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In this paper, we present numerical results for steady-state and time-dependent currents as well as for a
long-time average current in strong nonlinear dc and ac electric fields for an electron gas in a one-dimensional
�1D� quantum-dot superlattice. A microscopic model is employed for the scattering of electrons by phonons
and static impurities by means of the Boltzmann equation method. The dc results are favorably compared with
recent exact analytic results based on a relaxation-time model for electron-phonon scattering. Our results
demonstrate the different roles played by elastic and inelastic scattering on the damped Bloch oscillations as
well as the nonlinear steady-state current and their opposite roles on the damped dynamical localization. We
also find a suppression of dynamical localization by strong Bloch oscillations and features in the Esaki-Tsu
peaks in the presence of an ac electric field when electron scattering is included. On the basis of a nonequi-
librium electron distribution obtained from the Boltzmann equation, a self-consistent-field approach is em-
ployed to establish a general formalism for the optical response of current-driven electrons in both the linear
and nonlinear regimes to a 1D quantum-dot superlattice. The dc-field dependences of both the peak energy and
peak strength in the absorption spectrum for a 1D quantum-dot superlattice are calculated, from which we find:
�1� both the peak energy and its strength are significantly reduced with increasing dc electric field; and �2� the
peak energy and peak strength are anomalously enhanced by raising the temperature for the nonlinear transport
of electrons when a strong dc electric field is applied.
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I. INTRODUCTION

Bloch oscillations are one of the most striking predictions
from the semiclassical Boltzmann theory for electron trans-
port. For a system consisting of independent electrons under
a periodic potential, the velocity of the electron becomes a
time-dependent periodic function. There have been many
theoretical1–8 and experimental9–12 activities in this area, cul-
minating in the observation of terahertz �THz� radiation from
coherently oscillating electrons and negative differential
conductance.13 From an experimental point of view, for a
very strong bias electric field in the Wannier-Stark ladder
regime, optical observation of Bloch oscillations in a semi-
conductor superlattice was reported by Feldmann et al.,14

using a transient degenerate four-wave mixing approach and
by Dekorsy et al.,15,16 using a time-resolved electro-optic
technique. The coherent terahertz radiation originating from
the Bloch oscillations was also reported by Waschke et al.,17

by Bonvalet et al.,18 and by Bolivar et al.19 in this regime.
On the contrary , from the theoretical aspect, the solution of
the Boltzmann transport equation with an arbitrary one-
dimensional-potential profile was reported by Dignam et
al.,20 using a stepwise approximation for numerical calcula-
tions with an isotropic scattering of electrons in a spherical
energy band and by Meier et al.,21 and Rossi et al.,22 using
the generalized semiconductor Bloch equations for photoex-
cited semiconductors with the inclusion of an electric field.
The interplay between Zener tunneling and Wannier-Stark
resonances was also studied by Di Carlo et al.,23 using a
theory based on multichannel scattering. However, to the

best of our knowledge, no exact solution for the Boltzmann
transport equation has been obtained so far with the full in-
clusion of microscopic scattering of electrons with both im-
purities and phonons. For a detailed discussion of Bloch os-
cillations in a semiconductor superlattice, readers are
referred to two review articles by Wacker et al.24 and by
Bonilla et al.,25 as well as additional references therein. In
ordinary bulk semiconductors, however, Bloch oscillations
cannot be seen due to the fact that collisions collectively
dephase the coherent motion of electrons on a time scale
which is usually much shorter than the oscillation period.
The physics of semiconductor superlattices in a strong dc
electric field Fdc is extremely rich due to the large number of
parameters that can be controlled quite freely. Evidence for
Bloch oscillations in doped superlattices, resulting in a nega-
tive differential conductance, predicted by Esaki and Tsu,1

has been reported by Sibille et al.9 for samples at room and
low temperatures. A tunable strong THz emitter allows for
real-time active spectral imaging in combination with a
focal-plane detector array.26 Under a very strong dc electric
field, the Wannier-Stark ladders have to be taken into
account.27 We are interested in a moderately high nonlinear
dc electric field, where the Boltzmann equation can be em-
ployed for studying the scattering effect on intraminiband
transport of electrons.

