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The propagation of azimuthally symmetric guided waves in multiwalled carbon nanotubes �MWCNTs� was
analyzed theoretically in the midinfrared and the visible regimes. The MWCNTs were modeled as ensembles
of concentric, cylindrical, conducting shells. The influence of intershell electron tunneling on the optical
properties of MWCNTs was examined by focusing on a double-walled carbon nanotube �DWCNT�. Longitu-
dinal electrostatic waves exist in DWCNTs due to intershell tunneling. Conditions for weak influence of
intershell tunneling in DWCNTs were identified, and an integral-equation approach for scattering by an
MWCNT was formulated when those conditions prevail. Slightly attenuated guided waves and antenna reso-
nances due to the edge effect exist for not-too-thick MWCNTs in the far-infrared and the midinfrared regimes.
Interband transitions retard the propagation of guided waves and have a deleterious effect on the performance
of a finite-length MWCNT as a nanoantenna. Propagation of surface-plasmon waves along an MWCNT with
a gold core was also analyzed. In the near-infrared and the visible regimes, the shells behave effectively as
lossy dielectrics to suppress surface-plasmon-wave propagation along the gold core.
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I. INTRODUCTION

Their unusual physical and chemical properties and their
potential applications in a variety of nanotechnologies make
carbon nanotubes �CNTs� very interesting objects to
technoscientists1,2 despite possible health hazards.3 In par-
ticular, CNTs have been proposed to fabricate several differ-
ent integrated-circuit elements and electromagnetic devices,
such as transmission lines,4–8 interconnects,9–12 and
nanoantennas.13–20 The fabrications of a CNT-based ampli-
tude modulator/demodulator21 and a fully integrated radio
receiver22 have been reported. References 23–29 demon-
strate the potential of CNTs as emitters of terahertz and in-
frared radiation.

Not surprisingly, the electromagnetic characteristics of
CNT-based antennas have been examined in different fre-
quency regimes ranging from the microwave to the visible.
CNT morphology has been demonstrated to play a crucial
role, as evinced by reported research on single-walled carbon
nanotubes �SWCNTs�,14–16,30 �1-cm-long one-dimensional
�1D� chains of electrically connected SWCNTs,15 planar pe-
riodic structures of SWCNTs,31,32 CNT bundles,33,34 and
CNT arrays.35 Continuing in that vein, here we report our
work on the performance of multiwalled carbon nanotubes
�MWCNTs� as antennas.

A multiwalled CNT comprises N concentric shells �or
tubes�, each obtained by rolling a graphene sheet into a cyl-
inder. The number of shells in an MWCNT can range from 2
to 200, and the distance between consecutive shells from 3.4
to 3.6 Å,36 which is close to the interlayer distance in graph-

ite �3.35 Å�. The lattice structures of consecutive shells are
generally uncorrelated with each other and can even have
different chiralities. In fact, several experiments on
MWCNTs have indicated that often the different shells have
different periodicities.37,38 Two consecutive shells of an
MWCNT are called commensurate �incommensurate� if the
ratio of their unit-cell lengths along the CNT axis is rational
�irrational�, indicating the presence �absence� of translational
symmetry. Incommensurability affects the transport and op-
tical properties of MWCNTs.39–46

The critical issue when modeling the electromagnetic
properties of an MWCNT is the intershell interaction leading
to intershell electron tunneling or hopping. Published data,
although very variable, show a strong dependence on the
intrinsic symmetries of the shells, which dictates selection
rules for the elements of the tunneling matrix, as determined
by the conservation laws for energy and momentum. As may
be expected, two incommensurate shells interact differently
than two commensurate cells.39–46 For example, the Fermi
momenta of two incommensurate shells do not coincide
within the first Brillouin zone and therefore the intershell
tunneling vanishes.43

An isolated MWCNT can be modeled in several different
ways. Abrikosov et al.47 considered an MWCNT as a set of
coaxial, continuous, conducting cylinders accompanied by
an appropriate Kronig-Penney-type potential in the radial di-
rection. Dyachkov and Makaev48 as well as Tunney and
Cooper49 assumed the intershell interaction to be so small
that each shell could be considered to be in a perturbed
eigenstate of an SWCNT. A computer simulation with some
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input parameters extracted from experiment has also been
reported.50

Following Refs. 48 and 49, although the intershell inter-
action in defectless double-walled carbon nanotubes
�DWCNT� shifts optical band gaps and distorts the density of
electronic states, it does not subvert the intrinsic type of con-
ductivity �either metallic or semiconductor�.47–50 The impact
of weak intershell interaction �i.e., tunneling� on the optical
properties of an MWCNT should not be assumed ab initio to
be weak, as we found out that intershell tunneling leads to
new branches in MWCNT spectra.

Analysis of the physical characteristics of CNT-based in-
tegrated circuit elements, such as antennas, must follow the
general principles of electrodynamics and must account for
the peculiar dispersion properties of electrons in CNTs. A
key element of the analysis is the formulation of the effective
boundary conditions �EBCs� for the electromagnetic field on
the CNT surface.4–6 In this paper, we incorporate the pres-
ence of intershell tunneling in the EBCs, showing thereby
that tunneling alters the EBCs significantly from the EBCs
presented in Refs. 4–6.

In order to incorporate intershell tunneling in the EBCs,
we adopt a microscopic approach. The application of this
approach and the role of intershell tunneling is exemplified
in Sec. II for a DWCNT �N=2�. The conditions leading to
weak influence of intershell tunneling are also identified in
that section. Since the radiation characteristics of an
MWCNT are determined by its waveguiding properties, the
dispersion equation for azimuthally symmetric guided-wave
propagation on an infinitely long DWCNT is derived in Sec.
II B. Assuming that the conditions for the influence of inter-
shell tunneling being weak enough to be ignored are valid,
we formulate a numerical solution of the boundary-value
problem for scattering by a finite-length MWCNT by ex-
ploiting an integral-equation technique in Sec. III. Our ap-
proach is well established in antenna theory51 and has been
successfully applied to SWCNT antennas14 and almost circu-
lar bundles of closely packed SWCNTs.33 Section IV con-
tains numerical results for guided-wave parameters �slow
wave and attenuation� and the scattering properties of
MWCNT in a wide frequency range from the terahertz to the
visible regimes. Section V presents an assessment of the po-
tential of an isolated MWCNT function as an optical nanoan-
tenna. Concluding remarks are provided in Sec. VI. An
exp�−i�t� time dependence is implicit, t denotes the time,
�=2�f is the angular frequency, and f is the frequency. The
position vector r is represented in a cylindrical coordinate
system �� ,� ,z� with e�, e�, and ez as the unit vectors. All
fields are assumed to be independent of �.

II. ELECTRODYNAMICS OF A DWCNT:
INTERSHELL TUNNELING

Our aim in this section is to incorporate intershell tunnel-
ing in CNT electrodynamics. For simplicity, we consider in-
tershell tunneling in a DWCNT, the generalization for an
MWCNT with three and more shells thereafter being simple.

Let the chosen DWCNT consist of two infinitely long,
conducting, coaxial cylindrical shells with cross-sectional ra-

dii R2 and R1 �R2�R1�. Both shells are assumed to be con-
ducting, the low-frequency conductivity being caused mainly
by electrons with energy near the Fermi level.

Our task is to calculate the axial surface current density in
each shell when the DWCNT is illuminated by a time-
harmonic electromagnetic field. Electron transport on each
shell can be described by the tight-binding approximation,
taking into account the transverse quantization of the motion
of charge carriers and the hexagonal structure of the
graphene lattice.1 The influence of the Coulomb interaction
on the charge-carrier motion is neglected.

A. Effective boundary conditions

Let the cylindrical axis of the chosen DWCNT be aligned
parallel to the z axis and the centroid of the DWCNT be
located at the origin of the coordinate system. Let ��p�, p
� �1,2�, be the one-electron wave function of the pth shell.
This wave function is characterized by three variables; i.e.,

��p���	̃ , pz ,s�p, where 	̃ is an index corresponding to the
conductance or valence bands, pz is the axial projection of
the quasimomentum of an electron, and the integer s charac-
terizes the transverse quasimomentum of a � electron. The
main properties of ��p� are presented in Appendix A.

