same occurrence of mode anticrossing also arises for
simply corrugated waveguides, when guided waves explore
the Littrow regime.21 In canonical PhC systems, symmetries
naturally appear so that modes couple in pairs of branches as
seen here in Fig. 1�b�. Also, specific to PhC and metal-clad
waveguides, confinement exists for any wave vector,
whereas it may be quite compromised in ordinary refractive
optical waveguides for modes below the cladding light line
reading k� =ncladding� /c.

Let us now discuss the coherent interaction of the funda-
mental modes with higher order modes. This interaction is
manifested by minigaps signaled in both cases �Figs. 1 and
4�e��. It corresponds to what is termed by some as mode gap,
and by us as mini-stopband: a local stop band in the band
structure. This mini-stopband is valid for the few fundamen-
tal modes, arising when the periodicity is sampled in such as
way as to couple them with a series of slower counterpropa-
gating higher order modes.18,19,36 In the photonic case of Fig.
1 and in high-frequency limit cases �u�0.3 in Fig. 1�, these
modes have a vanishing wave vector and become just
normal-incidence Fabry-Perot modes.

In view of the above, the general issue of anticrossing
effects vs edge modulation potential may be seen to carry a
strong analogy with the widely addressed engineering issue
of optimizing diffraction efficiency from gratings: the choice
of corrugation profile �here of edge potential� determines
how the spatial harmonics are addressed and eventually ex-
cited from the interaction with unperturbed modes. It is not
very common for partly confined electronic state to consider
diffracted orders but the exercise is the same, in essence, as
the common electronic diffraction studies, such as the low
energy electron diffraction �LEED� and its descendents �by
the way, electronic diffraction received vast contributions
from J. Pendry,37,38 who became a key contributor to the area
of periodic photonic structures before his more recent fa-
mous contributions to photonic and metamaterials�.

Prompted by this idea and by our recent work on slow
light and stripe of minigaps,22 we try in the following to

verify the same trend for modified ZGNR, a trend not hith-
erto reported to our knowledge. Before doing so, we elabo-
rate on transport properties that may be expected �Fig. 8�
from the above. We may notably infer that if electrons are
transported in the fundamental ZGNR mode �Fig. 8�a�, the
envelope of this mode has a single lobe across the ribbon
width, whatever the local atomic amplitudes inside the unit
cell�, the mini-stopband may act as a notch filter in the elec-
tronic energy domain. Such filters are not obvious to imple-
ment in vacuum electron optics, nor with resonant barriers/
wells inserted across the electron path. They would require
coupling to localized states defined aside the ribbon, for ex-
ample. Such approaches seem far less convenient to imple-
ment than the simple use of a ZGNR with a controlled
boundary potential although this latter solution is, admit-
tedly, at the limit of what can be envisioned.

The electrons not transmitted in such a filter would be
ideally reflected but all the extra scattering channels would
blur this picture, and they would eventually participate to a
background leakage current. Device design and exact scatter-
ing conditions in the ZGNR would then dictate the relative
strength of the main �ballistic� current carried by the funda-
mental ZGNR mode, and the �thermalized� multimode valley
current. Quantum transport treatments are necessary to get a
full picture, absent in the standard photonic �bosonic� case.
We note that converse attempts to define “photonic conduc-
tion” in PhC-based waveguides have been recently
reported.39 They rather result in standard expected scaling
laws �one conduction quantum per effective half-wavelength
width� rather than in the singular behavior of the mini-
stopband expected here. This is not contradictory, given the
difference that exists between our PhC and the dielectric col-
umn PhC with air background of Ref. 39. This latter case
support guided modes that do not undergo coupling to any
other mode thanks to the intrinsically limited magnitude of
the wave vector in an “air guide.”

k//
k'//

∆∆∆∆k=G

wave picture : zone edge diffraction

Ray picture : Littrow diffraction

ZGNR

edge modulation

...