Recently, one of the authors employed a relaxation-time
approximation for inelastic phonon scattering and obtained
an exact analytical solution of the Boltzmann equation in a
one-dimensional �1D� quantum-dot superlattice,8 shown in
Fig. 1. He demonstrated differing roles played by elastic and
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inelastic scattering in determining the onset field for the
Bloch oscillation, the field for the peak steady-state current,
the peak current, and the current in the negative differential
conductance region. While this analytic theory is useful in
understanding the relations between the current and the scat-
tering rates in a transparent way, it does not give a micro-
scopic expression for the temperature dependence of the cur-
rent.

If electrons in a state of equilibrium in a 1D quantum-dot
superlattice are perturbed by a weak external optical field,
they will respond to this probe field by forming a charge-
density wave in the system. When the incident photon energy
is large, interminiband transitions of electrons will occur, in-
ducing a polarization field in the transverse direction perpen-
dicular to the 1D quantum-dot superlattice.28 However, if the
photon energy is small, intraminiband transitions of electrons
will be involved, inducing a polarization field in the longitu-
dinal direction parallel to the axis of the 1D quantum-dot
superlattice.29,30 In the former case, the optical field can be
spatially uniform, while in the latter case, the required opti-
cal field must be spatially nonuniform. The dynamics of per-
turbed electrons in the 1D quantum-dot superlattice can be
accounted for by the self-consistent theory in the linear-
response regime.28–30 Even after the electrons in a 1D
quantum-dot superlattice have been driven into a nonequilib-
rium state, we can still perturb these nonequilibrium elec-
trons using a weak optical field. In this case, we expect that
both the peak energy �including the single-particle transition
energy as well as the many-body depolarization shift� and
the peak strength in the absorption spectrum can be easily
controlled by a dc electric field. To the best of our knowl-
edge, a general theory for the optical response of driven elec-
trons under a strong bias is currently still not available.31

In this paper, we present a rigorous numerical solution for
the transient and steady-state currents in the presence of dc
and ac fields for an electron gas in the same system with the
inclusion of the effects of elastic and inelastic scattering by
treating electron-phonon scattering microscopically. In a dc
field without an ac component, our result demonstrates quan-
titatively how scattering damps the Bloch oscillations and
affects the peak field, peak current, and high-field current for
a degenerate as well as nondegenerate electronic system. For
this purpose, we study the response of the current when we

vary the strengths of electron-phonon scattering and impurity
scattering by using separate scaling parameters. The results
from these scaling studies are consistent with the predictions
of the analytic model of Lyo.8

Recent research and development of high-power tunable
THz radiation sources have spurred strong interest in the
dynamics of electrons in ac electric fields beyond microwave
frequencies. When electrons are subject to a combination of
strong dc and ac electric fields

F�t� = Fdc + Fac cos�2��act� , �1�

where Fac and �ac represent the ac-field amplitude and fre-
quency, a number of resonant structures are predicted theo-
retically in the I-V characteristic curve.32–35 Within the
nearest-neighbor tight-binding approximation, each of these
resonant structures possesses a line shape similar to the
Esaki-Tsu peak36 but is shifted by an amount of n�h�ac /ed�,
where n=1,2 ,¯ and d is the superlattice period. Studies on
the long-time average current under ac monochromatic37 and
bichromatic36 electric fields have been reported recently, in
which the conditions for the so-called dynamical
localization38–40 were derived either for a scattering-free sys-
tem or within the relaxation-time approximation for elastic
scattering. Conditions for dynamical localization in general-
ized ac electric fields have also been obtained, when a band
structure beyond the nearest-neighbor approximation was
employed.40,41

For an ac electric field superimposed on a dc field, we
present a rigorous numerical solution for the transient current
and the long-time-average current in a 1D miniband. Our
numerical result demonstrates how elastic scattering sup-
presses the dynamical localization and the associated higher
harmonics and, at the same time, how inelastic scattering
enhances the dynamical localization. The results allow us to
display quantitatively the opposite roles played by elastic
and inelastic scattering on the dependences of the current on
Fac and �ac. In the current work, only one shifted Esaki-Tsu
peak with n=1 is found after the damping is included.