Let the two shells be coupled through the electron tunnel-
ing, such that only intraband tunnel transitions of � electrons
with identical momentum are permitted. Then the Hamil-

tonian of the isolated DWCNT is Ĥ0+
Ĥ, where

Ĥ0 = 	
�

E��1���1�
�1� + E��2���2�
�2� �1�

and


Ĥ = ��t	
�

���1�
�2� + ��2�
�1�� . �2�

Here, Ĥ0 corresponds to electron motion in the absence of
intershell tunneling and E��p� is the one-electron energy asso-
ciated with ��p�. Let us assume that E��1��E��2�=E�
=N	̃E�pz ,s�, where N	̃=1 for the conduction band and N	̃=
−1 for the valence band. This assumption can be justified in
the low-frequency regime by virtue of an electron dispersion
law such as Dirac’s law in the vicinity of the Fermi energy
E�pz ,s���F�pz�, which is identical for all metallic shells, �F
being the �-electron speed at the Fermi level. The compo-

nent 
Ĥ of the Hamiltonian describes electron tunneling be-
tween the shells. The quantity �t is the angular frequency of
tunneling, which we assume is the same for all ��p�, and � is
the reduced Planck constant. The interaction of the DWCNT
with the incident electromagnetic field can be described by

the Hamiltonian ĤI=eVÎ, where e is the electronic charge, V
is the spatiotemporally varying, azimuthally symmetric elec-

tric potential, and Î is the identity matrix.
Suppose that the electromagnetic field depends on z as

exp�ihz�, where h would be identified later as a guide wave
number. Let us calculate the surface charge density nSp�h ,��
induced by the electromagnetic field on the pth shell. The
electric field intensity is supposed to be low and Hamiltonian
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ĤI is considered as a small perturbation for the motion of the
charge carriers. Omitting intermediate steps provided in Ap-
pendix A, we present here the final result for the first
�p=1� shell,

nS1�h,�� =
e

4�2�R1
��V1 + V2�+�h,�� + �V1 − V2�−�h,�� ,

�3�

where Vp is the Fourier amplitude of the electric potential on
the surface of pth shell, along with

��h,�� = 	
s
�

1stBz
dpZ	

	̃	̃�

�M����
2A���
� , �4�

A���
+ =

F�E�� + N	̃���t� − F�E� + N	̃��t�

E�� − E� + �N	̃� − N	̃���t − �� − i0

+
F�E�� − N	̃���t� − F�E� − N	̃��t�

E�� − E� − �N	̃� − N	̃���t − �� − i0
, �5�

A���
− =

F�E�� + N	̃���t� − F�E� − N	̃��t�

E�� − E� + �N	̃� + N	̃���t − �� − i0

+
F�E�� − N	̃���t� − F�E� + N	̃��t�

E�� − E� − �N	̃� + N	̃���t − �� − i0
. �6�

Other quantities appearing in Eqs. �4�–�6� are provided in
Appendix A.

The surface charge density nS2�h ,�� can be found from
Eq. �3� after implementing the replacement �R1→R2 , V1,2
→V2,1� therein. Let the vectors E and H denote the electric
and the magnetic fields, respectively. The z-directed compo-
nents of the surface current density and the electric field on
the pth shell can be found from Eq. �3� as Jzp�h ,��
=e�nSp�h ,�� and Ezp=−ihVp, p� �1,2�, respectively. Then
we have

Jz1 = �11�h,��Ez1 + �12�h,��Ez2,

Jz2 = �21�h,��Ez1 + �22�h,��Ez2. �7�

Here,

Jzp =
c

4�
�H��Rp+0 − H��Rp−0� , �8�

where c is the speed of light in free space �i.e., vacuum�,

�11�h,�� = −
ie2�

4�2�R1h2 �+�h,�� + −�h,�� , �9�

�12�h,�� = −
ie2�

4�2�R1h2 �+�h,�� − −�h,�� , �10�

and the quantities �22�h ,�� and �21�h ,�� follow from Eqs.
�9� and �10�, respectively, after implementing the replace-
ment R1→R2.

Equations �7� and �8� constitute a generalization of the
EBCs derived originally for SWCNTs.4 The boundary con-

dition for Ez to be continuous across the surface of each shell
remains identical to the case of SWCNT. The matrix �̂�h ,��
with elements �pq�h ,�� can be considered as a generalized
susceptibility of the DWCNT. Whereas �11�h ,�� and
�22�h ,�� can be interpreted as the intrinsic conductivities of
the shells, �12�h ,�� and �21�h ,�� can be considered as the
mutual surface conductivities. The existence of the mutual
surface conductivities implies the transverse nonlocal re-
sponse of a DWCNT: the spatial dispersion in the radial
direction.

The integral over pz in Eq. �4� must be calculated as a
principal-value integral; i.e.,

1

��pz� − i0
= P 1

��pz�
+ i�

��pz − pz0�
���pz0�

, �11�

where pz0 is the root of the equation ��pz�=0, the prime
indicates the derivative with respect to the argument, P in-
dicates the principal value, and ��x� is the Dirac delta func-
tion. As follows from Eq. �11�, �pq�h ,�� is generally a
complex-valued quantity. The first term on the right side of
Eq. �11� corresponds to nonrelaxation part of the conductiv-
ity, while the second term corresponds to the collisionless
relaxation �Landau damping�. Let us note that both intrinsic
and mutual conductivities contribute to the collisionless re-
laxation in a DWCNT. The collision relaxation in the � ap-
proximation can be taken into account by means of the stan-
dard replacement ��+ i0�2=���+ i�−1�, where � is the
relaxation time. Eigenwaves can be initially analyzed in the
absence of relaxation, whose effect can later be considered as
a small perturbation.

In the limit �t→0 we have �12,21�h ,��→0 and
�pp�h ,��→�p, where �p is the axial conductivity of the iso-
lated pth shell provided in Ref. 5. In the same limit, the
EBCs �Eq. �7� transform to EBCs for an MWCNT compris-
ing noninteracting shells,4 where each shell acts as an
SWCNT with identical parameters. Applying the Hertz vec-
tor representation, as shown in Appendix B, and using Eqs.
�B2� and �B3�, we can obtain the EBCs across the pth shell
of the MWCNT as

� ��

��
�
�=Rp+0

− � ��

��
�
�=Rp−0

=
4�

ikc
Jp, �12�

���=Rp+0 =���=Rp−0. �13�

Here Jp�z�=Jp�z�ez is the axial current density on the surface
�=Rp, with

Jp�z� = �p� d2

dz2 + k2���Rp,z� . �14�

Clearly, this model has restricted applicability because inter-
shell interaction has been ignored therein.

In the low-frequency regime ����0.1 eV� we can ne-
glect the influence of optical transitions between the valence
and conduction bands. As a result, in Eq. �4� we can retain

only the terms with 	̃= 	̃� and set �M����
2�1.5 Then the

electromagnetic response characteristics of the chosen
DWCNT are only due to intraband transitions of � electrons
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�Eq. �5� and quantum transitions between subbands with
different indices � discussed in Appendix A �Eq. �6�. The
transitions of the first type yield a Drude term with small
corrections caused by intershell tunneling, and the transitions
of the second type lead to resonance at the frequency �
�2�t.

The resonance is caused entirely by intershell tunneling.
As is shown in the remainder of this section, tunneling leads
to qualitatively different effects not only in the vicinity of the
tunneling resonance. The reason is the strong longitudinal
nonlocality: a strong dependence on h. Indeed,
limh→0 +�h ,��=O�h2�, while limh→0 −�h ,��=O�1�. This
implies that longitudinal spatial dispersion slightly corrects
the Drude term but entirely determines the contribution of
tunneling transitions to the DWCNT response. This contri-
bution corresponds to the term O�h−2� in the generalized sus-
ceptibility.

The frequency-domain Maxwell equations with EBCs
�Eq. �7� are suitable for describing the electromagnetic field
inside ���R1� and outside ���R2� the DWCNT, but do not
for describing the field between the two shells �R1��
�R2�. Such a situation is not unexpected and indeed is char-
acteristic of the EBC technique.52 This situation arises due to
the existence of an intershell current, which should be in-
cluded in the Maxwell equations. In the EBC technique, the
intershell current is removed from the Maxwell equations,
but its contribution into the field formation is taking into
account by the corresponding terms in Eq. �7�.

B. Dispersion characteristics of azimuthally symmetric
guided waves in the DWCNT

Let us find the solution of the Maxwell equations for the
chosen DWCNT in the form of an azimuthally symmetric
traveling wave exp�i�hz−�t� satisfying the EBCs �Eq. �7�,
the continuity of Ez across the surfaces of both shells, and the
condition of exponential attenuation as �→�. The Hertz po-
tential of this wave is

���,z� = eihz	
p=1

2

Ap�p��� , �15�

where h can now be identified as the unknown guide wave
number, the basis functions �p��� are presented in Appendix
B, and �Ap� is the set of unknown coefficients. The continuity
condition of Ez and condition of attenuation as �→� are
automatically satisfied due to the properties of the functions
�p���.

The use of Eq. �15� in Eqs. �7�, �8�, �B2�, and �B3� leads
to a system of linear homogeneous equations with respect to
the coefficients Ap. A nontrivial solution of the system is
provided by the dispersion equation

det��̂ · M̂ − B̂� = 0, �16�

where the element �pq�h ,�� of the matrix �̂ is provided in

Sec. II A, the element Mpq of the matrix M̂ is

Mpq = �K0��Rq�I0��Rp� , q� p

K0��Rp�I0��Rq� , q� p ,
� �17�

and the element Bpq of the diagonal matrix B̂ is

Bpq = i��pq/�4�Rq�
2� . �18�

In the foregoing equations, �=�h2−k2, k=� /c is the free-
space wave number, �qp is the Kronecker delta, and I0�·� and
K0�·� are modified Bessel functions. The transcendental Eq.
�16� yields the values of h�h���.