FIG. 7. Ray and wave pictures of the role of ribbon edge cor-
rugation. In the ray picture, Littrow diffraction occurs and a round-
trip phase condition between edges is needed to build up Bloch
modes that eventually propagate in spite of this endless backward
diffraction; in the wave picture, counterpropagating modes interact
due to the wave vector G brought by the corrugated edge period, the
interaction inducing a zone-edge splitting with forbidden propaga-
tion inside the minigap, and band formation around.

electron energy

wavefunction
envelope

electron at
anticrossing

energy

current
in fundamental

mode

ZGNR with edge modulation(a)

(b) open resonator

FIG. 8. �a� Expected effect of the interaction between funda-
mental mode and higher order mode pictured in Figs. 2�e� and 4�e�:
notch filtering of electrons of a fairly precise energy; �b� open reso-
nator geometry exploiting strong diffraction and slow modes arising
for increasingly wide stripe of minigaps; the electron is always
retained well inside the graphene, and does not have to cross any
barrier but may nevertheless exhibit Fabry-Perot behavior for
round-trip resonant conditions.
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V. FLATBANDS AND MINIGAP STRIPES BY SIDE
POTENTIAL, DOS

For a ZGNR that is both wide enough and with a long
enough period, the region around the band folding is situated
at a modest electronic energy �E=0.2t or less�. This region
evokes a basic picture of a large set of modes, with similar
parallel dispersion curves, crossing their folded counterparts
at the Brillouin-zone edge. The abundance of crossings in
this case calls for a different analysis as compared to the
standard Bragg reflection in a single mode waveguide. We
have shown in Ref. 21 that, when the coupling constant be-
tween modes of the uncoupled basis reaches a sufficiently
high value, these anticrossings merge. They form a stripe of
minigaps, also seen experimentally22 in PhC waveguides.
Additionally, around a precise critical value of the
coupling,21 the branches delimiting these stripes of minigap
loose most of their wiggles and adopt a much smoother cur-
vature. Such an effect arises �unintentionally� in the middle
of Fig. 6, where the necklace branches stick together, but
again this geometry is not easily mapped onto the known
photonic ones. More generally and heuristically, very effi-
cient Littrow diffraction takes place at this stage. We are then
in a resonator situation largely analogous to the Fabry-Perot
case but accommodating the specific slanting effect of the
Littrow reflection pair in a guide. �Figs. 7 and 8�b��. Specifi-
cally, the flat branches acquire a locally hyperbolic shape,
much as basic FP modes.

In Ref. 22, we showed that, even at the intermediate steps
well before flatbands, a deep DOS modulation did arise from
the stripe of minigaps, a feature usually thought to be washed
out in a broad waveguide. In our graphene ribbon, we have
attempted to reproduce this situation because of its potential
interest: by modulating only the edge of the ribbon, we may
render a large region of k space much less “conductive” if we
manage to slow down the electron wave packets in it. A
reasonable guess is to employ a partially ballistic operation
regime for carriers �electrons� whereby the system is made
very sensitive to edge potential modulation: in a ballistic
regime, injection under the proper angle, shown in Fig. 8�b�,
may suffice to address a restricted portion of band structure
��10%�, much as it does in optics, whereas in a more diffu-
sive regime, one thoroughly samples the Fermi surface of the
system �a Fermi contour in 2D graphene�. All bands at a
given energy then participate to transport, a situation that
somehow relates to the way spontaneous emission samples
available states in photonics, e.g., in a photonic wire.36

Figure 8�b� suggests an open resonator geometry exploit-
ing only three reflections when we adopt the ray picture. This
may suffice to get a resonance, based on the flatbands at
critical coupling. This open resonator geometry has the same
kind of advantages as discussed earlier: it uses “monolithic”
electron ballistic propagation, and requires no tunnel barriers
through foreign materials �be it vacuum� to couple in and out
of the resonator due to the intrinsic reflective nature of its
constituent, and to the selection of a single possible diffrac-
tion order at lower energies. This arrangement should pro-
vide a fair immunity to the undesirable atom-scale chemical
environment, whose disturbance is far more likely in tunnel
sections than in “bulk” graphene sections. It thus constitutes

a key point toward large-scale applications. We are not aware
of other electronic resonator proposal with similar advan-
tages. The intrinsic good properties of graphene �large Debye
temperature and room for small electron phonon coupling�
could then be exploited in nanoelectronic active devices
�transistors, electron valves, etc.�. The spin parameter was
not considered here but it could still add extra opportunities.