Let us note that the formulation for guided waves in an
MWCNT with an arbitrary number of shells can also be de-
scribed by the foregoing method: the summation over p in

Eq. �15� is then from 1 to N, whereas �̂, M̂, and B̂ are N
�N matrixes. The forms of Eq. �16� and the matrix elements
Mpq and Bpq do not change. Only those nondiagonal ele-
ments of the matrix �̂ are not equal to zero, which corre-
spond to shells coupled by tunneling.

For obtaining the dispersion characteristics using Eq.
�16�, the angular frequency of tunneling �t must be known a
priori. Thus, �t is a phenomenological parameter in our for-
mulation. Even for defectless DWCNTs, �t depends on dif-
ferent factors and can vary in a wide range. The theoretical
estimation of �t is by itself a sufficiently complicated task,
the results being highly dependent on the assumptions.50 For
all numerical results reported in this paper, we extracted �t
from experimental data. Assuming elastic tunneling and ap-
plying the Landauer-Butikker equation,53 one can obtain the
tunneling conductance Gatom through the � orbital between
two atoms in different shells as

Gatom �
8�e2

�R1R2
�S�t

�F
�2

, �19�

where S=2.6 Å2 is the area of the surface occupied by one
atom. Comparing Eq. �19� with data from Ref. 50, we get
��t�35 meV, in agreement with reported values for
graphite50 and a DWCNT with �5,5� and �10,10� shells.46

Accordingly, we used the value �t=1013 rad s−1 for the cal-
culations reported in Sec. II. Parenthetically, Eq. �19�
through the value of �t determines the relation between the
static tunneling conductance of the DWCNT and its dynamic
conductivity matrix �̂ defined via Eqs. �9� and �10�.

The number of surface guided-wave modes is equal to the
number of shells N. Figure 1 exemplifies the dispersion char-
acteristics of the two guided-wave modes in a DWCNT.
Modes with in-phase or antiphase currents on the shells ex-
ist, which property determines the shape of a modal disper-
sion curve. Strictly speaking, because of the cylindrical ge-
ometry the considered modes have no symmetry with respect
to � in the region R1���R2 about the cylindrical surface
�= �R1+R2� /2. Each mode is a superposition of symmetric
and asymmetric field components, but for each mode only
one of the components is dominant. Therefore, we refer to
these modes as symmetriclike and asymmetriclike modes.

Figure 1 shows that the asymmetriclike mode is more
retarded than the symmetriclike mode. For both modes, the
retardation sufficiently decreases in the range of ��2�t. For
comparison, the dispersion curves are also shown when in-
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tershell tunneling is ignored ��t=0� by setting �pq=�pq�p.4

Clearly, intershell tunneling very slightly affects the symmet-
riclike mode, except in the immediate vicinity of tunneling
resonance ��2�t. In contrast, intershell tunneling strongly
affects the asymmetriclike mode over a wide frequency
range. Thus, intershell tunneling can be ignored only in spe-
cific circumstances.

C. Longitudinal electrostatic modes in the DWCNT

Let us next seek solutions in the electrostatic
approximation54,55 by setting H=0 everywhere. Then, �
�E=0 and � ·E=0, which can be satisfied if E=−�V. The
temporally constant scalar potential V�� ,z� is a solution of
the Laplace equation,

�2V = 0. �20�

According to Eq. �8�, Jz1=Jz2=0, so that Eq. �7� becomes

�11�h,��Ez1 + �12�h,��Ez2 = 0,

�21�h,��Ez1 + �22�h,��Ez2 = 0. �21�

A nontrivial solution exists if �11�h ,���22�h ,��
=�12�h ,���21�h ,��, which amounts to

−�h,�� = 0. �22�

Let us note that last equation does not include the cross-
sectional dimensions of the CNT shells. The solution of Eq.
�22� depends on the type of CNT shells through the angular
frequency of tunneling �t. There are two positive real roots
of Eq. �22� at a given value of ��2�t, while there is only
one root when ��2�t, as shown in Fig. 2. One of the two
roots in the range ��2�t indicates anomalous dispersion.
Each of these roots corresponds to the guided-wave traveling
along the +z direction. As Eq. �22� is invariant with respect
to the replacement h→−h, wave propagation along the −z
direction occurs analogously. As �→� the asymptotic solu-

tion of Eq. �22� has the form h=�� /�F. Of cause, the region
of this asymptotic solution is limited by the appearance of
optical transitions.

The vicinity of tunnel resonance ��2�t for one of the
branches is marked by the dashed line in Fig. 2. In that
vicinity, the applicability condition of electrostatic approxi-
mation �h�k� breaks down for this branch and a more rig-
orous analysis is required. At �=0 both branches intersect at
a finite value of h. Thus, intershell tunneling qualitatively
changes the character of Coulomb screening in a DWCNT:
the Coulomb potential of a point charge, placed at the center
of the DWCNT, varies as cos�hz�. This effect is analogous to
the Kohn anomaly in metals and degenerate plasmas,56 but
the singularity is stronger �pole�. The reason is the low-
dimensional nature of charge motion in DWCNT.

The longitudinal modes arise due to intershell tunneling
and therefore have no analog in SWCNTs. These modes to a
certain extent are similar to the longitudinal waves in degen-
erate plasmas56 and in crystals with spatial dispersion.55

From Eq. �21�, Ez1=−Ez2 if Eq. �22� is satisfied. In other
words, a longitudinal mode always has antiphase properties:
the z component of the electric field is oppositely directed on
the surfaces of the two shells. To calculate the electric field
distribution, one needs to solve Eq. �20� in the form of the
traveling wave, which has antiphase properties, satisfies the
regularity condition at �=0, and asymptotically varies as
log��� as �→�. Then, the relation

V��,z,t� = Aei�hz−�t�� I0�h�� , 0� �� R1

− I0�hR1�
K0�hR2�

K0�h�� , � � R2, �
�23�

where A is an arbitrary constant, whereas h and � are related
by Eq. �22�.

III. LIGHT SCATTERING BY A FINITE-LENGTH MWCNT

Moving on to MWCNTs, let us model an MWCNT as a
multishell structure comprising N coaxial infinitesimally thin
cylinders in free space. Let us enumerate the shells in the
MWCNT consecutively from 1 to N beginning from the in-
nermost shell, so that their cross-sectional radii comply with

FIG. 1. �Color online� Frequency dependence of the inverse
slow-wave coefficient �−1=h /k for guided-wave modes in a
DWCNT with �9,0� and �18,0� shells; �t=1013 rad s−1. The solid
lines show results with intershell tunneling; the dashed lines
without.

FIG. 2. �Color online� Frequency dependence of the guide wave
number h in the electrostatic approximation. �0�2.7 eV is the
overlap integral �Ref. 1� �see Fig. 1 for other details�.
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the condition RN�RN−1�¯�R1. The cross-sectional ra-
dius RN of the outermost shell is assumed to be much smaller
than the free-space wavelength 	=2� /k. The transverse cur-
rent density in every shell is neglected.

The model of an MWCNT as an assembly of isolated,
coaxially rolled, graphene sheets was introduced by Longe
and Bose.57 This model is often used to study plasmon
modes in MWCNTs.58–62 It has also been used for MWCNT
interconnects,63 MWCNT antennas,19 and MWCNT
inductors.64 In order to study guided waves in a finite-length
MWCNT, we improved this simple model by taking into
account the edge effects at both ends of the MWCNT—
which step allowed us to systematically describe the antenna
effect in MWCNTs of different sizes in different frequency
regimes.

Most MWCNTs of large outer cross-sectional diameter
�50–300 nm� do not possess a coaxially layered morphology
and also contain a lot of defects. Nevertheless, very pure and
coaxially layered MWCNTs with outer diameter of 100 nm
have been fabricated by Li et al.65 These MWCNTs have a
large current-carrying capacity. The extremely high conduc-
tivity was explained by Li et al.65 on the basis of the
MWCNT being made of coaxial layers, each with the same
band structure as an SWCNT.

Intershell tunneling in MWCNTs is neglected in the re-
mainder of this paper. Such an approximation can be justified
�i� for symmetriclike modes with approximately identical
current distribution in adjacent shells and �ii� at frequencies
which are much higher than the tunneling frequency. These
two conditions limit the applicability of results presented in
Secs. III A and IV. Having made the approximation, we can
take the conductivity �p of pth shell, p� �1,N, to be the
same as for an SWCNT with identical geometrical param-
eters; an explicit expression for �p can be found in Ref. 4.

A. Integral-equation technique

Let us now consider the scattering of an electromagnetic
wave incident on an MWCNT of finite length L. The incident
field is assumed to be spatially homogenous in the MWCNT
cross section. Therefore, it couples only slightly with those
guided waves that have antiphase current in adjacent shells.
As shown in Sec. II B, outside the narrow vicinity of a tun-
neling resonance, intershell tunneling strongly affects only
such guided waves. Therefore, exclusion of intershell tunnel-
ing means that we must exclude this narrow frequency re-
gime from consideration.