Still using t as the natural energy unit, we found that a
bias of some edge atoms of the order of 0.5t is sufficient to
repel lower energy electrons almost fully at the atomic scale.
Then, our effort amounts to shaping a grating �a bias land-
scape� with maximal Littrow diffraction efficiency. The use
of a photonic analogy may be of some help to shape a po-
tential that diffracts an electronic wave. One may infer that
the crystalline nature of graphene could be averaged to re-
cover a continuous tooth profile �in grating terminology, a
reliable microscopic phase portrait could be devised�. At our
smaller numerical simulation scale, however, we are con-
strained to use modest periods ��10a0� because we want to
retain the multimode aspect related to the large GNR width.
The discrete atomic arrangement of graphene may then still
play a role �as it does for reconstruction of GNR edges6�.
This limitation pushes us away from the “long-wavelength
regime.” It is somehow an unfortunate circumstance not only
to further our analogy but also because smaller electronic
energies, smaller bias modulations, and larger teeth periods
would be preferred technological options for a real-world
implementation of very low-energy switches.

We nonetheless find analogous results. We restricted the
modification to a pair of six clustered atoms on each side of
the ZGNR, three atoms at the zigzag boundary, and their
three neighbors inside the ribbon �Fig. 9�a��. We set the po-
tential of these twelve atoms at some given value VBias� t
and plot the results as a function of VBias / t.

In Fig. 9�b�, we show a view of the band structure for
VBias / t=0.48, encompassing a Dirac point. We magnify the
region of interest for flatbands in Fig. 9�c�. Of course, the

FIG. 9. �a� Six atoms on each side of the ZGNR are biased to
the same potential �gray area�; �b� resulting band structure for
VBias / t=0.48; an arrow indicates the perturbed energy region; �c�
zoom on the perturbed energy region showing very flat bands and
locally hyperbolic stripes of minigaps.
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GNR edge state is also perturbed by this modification but we
do not investigate this here. Rather, we note that the per-
turbed energy range is localized around E / t=0.17–0.19. It
can notably be seen at the smaller ka0 values, causing an
attractive shift of some modes on the left of Fig. 9�b�, at
E / t=0.19. A single localized mode also exists below the
graphene cone bounded by the fundamental mode �Fig. 4�a��.

The main feature, in our view, is the clear advent of flat-
tened bands and associated stripes of minigaps on the left of
Fig. 9�c�, at E / t�0.18, causing a regime of very limited
group velocity. Two bands here are especially flat: one
pointed by the arrow and the one below.

As we have not designed our periodic potential so specifi-
cally, we anticipate that the phenomenon is general enough,
i.e., it can equally appear with any other potential that re-
spects symmetry and has a sufficient global strength. At-
tempts that are not shown here confirmed this trend.

There are also differences when comparing to the broad
photonic corrugated waveguide case of Fig. 1. Here only two
bands are really flat while the stripes of minigaps tend to
shrink rapidly at higher or lower energies. This energetic
localization of the flatter band phenomenon to a somewhat
narrow interval does not occur on the photonic side of the
story �Fig. 1� or not to the extent seen here. We hypothesize
here that this distinction possibly stems from the fundamen-
tal difference of Maxwell and Schrödinger equations with
respect to the potential-energy term. This term is fixed for
Schrödinger equation, whereas, in known equivalences of
Maxwell �or Helmholtz� equations, the potential term, being
typically of the form �2�, indefinitely increases with fre-
quency �see also Ref. 40�. This might explain retrospectively
the persistence of marked density-of-state features over very
wide frequency ranges in photonics.22 In the electronic case,
the incident energy has to match that of the specific states
added by the perturbation to ensure a resonant scattering
cross section and a maximal disturbance. Otherwise, the
bands turn back to the nonmodulated case because the larger
electron kinetic energies are no more balanced by a matched
term.