The scattered field can be described by Eqs. �B2� and
�B3� with the electric Hertz potential satisfying the Helmholz
equation �Eq. �B1�, the usual radiation condition,51 and the
boundary conditions �12� and �13�. The surface current den-
sity Jp�z� at �=Rp, p� �1,N, is given by

Jp�z� = �p� d2

dz2 + k2���Rp,z� + �pEz
�0��Rp,z� , �24�

where Ez
�0��� ,z� is the z component of the incident electric

field. As the intershell tunneling through the two ends of the
MWCNT is negligible, the current density Jp�z� satisfies the
edge conditions,

Jp��L/2� = 0, �25�

thereby expressing the absence of concentrated charges on
the ends. The boundary-value problem can effectively be
solved by the integral-equation technique for the surface cur-
rent density as follows.54,66

The potential ��� ,z� must be linearly related to Jp�z�, p
� �1,N, as

���,z� =
i

�
	
p=1

N

Rp�
−L/2

L/2

Jp�z��G�z − z�,�,Rp�dz�, �26�

where

G�z,�,R� = �
0

2� exp�ik��2 + R2 − 2R� cos � + z2�
��2 + R2 − 2R� cos � + z2

d�

�27�

is the free-space Green’s function for Eq. �B1�. Setting �
=Rq in Eq. �26� and making use of Eq. �24�, we arrive at the
following system of N integral equations with respect to un-
known current densities:

−
1

2ik
�

−L/2

L/2

Ez
�0��Rq,z�exp�ik�z − z���dz� + Cq exp�ikz�

+ Dq exp�− ikz� = 	
p=1

N �
−L/2

L/2 �2�iRp

�
G�z − z�,Rp,Rq�

+
i�qp

2k�p
exp�ik�z − z����Jp�z��dz�, q � �1,N . �28�

Here, Cq and Dq, q� �1,N, are unknown constants to be
determined from the edge conditions �Eq. �25�.

In the long-wavelength regime �	�L�, the electromag-
netic scattering properties of the MWCNT can be encapsu-
lated in a polarizability tensor with only one nonzero com-
ponent,

�zz =
2�i

�Ez
�0��0,0� 	p=1

N

Rp�
−L/2

L/2

Jp�z�dz . �29�

The integral on the right side of Eq. �28� can be numerically
handled by a quadrature formula that leads to a finite system
of linear algebraic equations.67 The numerical inversion of
the matrix of the system obtained gives the approximate so-
lution of integral Eq. �28�. Parenthetically, the foregoing for-
malism was recently applied to almost circular closely
packed bundles of finite-length parallel, identical, metallic
SWCNTs.33

A finite-length MWCNT functioning as a receiving an-
tenna can be characterized by the antenna efficiency,33

� =
Pr

Pt + Pr
, �30�

where
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Pr =
�2k2

c
�

0

�

sin3 ���
−L/2

L/2

eikz cos �	
p=1

N

RpJp�z�dz�2

d�

�31�

is the scattered power,

Pt = �	
p=1

N

Rp Re� 1

�p
��

−L/2

L/2

�Jp�z��2dz �32�

is the power lost to Ohmic dissipation, and � is an angle with
respect to the z axis.

B. Interband-transition regime: Born approximation

According to Refs. 16 and 32, surface waves in a CNT are
strongly attenuated in the frequency regime of interband
transitions. Therefore, the surface current density J�z� in an
SWCNT of radius R exposed to an incident electric field E�0�

obeys Ohm’s law,

J�z� = �Ez
�0��R,z� , �33�

very well, the scalar � being the surface conductivity. Equa-
tion �33� can be considered as the Born approximation.68

Application of Born approximation �33� to an MWCNT
allows us to express the axial surface current density Jp�z� on
the surface of the pth shell as

Jp�z� � �pEz
�0��Rp,z�, p � �1,N . �34�

This expression can be justified as follows. The electric field
exciting the pth shell is made of two components: �i� the
electric field E�0� incident on the entire MWCNT and �ii� the
sum of the electric fields radiated to the surface current den-
sities Jq, q� �1,N but q�p. Equation �34� is justified if the
first component is much larger than the second component at
�=Rp, i.e., the condition

�� d2

dz2 + k2���Rp,z��  �Ez
�0��Rp,z�� ,

z � �− L/2,L/2, p � �1,N , �35�

holds true. Substituting Eqs. �26� and �34� into Eq. �35�, we
arrive at the condition

�	
q=1

N

Rq�q�
−L/2

L/2

Ez
�0��Rq,z��G�z − z�,Rp,Rq�dz��

 � c

2
�

−L/2

L/2

Ez
�0��Rp,z�exp�ik�z − z���dz�� ,

z � �− L/2,L/2, p � �1,N , �36�

for the applicability of the Born approximation. We found
that condition �36� holds true for MWCNTs that are not too
thick �i.e., RN is sufficiently small� in the frequency regime
wherein the surface conductivities �p, p� �1,N, are mostly
determined by interband transitions. We estimate that
MWCNTs with outermost radius RN�20 nm satisfy Eq.
�34� at frequencies in the midinfrared and the visible re-
gimes.

Equation �34� contradicts the edge conditions �Eq. �25�.
An analogous situation appears, for example, in the theory of
diffraction by an aperture in an infinitesimally thin perfectly
conducting screen, wherein the exact solution must satisfy
the Meixner condition66 on the aperture edge but an approxi-
mate solution based on the Huygens principle does not sat-
isfy that condition. However, the error is strongly localized
in the vicinity of the edge of the aperture and does not influ-
ence the scattered field in the far zone.69 For our problem,
Eq. �34� may be interpreted as a version of the Huygens
principle for an MWCNT: the scattered field is generated by
secondary current densities induced by the incident electric
field on the surfaces of all shells. Therefore, the applicability
of Eq. �34� is unphysical only in the vicinity of the edges z
=�L /2, but that should not affect the performance of the
MWCNT as an antenna in the interband-transition regime.

When the MWCNT is electrically thin in cross section
�kRN 1�, the further approximation

Ez
�0���,z� � Ez

�0��0,z�, � � RN �37�

is permissible. Then the substitution of Eq. �34� in Eqs. �31�
and �32� yields

Pr =
�2��T�2

4c3 �
0

�

sin3 ���
−L/2

L/2

eikz cos �Ez
�0��0,z�dz�2

d� ,

�38�

Pt =
1

2
Re��T��

−L/2

L/2

�Ez
�0��0,z��2dz , �39�

where

�T = 	
p=1

N

�2�Rp�p� �40�

is the effective conductivity per unit length of an electrically
thin MWCNT. Condition �36� leads to the inequality Pt
�Pr; consequently,

�� Pr/Pt � ��T�2/Re��T� . �41�

As determined by Eqs. �38� and �39�, Pt and Pr are the
same as for a thin-wire resistive antenna whose conductivity
per unit length is equal to �T.70 Thus, an electrically thin
MWCNT which satisfies condition �36� may be modeled as a
thin homogenous cylinder with conductivity per unit length
determined from Eq. �40�.

IV. NUMERICAL RESULTS

In order to present illustrative results, let us consider an
MWCNT consisting of only zigzag shells. A large number of
such MWCNTs are possible.1,2 Moreover, after a suitable
modification of EBCs �12� and �13�,71 the approach devel-
oped can be extended to MWCNTs comprising shells with
arbitrary chirality vectors.

For definiteness, calculations were performed for two
types of MWCNTs, hereafter referred to as type A and type
M, shown in Fig. 3. The pth shell in an MWCNT of type A
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is in the �8p+1,0� configuration; hence, two consecutive
semiconducting shells are followed by a metallic shell. The
pth shell in an MWCNT of type M is in the �9p ,0� configu-
ration; hence, all N shells are metallic. The radius of the pth
shell is given by

Rp = ��3�8p + 1�b/�2�� , type A

9�3pb/�2�� , type M.
� �42�

The frequency fp
�1� of the first interband transition for the

pth shell of the metallic type is determined by the energy
difference between the lowest van Hove singularity of the
conducting band and the highest van Hove singularity of the
valence band. Thus, an analysis of the dispersion equation
for electrons in zigzag shells yields48

fp
�1� �

�F

!p�Rp
, !p = �1, metallic shell

3, semiconducting shell.
�

�43�

The frequency regime below the interband-transition re-
gime for an MWCNT is dictated by the condition

f � fe, �44�

where

fe = minp�fp
�1�� , �45�

while the condition

f � �2���−1 �46�

establishes the frequency regime for long-range guided-wave
propagation. As a result, the frequency regime wherein long-
range guided waves can produce geometric �antenna� reso-
nances is as follows:

�2���−1" f " fe. �47�

At frequencies in the regime f# fe, the interband transi-
tions contribute strongly to the surface conductivity of each
shell such that the real and the imaginary parts of this quan-
tity are approximately equal in magnitude. Guided waves
then get attenuated heavily. At frequencies in the regime f
"1 / �2���, attenuation of guided waves is caused by fast
electron relaxation in all shells.

A. Azimuthally symmetric guided waves in an infinitely
long MWCNT

Let us now examine azimuthally symmetric guided-wave
propagation at f =11.2 THz in an infinitely long MWCNT of
type A consisting of N=13 shells. The relaxation time � is
taken to be vanishingly small.

The shells numbered p� �4,7 ,10,13� are metallic. All
interband transitions for these shells occur at frequencies ex-
ceeding 31 THz and therefore do not contribute to the effec-
tive conductivity �per unit length� of the MWCNT. The
imaginary part of the surface conductivity of a metallic shell
is positive valued and exceeds the real part in magnitude.
Thus, the necessary condition for the long-range propagation
of guided waves is satisfied.

The semiconducting shells labeled p� �2,3 ,5 ,6� have
negligible surface conductivity and therefore do not influ-
ence the scattering properties of the chosen MWCNT at 11.2
THz. The surface conductivities of the semiconducting shells
labeled p� �8,9 ,11,12� are dictated mainly by the corre-
sponding first interband transitions occurring at fp

�1�

� �36.5,32.5,26.7,24.4� THz. At f =11.2 THz, the imagi-
nary parts of the surface conductivities of these shells are
negative and several times smaller than the surface conduc-
tivities of adjacent metallic shells. Therefore, the surface cur-
rent densities in these semiconducting shells are smaller and
oppositely directed with respect to their counterparts in ad-
jacent metallic shells. The real parts of the surface conduc-
tivities of these semiconducting shells are high enough to
cause large Ohmic losses.

We considered only the two eigenmodes of guided-wave
propagation in the chosen MWCNT with the smallest retar-
dation, labeled as GW1 and GW2. They correspond to the
two roots of the dispersion equation, identified as h1 and h2,
with the smallest real parts: Re�h2��Re�h1�. Of all eigen-
modes, these two will mostly influence the scattering prop-
erties of the finite-length MWCNT, as discussed in Sec.
IV B.

The radial dependences of Ez and H� inside the MWCNT
of type A for guided waves GW1 and GW2 are shown in Fig.
4�a�. Clearly, the axial component of the electric field is dis-
tributed over the entire cross section of the MWCNT. The
azimuthal component of the magnetic field is discontinuous
across each metallic shell, in accordance with boundary con-
dition �12�. The degree of discontinuity decreases as the shell
number p increases, in compliance with the generally de-
creasing magnitudes of Jp in Fig. 4�b�. Outside the MWCNT,
the radial distribution of the electric and magnetic fields is
governed by the argument of the modified Bessel function
K0����, whereby we conclude that the electromagnetic field
is highly localized to the MWCNT.

The axial surface current density Jp, p� �1,N, is shown
in Fig. 4�b� for guided waves GW1 and GW2. In opposition
to the radial distributions of the axial electric field, the mag-
nitude of the current density is maximal on the innermost
shell and then strongly decreases with the increase in the
shell number p. This behavior is in agreement with the R−1

dependence of the surface conductivity of a metallic
SWCNT of radius R.4

Figure 4�c� shows the radial distribution of the axial com-
ponent of the time-averaged Poynting vector

FIG. 3. �Color online� Schematics of MWCNTs of types A and
M. All shells in an MWCNT of type M are metallic. In contrast, an
MWCNT of type A contains a metallic shell alternating with two
semiconducting shells.
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Sz =
c

8�
Re�h

k
��H��2 �48�

for GW1 and GW2 inside the MWCNT and in the vicinity of
its outermost shell. The energy-flux density for GW1 is
maximum near the surface of the innermost metallic shell
and then slightly varies about some mean value between the
4th and the 13th shells. The energy-flux density for GW2 is
mostly concentrated between the two innermost metallic
shells and then decreases very rapidly as �→RN. Clearly
then, the two innermost metallic shells are dominant con-
tributors to the retardation of both GW1 and GW2.

The dependences of the real part of the slow-wave coef-
ficient �=k /h and the ratio −Re��� / Im���=Re�h� / Im�h� of
the guided waves GW1 and GW2 on the number N of shells
in MWCNTs of types A and M are shown in Fig. 5. The
retardation coefficient Re��� for MWCNTs of type M is
higher than for MWCNTs of type A of comparable RN, which
is a significant observation in relation to the geometric reso-
nances of finite-length MWCNTs �Sec. IV B�.

For MWCNTs of type M, Re��� increases as N does. As
N increases, the additional outmost shell has a lower influ-
ence on Re���. The increase in Re��� with increasing N
occurs until RN exceeds �F /�f , per conditions �43� and �47�.

Figure 5�a� shows that, for guided waves GW1 and GW2
in MWCNTs of type A, Re��� �i� increases with the addition
of a metallic shell but �ii� decreases with the addition of a
semiconducting shell. For an MWCNT with small N, Re���
is thus determined mostly by the metallic shells. In contrast,

for MWCNTs with large N, both Re��� and −Re��� / Im���
are strongly affected by the semiconducting shells of large
radius. This occurs because the semiconducting shells la-
beled p� �11,12,14,15,17,18,20� have their first interband
transitions near the chosen frequency of 11.2 THz, and, con-
sequently, the real and imaginary parts of their surface con-
ductivities are large in magnitude. An increase in the number
of such shells greatly diminishes the parameters Re��� and
−Re��� / Im��� of GW1 and GW2 in the MWCNTs of type A.
Thus, interband transitions suppress guided-wave propaga-
tion in MWCNTs.

B. Scattering properties of a finite-length MWCNT

Let us now move on to the scattering properties of finite-
length MWCNTs in the terahertz and the far-infrared fre-
quency regimes. Here we focus only on the case when the
incident electric field is parallel to the z axis, thereby permit-
ting us to investigate electromagnetic effects caused by the
axial surface conductivities of the shells.

Figure 6�a� illustrates the frequency dependence of the
imaginary part of the polarizability scalar �zz in the long-
wavelength regime �kL 1� for different lengths L and shell
numbers N in MWCNTs of types A and M. The labels GS1
and GS2 in this figure denote the first geometric resonance of
the guided waves GW1 and GW2, respectively. The geomet-
ric resonances occur at frequencies16,33

fs � s� c

2L
�Re���, s � �1,3,5, . . .� . �49�

Equation �49� provides a simple estimate of the geometric-
resonance frequencies. For a better estimate, the correction
factor accounting for the phase shift of the guided wave re-
flected from the CNT edge must be introduced in Eq. �49� by
analogy with macroscopic wire antennas.51 For calculating
this factor, the integral-equation technique can be applied.

As we concluded from Fig. 5�a�, the retardation coeffi-
cient Re��� for MWCNTs of type M is higher than for

FIG. 4. �Color online� The radial dependencies of �a� Ez and H�,
�b� Jp on the surfaces of the shells, and �c� the axial component of
the time-averaged Poynting vector, for guided waves GW1 and
GW2, in an MWCNT of type A with N=13 shells at f =11.2 THz,
in the lim �→�. The discrete points in �b�, corresponding to differ-
ent shells, are joined together only to aid the eyes.

FIG. 5. �Color online� Dependences of �a� Re��� and �b�
−Im��� /Re��� on N for guided waves GW1 and GW2 in MWCNTs
of types A and M, when f =11.2 THz and �=10−13 s. Discrete
points are joined by lines to aid the eyes.
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MWCNTs of type A of comparable RN. Therefore the first
geometric resonance �s=1� for the MWCNTs of type M ap-
pears in Fig. 6�a� at a higher frequency than for MWCNTs of
type A, both of the same length L.

The resonance frequencies for GW1 and GW2 depend on
L nonlinearly. As an example, in Fig. 6�a� the resonance
frequency of the MWCNT of type A increases by a factor of
about 2 �from 5 to �10 THz� while the length L decreases
by a factor of 10 �from 1000 to 100 nm�. That is reflected in
Eq. �49� by the strong dependence of Re��� on f when f is
close to fe. Accordingly, the dependence of the frequency of
the geometric resonance on L is not explicit.

The first resonance of the MWCNT of type A and length
L=100 nm at �10 THz frequency is not strong because
condition �47� is not satisfied for this MWCNT, and the
guided wave is strongly attenuated. We conclude that the
resonance of an MWCNT antenna of type A or M near a
given frequency is the most pronounced if both Eqs. �47� and
�49� are satisfied.

Figure 6�a� contains the value of the antenna efficiency �
at the first geometric resonance for all MWCNTs considered.
This antenna efficiency depends both on the type and the
length of the MWCNT. The antenna efficiency of an
MWCNT is several times larger than that of an SWCNT of
the same length. Our calculations make us conclude that the
restrictions on the MWCNT dimensions given by Eqs. �47�
and �49� do not permit an increase in � at the first geometric
resonance. In contrast, the antenna efficiency of an almost
circular bundle of closely packed SWCNTs can be increased
up to unity by increasing of number of metallic SWCNTs in
the bundle.33

When conduction in an MWCNT is very diffuse,72 the
relaxation time � is close to that for graphite �2�10−14 s�.