To eventually substantiate the amount of dispersion slow
down that can be obtained based on our very simple elec-
tronic grating design, we plot a partial electronic DOS de-
fined below as a color map, as a function of VBias / t along the
abscissa, and as a function of normalized electronic energy
E / t on the ordinate. This is done in Fig. 10, with a hot color
map and a linear DOS scale in arbitrary units. The partial
electronic DOS is a way to visualize the expected effect of
ballistic transport in conjunction with some k relaxation due
either to collision or to the nature of the wave packet itself,
e.g., a spatially partly incoherent electronic wave.

To fabricate these partial DOS maps, we specifically made
band-structure calculations for a range of values of VBias / t,
using 600 k points along the reduced Brillouin zone. We then
selected either the 50 or 100 leftmost states of the set �with
reference to Fig. 9�c��, i.e., those with the larger k values,
around ka0�0.18–022 in the present case. These choices
amount to collect 8.3% and 16.7% of the total number of
states.

It is clear that, for partial DOS for the 50 states only, we
can see a very nice DOS extinction between allowed bands,

at E / t values around typically 0.15–0.2. This is all the more
striking because the 8% of the states probed are much more
than the fraction 12/3600 �0.3% of atoms whose potential
was affected. This leverage is a key aspect of using a regime
of coherent electron diffraction.

Of course, we cannot affect all the states. If we enlarge
the DOS to collect 100 of 600 states, the gaps are almost
disappearing. But from the color map, a large modulation
does persist.

Calculations on about 100 000 atoms instead of 3600 here
would be needed to bring the energy range to well below
E�0.1t �hence only a few thermal energy quanta kBT �with
kB the Boltzmann constant, and T the temperature�, as often
desired in devices� while still retaining a largely multimode
regime.

Still, at such a size, with the best mean-free paths reported
at room temperature being larger than 3000 nm, there is
enough room to sustain a dozen reflections in a 50–100-nm-
large ZGNR. This would result in an equivalent finesse of the
transmitted electronic waves of more than 30. In other
words, the device of Fig. 8 would transmit �3% of the elec-
tronic energy range targeted by this effect and reject the
other 97%.

VI. CONCLUSION

We have proposed a fruitful analogy between photonic
crystal broad waveguides and graphene nanoribbons, on ac-
count of the linear dispersion of electrons or photons in the
guiding medium. The analogy is substantiated by several
tight-binding band calculations that confirm the applicability
of the mode coupling effects known from the photonic side.
The same effects do arise in nanoribbons at low energies if
the GNR edge has a periodic modulation of a couple of na-
nometers. We have more precisely investigated modifications
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FIG. 10. �Color online� �a� Color map of the density of states for
the leftmost k values �ka0� �0.2078,0.2267�� of the band structure
of Fig. 9, for variable potential VBias / t as indicated; �b� same DOS
color map �not normalized to �a�� but gathering now the twice
broader range ka0� ��0.1889,0.2267��
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of edge atom potentials. We found several key effects previ-
ously reported in photonic crystal waveguides, most notably
the mini-stopbands and stripes of minigaps. We have pro-
posed ways to exploit the strong and specific electronic re-
flection at the Brillouin-zone edge to control a quasiballistic
device conductance. The principle of Littrow diffraction,
completely analogous to diffraction at Brillouin-zone edge,
can be applied to electrons, and may reveal elegant and use-
ful effects. We hypothesized that some remaining differences

were due to the rather profound difference between
Schrödinger equations and Helmholtz-type equation, where
the potential term follows the frequency. Overall, we hope
that our remarks will prompt new schemes for the beneficial
use of GNRs, in particular making them functional and im-
mune to environmental disturbances. We also hope that they
could find some echoes in acoustics or in any domains where
wave behavior in a multimode one-dimensional arrangement
provides the dominant mechanism.
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