Then conditions �47� and �49� can be fulfilled only for
MWCNTs of type M and that too with RN"2.5 nm and L
"200 nm. Figure 6�b� shows the frequency dependence of
Im��zz� of an MWCNT of type M with N=4 for �=2
�10−14 s. The first geometric resonances of MWCNTs of
lengths L=100 nm and L=40 nm appear in the far-infrared
�f =38 THz� and the midinfrared �f =72 THz� regimes, re-
spectively. Thus, antenna resonances are pronounced and can
be experimentally observed for short MWCNTs with several
shells only in the far-infrared and midinfrared regimes.

C. MWCNT properties in the interband-transition regime

Whereas Secs. IV A and IV B address the frequency re-
gime f � �1 /2�� , fe� wherein interband transitions are not
possible, we now proceed to the interband-transition regime
of Sec. III B, wherein the electromagnetic response proper-
ties of MWCNTs are dominated by the interband transitions.
This regime, delineated by the condition f� fe, can very well
lie in the visible part of the electromagnetic spectrum.

The description of an MWCNT as an antenna was initi-
ated by Hao and Hanson.32 They showed that modeling a
finite-length MWCNT as a single cylindrical shell with typi-
cal surface conductivity scalar—given, e.g., in Ref.
4—cannot produce a length-matching antenna effect in the
visible regime. The reason is the low surface conductivity of
the MWCNT shells.4 In the Hao-Hanson model,32 however,
the intershell electromagnetic coupling in the MWCNT was
ignored, which is inappropriate if RN#20 nm, as we pointed
out in Sec. III B.

The lacuna in the Hao-Hanson model32 can be removed
by implementing the integral-equation technique of Sec.
III A. Therefore, we decided to examine the scattering prop-
erties of finite-length MWCNTs of radius RN�25 nm and
RN�50 nm in the visible regime, taking the intershell elec-
tromagnetic coupling into account �but ignoring the inter-
shell electron tunneling�. As we discuss later in this section,
our analysis confirmed the absence of the length-matching
antenna effect in the near-infrared and the visible regimes.

Let us first analyze the effective conductivity per unit
length of an electrically thin MWCNT, as estimated by Eq.
�40�. Figure 7�a� presents the real part of �T as a function of
N for MWCNTs in the near-infrared and the visible regimes.
This figure shows that, for SWCNTs �N=1� and MWCNTs
with N� �2,4, �T has strong resonances. The resonances
weaken as N increases and practically disappear for N�10.
This trend can be explained in the following way. In the
near-infrared and the visible regimes, the surface conductiv-
ity �p of the pth shell has many resonances corresponding to
van Hove singularities. As the resonances of different shells
overlap, the weighted summation of the surface conductivi-
ties of all shells in Eq. �40� ensures that �T does not evince
resonant behavior in the near-infrared and the visible re-
gimes.

The conductivity per unit length of an isolated shell of
radius Rp#5 nm also has a large number of closely spaced
resonances so that, instead of discrete lines, a band appears
in its spectrum. As the surface conductivities of all MWCNT
shells have a plasmon resonance61 in the ultraviolet regime at

FIG. 6. �Color online� Frequency dependence of Im��zz� of
MWCNTs of types A and M for different lengths L and number of
shells N. The labels GS1 and GS2 denote the first geometric
resonance—s=1 in Eq. �49�—of the guided waves GW1 and GW2,
respectively. �a� �=10−13 s; �b� �=2�10−14 s.
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the free-space wavelength 	pl= �c��� /�0, �T for any
MWCNT also has a resonance at this wavelength.

The real and imaginary parts of the effective per-unit-
length conductivity �T for an MWCNT of type M with N
=29 shells �i.e., RN=10.22 nm� are presented in Fig. 7�b�.
As this figure demonstrates, the real part of �T increases as
the frequency increases and has a maximum near f
=1304 THz �i.e., 	=230 nm�, which is not a geometric-
resonance frequency but, instead, is a plasmon-resonance
frequency.61 In the near-infrared and the visible regimes, the
condition Re��T�� Im��T� holds; therefore, the chosen
MWCNT cannot support surface-wave propagation, which
occurs for a metallic wire with Re��� Im��� according to
Ref. 73. We also found that the electric field exciting a par-
ticular shell differs very slightly from the electric field inci-
dent on the MWCNT when RN"20 nm and the frequency

lies in either the near-infrared or the visible regimes, thereby
implying that the electromagnetic coupling between the
shells is slight. The frequency dependence of the scattering
power Pt for such an MWCNT is the same as of ��T����2,
according to Eq. �38�.

Let us now carry on to electrically thick MWCNTs �with
RN�25 or 50 nm�. For calculation of the electric current
densities in their shells in the near-infrared and the visible
regimes we used Eq. �28�, with Ez

�0��� ,z� assumed to be in-
dependent of �� �0,RN. Such an approximation is sufficient
to ascertain whether geometric resonances of azimuthally
symmetric modes exist in thick MWCNTs or not. Of course,
�T cannot be defined for electrically thick MWCNTs.

In the near-infrared and the visible regimes, the surface
conductivity of a shell of large radius �R#5 nm� does not
depend on that whether shell is metallic or semiconducting.
Therefore, though the plots in Figs. 8–10 were made for
thick MWCNTs of type M, all results presented therein are
qualitatively true for thick MWCNTs of type A also.

In order to compare the electromagnetic responses of the
chosen MWCNTs and a perfectly conducting rod in the near-
infrared and the visible regimes, we need to calculate the

FIG. 8. �Color online� Scattered power Pr versus free-space
wavelength 	 for MWCNTs with N=70 �solid line� and N=140
shells �dashed line� and length L=350 nm; �=2�10−14 s. The
scattered power for a perfectly conducting rod �dotted line� of
cross-sectional radius 25 nm and length 350 nm was calculated by
solving Eq. �28� with N=1 and �1→�.

FIG. 9. Dependence of the antenna efficiency � on the number
N of shells in an MWCNT of type M and length L=350 nm at
frequency f =600 THz �visible regime�; �=2�10−14 s.

FIG. 7. �Color online� �a� Real part of the effective conductivity
per unit length of an MWCNT of type M in the near-infrared and
the visible regimes. The number N is variable and �=2�10−14 s.
Note that R15=5.284 nm. �b� Real and imaginary parts of �T of an
MWCNT of type M with N=29 shells in the near-infrared and the
visible regimes.

FIG. 10. �Color online� Dependences of �a� Re��� and �b� the
ratio −Re��� / Im��� on the number N of carbon shells for a surface-
plasmon wave in an MWCNT with a gold core. The MWCNT is of
type M, and its pth shell has a �90+9p ,0� zigzag configuration and
radius Rp=�3�90+9p�b / �2��, p� �1,N. The gold core has a
cross-sectional radius R0=3.5 nm and �=2�10−14 s. Data for an
isolated metal wire of cross-sectional radius R0 is the same as for
N=0. Discrete points are joined by lines to aid the eyes.
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scattered power Pr when the incident electric field is oriented
parallel to the z axis. When we calculated the scattered
power Pr for MWCNTs of type M, length L=350 nm, and
N=70 �RN=24.66 nm� or N=140 �RN=49.32 nm�, reso-
nances did not show up for f � �250,750 THz �i.e., 	
� �400,1200 nm� in Fig. 8. For comparison, the scattered
power for a perfectly conducting rod of cross-sectional ra-
dius 25 nm and length 350 nm is also shown in Fig. 8. This
nanorod antenna, in contrast to the MWCNTs, has a set of
resonances determined by the condition

L = �s	/2, s � �1,2,3,¯� , �50�

where � is a correction factor that slightly exceeds unity and
is a function of the ratio of the length and the wavelength as
well as of the ratio of cross-sectional radius and the length.51

For the chosen nanorod antenna, the first resonance �s=1� is
characterized by �=1.15 and appears at f =370 THz �i.e.,
	=810� nm, which is confirmed by the dotted line in Fig. 8.

The absence of antenna �geometric� resonances of the
chosen MWCNTs in the visible regime can be explained by
the strong dissipation of electromagnetic energy in MWCNT
shells and the small electromagnetic coupling between the
shells, as discussed in Sec. III B. Therefore, even an
MWCNT with RN�50 nm and comprising 140 shells can-
not support guided-wave propagation and, consequently, can-
not display the length-matching antenna effect. The same
conclusion is also true in the visible regime for SWCNTs
�Ref. 16� and planar arrays of finite-length SWCNTs.32 Let
us remark that a hypothetic multishell conductive structure
with N=70 and RN�25 nm can have an antenna resonance
corresponding to s=1 in Eq. �50�, provided the surface con-
ductivity of every shell is five times that given in Ref. 4; but
such a structure has not been practically realized as yet.

The dependence of the antenna efficiency � in the visible
regime on the number N of shells in the MWCNT is illus-
trated in Fig. 9. The antenna efficiency increases with the
number of shells and tends to unity for thick MWCNTs;
indeed, f =600 THz, we calculated �=0.17 for N=70, but
�=0.44 for N=140.

D. Surface-plasmon-wave propagation in an MWCNT
with a gold core

These days, thin metallic �gold, silver, and aluminum�
wires of finite length are considered to be promising for ap-
plication as optical nanoantennas.54,74 However, the fabrica-
tion of long, high-quality, thin, single-crystal wires of cross-
sectional radius less than 5 nm and with perfect cylindrical
form �i.e., without breaks, bends, deformations, etc.� is a
difficult technological problem. Recently, CNTs have been
used as templates in order to promote the formation of high-
quality single-crystal wires coated by perfect graphene
cylinders.75 This is an exciting possibility for a composite
nanoantenna comprising a solid metallic core covered by
concentric carbon shells. Clearly, such a structure is neither a
metallic cylinder nor an isolated MWCNT.

Surface-plasmon waves in the infrared and the visible re-
gimes can propagate along a metal wire.73 Surely, guided-
wave propagation would be affected if the metallic wire was

to be enclosed in an ensemble of concentric carbon shells.
The theoretical approach of Sec. II B can be applied to study
the phenomenon of surface-plasmon waves as follows.

Suppose that the metal core is of cross-sectional radius
R0�R1, the radius of the innermost shell of an MWCNT. If
R0 is much less than the skin depth of the bulk metal and
kR0 1, then the metal core can be modeled as a solid cyl-
inder with surface conductivity �0=�metR0 /2,76 where �met
is the bulk volumetric conductivity of the metal. Also, R0 has
to be higher than a critical value Rcr, which corresponds to
the crystalline–noncrystalline transition in metals and sepa-
rates the quasibulk behavior �R0�Rcr� from the quasimo-
lecular behavior �R0�Rcr� of a nanowire. Then, Eqs.
�12�–�14� also hold at �=R0 with �p→�0 and the procedures
of Sec. II B are applicable.

We considered the propagation of surface-plasmon waves
in an MWCNT with a gold core. The bulk volumetric con-
ductivity �met of gold was taken to follow the Drude model
with parameters given in Ref. 77. The skin depth of gold in
the visible regime is higher than 30 nm. The value Rcr
=1.5 nm for gold was obtained with first-principles calcula-
tions in Ref. 78. So we assumed that 1.5 nm�R0 30 nm.

Figure 10 presents the dependences of Re��� and
−Re��� / Im��� of a surface-plasmon wave on the number N
of shells in MWCNT of type M with a gold core of cross-
sectional radius R0=3.5 nm. The pth shell of the MWCNT
has a �90+9p ,0� zigzag configuration and radius Rp
=�3�90+9p�b / �2��, p� �1,N. In the near-infrared �f
=250 THz� and the visible �f =500 THz� regimes, Fig.
10�a� shows that the retardation coefficient Re��� depends
only slightly on N. According to Fig. 10�b�, the value of
−Re��� / Im��� is less than for an isolated metal wire �N
=0� and significantly decreases as N increases.

These trends can be explained in the following manner.
The guided wave propagates partly inside the MWCNT and
partly inside the gold core. The dissipation in the MWCNT
shells is high because the real and the imaginary parts of the
surface conductivities of the shells in the interband regime
are of comparable magnitudes. This dissipation increases
with frequency, in accordance with the frequency depen-
dence of the effective per-unit-length conductivity of the
MWCNT presented in Fig. 7�b�. Because of the weak elec-
tromagnetic coupling of CNT shells, the shells strongly ab-
sorb electromagnetic energy independently on each other—
which explains the strong dependence of −Re��� / Im��� on
N. Furthermore, the weak coupling changes the radial elec-
tromagnetic field distribution of the surface-plasmon wave
only slightly as N increases, which explains the weak depen-
dence of Re��� on N.

The decrease in the magnitude of −Re��� / Im��� with in-
creasing N implies the enhancement of Pt, the power lost to
Ohmic dissipation, and consequently the decrease in the an-
tenna efficiency � of an MWCNT with a metal core. How-
ever, if N is not too large �N=2 or 3� some worsening of
antenna properties may be justified by other advantages that
the metal-core MWCNT may confer.

V. DISCUSSION

Thus, an MWCNT can operate as an antenna in two dif-
ferent regimes. The first is the Drude-conductivity regime,
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wherein the motion of conduction-band electrons is respon-
sible for radiation properties. This regime has a distinct anal-
ogy with a classical radio-frequency wire antenna, as is clear
from Secs. III B and IV B. The second regime is the
interband-transition regime, wherein quantum transitions of
electrons between different energy states occur. This regime
was considered in Sec. IV C and does not have a classical
analogy. The frequency fe separates the Drude-conductivity
regime f � �1 /2�� , fe� from the interband-transition regime
f� fe.

Guided-wave propagation and geometric resonances of
the guided waves are typical for macroscopic wire antennas.
The guided waves have a quasitransverse-electromagnetic
structure and are characterized by low retardation and low
attenuation.51 The existence of guided �surface� waves and
geometric resonances also is typical for nanowire antennas in
the Drude-conductivity regime.4,16,74 But the guided wave
has strong retardation and high attenuation, so that the fre-
quency of a geometric resonance is not connected to the
free-space wavelength but to a shorter effective wavelength
that depends on the material properties.54 This general rule is
also true for MWCNT antennas: Fig. 5 shows that guided
waves have strong retardation and high attenuation, and Fig.
6 presents geometric resonances at 	 L demonstrating
thereby the effective wavelength to be shorter than free-
space wavelength.

Calculated data presented in Fig. 5�a� indicate that the
retardation coefficient increases when the number of shells
increases. Furthermore, the retardation coefficient is the
highest for the GW1 mode in MWCNTs of type M. That
implies that an MWCNT with only metallic shells and oper-
ating in the GW1 mode offers attractive prospects for high
antenna efficiencies in the terahertz regime.

The frequency fe, separating the Drude-conductivity re-
gime from the interband-transition regime, depends on the
detailed electronic and geometric attributes of the MWCNT.
According to Eq. �43�, fe decreases as RN increases. As ex-
amples, for an MWCNT of type A, �i� RN=10 nm and fe
=9.3 THz when N=32, but �ii� RN=1.9 nm and fe
=48 THz when N=6. In the interband-transition regime f
� fe, guided-wave propagation and geometric resonances are
absent for both SWCNTs and MWCNTs, which cardinally
distinguish this regime from the Drude-conductivity regime.

As shown experimentally,79 the absorption and the scat-
tering characteristics of an electrically thick MWCNT in the
regime of optical transitions depend only slightly on the fre-
quency. This conclusion, also borne out by the data in Fig. 8,
may seem to be unexpected. In fact, optical transitions are
resonance processes and the surface conductivities of
SWCNTs and MWCNT shells have resonances correspond-
ing to the van Hove singularities. But we found that the
antenna parameters of electrically thin MWCNTs are deter-
mined by the effective parameter �T defined in Eq. �40�. The
overlapping of a large number of resonances of the surface
conductivities of the different shells leads to a smooth fre-
quency dependence of �T. Such an effect is analogous to
inhomogeneous broadening in an ensemble of all different
harmonic oscillators.80

Antennas are objects that transform a near field into a far
field and vice versa. The morphology of the near field of a

nanoantenna possesses a nanoscale and is therefore deter-
mined by quantum size effects. Therefore the coupling of a
nanoantenna with its near field is stronger than that of a
macroscopic antenna with its near field; as a result, the trans-
formation of the near field to the far field by a nanoantenna is
more difficult, and the antenna efficiency of a thin-nanowire
antenna is low. This property is inherent to different types of
nanoantennas: SWCNTs,14,15 bundles of SWCNTs,33 metallic
nanorods,19 and MWCNTs as in Fig. 6. The antenna effi-
ciency can be enhanced by increasing the number of shells in
an MWCNT �Fig. 9�, the number of SWCNTs in a bundle
�Fig. 7 in Ref. 33�, and the cross-sectional radius of a metal-
lic rod antenna �Fig. 1 in Ref. 19�. We can thus conclude that
a small value of the antenna efficiency is the fundamental
physical characteristic of nanoantennas. Nevertheless, the an-
tenna efficiency is tunable over a wide range.

In order to achieve antenna efficiency close to unity, it is
necessary to strongly suppress the influence of quantum size
effects by ensuring that the cross-sectional radius is high.
Note that, since quantum size effects are not pronounced in
gold nanowires of cross-sectional radius of several tens of
nanometers, such nanowire-based antennas are expected to
possess properties analogous to macroscopic antennas.

The electromagnetic properties of MWCNTs have only a
slight frequency dependence in the interband-transition re-
gime, per Fig. 8. Thus, and MWCNT can be considered to be
a nanoantenna with sufficiently high � ��0.1 in Fig. 9� and a
wide operating-frequency range in the visible regime. Such
nanoantennas have properties similar to those of electrically
small but macroscopic antennas in microwave regimes �e.g.,
short nonresonant dipoles�.51

VI. CONCLUDING REMARKS

To conclude, we modeled the shells of an MWCNT as
impedance sheets with axially directed surface conductivity.
Intershell tunneling of electrons in a DWCNT was consid-
ered in detail. We showed that intershell tunneling leads to
qualitatively different features in guided-wave propagation.
The following conclusions emerged from our studies:

�i� Intershell tunneling qualitatively changes the form of
EBCs in a DWCNT, in comparison to SWCNTs. The surface
current densities and the axial component of the electric field
on the surfaces of different shells get coupled, which effect
leads to a generalized susceptibility that contains the mutual
surface conductivities of both shells. The mutual surface
conductivities are caused by the tunneling and are distin-
guished by strong axial nonlocality.

�ii� The existence of mutual conductivities leads to the
appearance of electrostatic longitudinal waves in the spectra
of a DWCNT. Two electrostatic modes exist: one character-
ized by normal dispersion and the other by anomalous dis-
persion.

�iii� Different types of guided waves in the DWCNT arise
from intershell tunneling. The intershell tunneling practically
does not influence the dispersion characteristics of symmet-
riclike waves, except in a narrow vicinity of the tunneling
resonance. The dispersion characteristics of asymmetriclike
waves are strongly affected in the wide frequency range by
intershell tunneling.
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When an MWCNT is excited by an incident electromag-
netic field, the contributions of electrostatic and asymmetri-
clike guided waves to the electromagnetic response of the
MWCNT are negligible. That permits to investigate the
MWCNT antenna effects while neglecting intershell tunnel-
ing.

Calculated data indicate that in a low-frequency regime
called the Drude-conductivity regime, wherein optical inter-
band transitions do not occur, guided waves can propagate
with low attenuation in an MWCNT which has metallic
shells. In the same frequency regime, the axial polarizability
of a finite-length MWCNT has a resonant behavior due to the
antenna-length matching effect. However, the shells with
surface conductivity due to interband transitions suppress
guided-wave propagation. Due of the high dissipation in
such shells, MWCNTs with outermost radius �25 nm can-
not possess resonant properties in the visible regime. Analy-
sis of surface-plasmon-wave propagation in an MWCNT
with a gold core shows that, in the near-infrared and the
visible regimes, the shells behave effectively as lossy dielec-
tric materials and suppress surface-wave propagation along
the gold core.

The following conclusions regarding the operation of
MWCNTs as nanoantennas emerged from our work:

�i� The antenna efficiency � of an MWCNT exceeds that
of an SWCNT but is less than that of an almost circular
bundle of closely packed metallic SWCNTs, provided that all
three objects are of roughly the same outermost radius.
Therefore, SWCNT bundles are the most promising candi-
dates for terahertz and midinfrared antennas.

�ii� An MWCNT with at least four shells is recommended
for application as a nanoantenna with a wide operating-
frequency range in the visible regime.

�iii� Filling the core of an MWCNT with a metal makes
the MWCNT attractive as a nanoantenna, provided that the
number of shells does not exceed 3.
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APPENDIX A: DENSITY MATRIX AND DENSITY OF
INDUCED CHARGE IN A DWCNT

The one-electron state ��p�= �	̃ , pz ,s�p, p� �1,2�, dis-
cussed in Sec. II A, has the form of a Bloch wave. Thus,5

��p� = $��r j�ei�pzz/�+s��, �A1�

where $��r�=$��r+R� is the periodic amplitude for the
plane two-dimensional �2D� hexagonal lattice and R is the

lattice vector. In the tight-binding approximation, the func-
tion $��r� has been presented in Ref. 5.

Let the DWCNT interact with an azimuthally symmetric
electromagnetic field characterized by the electric potential
V�r , t�. The Hamiltonian of the interaction with electromag-

netic field is ĤI=eV�r , t�Î, where Î is the identity matrix. The

whole Hamiltonian is Ĥ=Ĥ0+
Ĥ+ĤI.
Let the electromagnetic field be adiabatically switched on

at time ts such that ts→−�. The field is weak enough for ĤI
to be considered as a small perturbation. The azimuthally
symmetric electric potential induces the azimuthally sym-
metric charge density nSp on the pth shell, p� �1,2�. Let V
and nSp be represented by the Fourier integrals,

�V��,z,t�

nSp�z,t� � =
1

4�2�
−�

� �
−�

�

ei�hz−�t��V��,h,��
nSp�h,�� �dhd� .

�A2�

Analogously to ��p�, we discuss also a one-electron state

��p��= �	̃� , pz+�h ,s+ l�p, where l� �0,�1�2, . . .�. Wave
function �A1� is strongly localized in the shell vicinity.
Therefore, the overlap between the wave functions belonging
to the different shells can be neglected, and the orthogonality
relation 
�p�

� ��p���pp����� assumed to hold true.

The eigenstates ��̃� of the Hamiltonian Ĥ0+
Ĥ are de-

termined by the equation �Ĥ0+
Ĥ���̃�=E�̃��̃�. They are

characterized by four variables ��̃�= �	̃ ,� , pz ,s�, �� �1,2�,
and can be represented as

��̃� =
1
�2

���1� + n���2�� �A3�

with the associated eigenenergy

E�̃ = E� + n�N	̃��t, �A4�

where n1=1 and n2=−1.81

According to Eq. �A4�, tunneling splits both the valence
and conduction bands of each shell into two subbands in-
dexed by �. The contribution of transverse motion of elec-
trons to the axial conductivity is small enough that we can
ignore all eigenstates with l�0. Then we can use the density
matrix,

�̂ = �̂�r1,r2� = 	
�̃�̃�

��̃�̃���̃�
�̃�� , �A5�

where ��̃��= �	̃� ,�� , pz+�h ,s�. The initial state of the system
is equilibrium as t→−�, that is,

lim
t→−�

�̂��̃� = �̂0��̃� = F�E�̃���̃� , �A6�

where �̂0 is the unperturbed density operator and F�E� is the
equilibrium Fermi distribution function.

Next, let us solve the Liouville equation i��t�̂=Ĥ�̂− �̂Ĥ
with initial condition �A6�. We seek a solution in the form of
�̂= �̂0+��̂ with �̂0 determined from Eq. �A6� and ��̂ as a
small correction, determined by interaction with electromag-
netic field. A standard perturbation method5 yields
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���̃�̃��h,�� =
e�F�E�̃�� − F�E�̃��V1 + n�n��V2�M���

4�2�E�̃� − E�̃ − �� − i0�
e−i�t,

�A7�

where Vp=V�Rp ,h ,��, p� �1,2�, and M���= 
���e−ihz��� is
the normalized matrix element of the dipole transition be-
tween conduction and valence bands.5 Accordingly to the
assumptions made in Sec. II A, the matrix elements M���
belonging to different shells are identical.

The induced charge density on the first shell can be evalu-
ated as

nS1�h,�� = 2	
�̃�̃�

���̃�̃�M���
� ei�t. �A8�

The factor 2 here is due to the spin degeneracy of � elec-
trons. Substituting Eq. �A7� in Eq. �A8�, we obtain

nS1�h,�� =
e

4�2�R1
	
���

�V1 + n�n��V2�

�	
	̃	̃�

	
s
�

1stBZ
dpz�M����

2

�
F�E�� + N	̃�n����t� − F�E� + N	̃n���t�

E�� − E� + �N	̃�n�� − N	̃n����t − �� − i0
,

�A9�

where the abbreviation “1st BZ” restricts the variable pz to
the first Brillouin zone. Equation �A9� is the main results of
this appendix and can be easily transformed to Eq. �3�.

APPENDIX B: HERTZ POTENTIAL AND
BASIS FUNCTION

As electromagnetic fields with azimuthal symmetry are
easily excited in an MWCNT by a uniform external field, we

decided to restrict ourselves to azimuthally symmetric fields.
This restriction also holds for finite-length MWCNTs in the
long-wavelength regime �Sec. IV B�. The electric Hertz vec-
tor ����� ,z�ez is then governed by the Helmholtz equa-
tion,

1

�

�

��
����

��
� +

�2�

�z2 + k2� = 0, �B1�

where ez is the unit vector along the z axis. Since � depends
only on � and z, the components of the electric and magnetic
fields are as follows:

E� =
�2�

�� � z
, E� = 0, Ez = � �2

�z2 + k2�� , �B2�

H� = 0, H� = ik
��

��
, Hz = 0. �B3�

With �=�h2−k2, the basis function �p��� is taken to sat-
isfy the differential equation

1

�

d

d�
�� d

d�
�p���� + �2�p��� = 0, p � �1,N , �B4�

subject to the following boundary conditions at the surface
�=Rp,

�

��
�p�����=Rp+0 −

�

��
�p�����=Rp−0 =

4�

ikc
, �B5�

�p�����=Rp+0 =�p�����=Rp−0. �B6�

The appropriate solution of Eq. �B4� is

�p��� =
4i�Rp

kc
�K0��Rp�I0���� , � � Rp

I0��Rp�K0���� , � � Rp,
� �B7�

where I0�·� and K0�·� are modified Bessel functions of the
zeroth order.
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