When the current-driven nonequilibrium electrons in a 1D
quantum-dot superlattice are subject to a spatially nonuni-
form x-polarized optical probe field

Eop�x;t� = exp�i�̃t − iqx�Eop�q� , �2�

where q is the wave number of the probe field, �̃=�−qvd
�0 to include the Doppler effect, vd is the drift velocity of
driven electrons �see its definition after Eq. �34��, and �� is
the energy of the probing photons, a self-consistent-field
theory is employed to calculate the linear optical-absorption
spectrum, including the dc-field dependence of the peak en-
ergy and peak strength when Fac=0. From our studies, we
find that both the peak energy and its strength are signifi-
cantly reduced with increasing dc electric field. Additionally,
we find that both the peak energy and the peak strength are
reduced, as expected, whenever the temperature is increased
in the low-field regime for the linear transport of electrons in
a 1D quantum-dot superlattice. However, an unexpected dif-
ferent behavior is obtained for the increased peak energy and
enhanced peak strength by raising the temperature in the
high-field regime for the nonlinear transport of electrons.

Depletion Gate

Modulation Gate

2DEG in QW

FIG. 1. �Color online� Illustration of an array of 1D quantum-
dot superlattices, in which a middle two-dimensional electron-gas
�2DEG� layer in a GaAs quantum well is sandwiched between a
back depletion gate �with a large negative voltage�, forming a
quantum-wire array, and a front modulation gate �with a small nega-
tive voltage�, forming periodic potential barriers along the wires.
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The paper is organized as follows. In Sec. II, we introduce
our model and theory based on the Boltzmann equation for
both the Bloch oscillations and dynamical localization, along
with a procedure for accurate numerical calculations. In the
same section, we further introduce a self-consistent-field ap-
proach for calculating optical absorption by current-driven
nonequilibrium electrons in a 1D quantum-dot superlattice.
In Sec. III, numerical results are presented for both the Bloch
oscillations and dynamical localization. In addition, we also
present the numerical results in Sec. III for the dc-field de-
pendence of peak energy and peak strength in the absorption
spectrum. The paper is briefly concluded in Sec. IV.

II. MODEL AND THEORY

In this section, we discuss a microscopic form of the Bolt-
zmann equation in a 1D quantum-dot superlattice. Scattering
by impurities and acoustic phonons is included. We assume a
strong quadratic potential for the transverse confinement and
a tight-binding model for electron tunneling in the superlat-
tice direction. A rigorous numerical approach is discussed for
the solution of the time-dependent nonequilibrium distribu-
tion function and the nonlinear current in the strong-field
regime.

A. Boltzmann equation

Let us start by considering a degenerate electron gas mov-
ing in a 1D quantum-dot superlattice with a period d in the
superlattice �x�-direction. For this system with a strong trans-
verse confining potential, only the lowest subband will be
occupied by electrons in the low-density and low-
temperature regimes, and therefore, a single subband model
will be adequate. Moreover, the so-called Umklapp scatter-
ing process can be neglected due to the existence of a large
miniband gap and small phonon energies allowed at low
temperatures. Simultaneously, both the magnitude of dc field
and the amplitude of ac field are limited to a degree that the
field-induced potential drop between any two adjacent super-
lattice unit cells cannot exceed the width of the miniband.
The original form of the Boltzmann transport equation for a
time-dependent distribution function f�k , t� of electrons is
given by42,43

� f�k,t�
�t

=
eF�t�

�

� f�k,t�
�k

+ �
k�

Pe�k,k���f�k�,t� − f�k,t��

+ �
k�,q,�

�P+�k,k����nq� + 1�f�k�,t��1 − f�k,t��

− nq�f�k,t��1 − f�k�,t��� + P−�k,k���nq�f�k�,t�

��1 − f�k,t�� − �nq� + 1�f�k,t��1 − f�k�,t���� ,

�3�

where F�t� represents the applied �time-dependent� electric
field defined in Eq. �1�, k is the electron wave vector along
the x direction, q is the three-dimensional �3D� wave vector
of phonons, �=� ��= t� corresponds to the longitudinal
�transverse� acoustic phonons, and nq�=N0��q�� is the Bose
function for the equilibrium phonons with the frequency �q�

in the mode of q and �. In Eq. �3�, we have defined the
electron-phonon inelastic-scattering transition probability
rate as42,43

P��k,k�� =
2�

�
�Vk,k��

2	�
k − 
k� � ��q��	k�,k�qx
, �4�

and the electron-impurity elastic-scattering transition prob-
ability rate as44

Pe�k,k�� =
2�

�
�Uk,k��

2	�
k − 
k�� , �5�

where 
k=W�1−cos�kd�� /2 is the electron kinetic energy
with a bandwidth W in the single-band tight-binding model,
Vk,k� represents the interaction between electrons and
phonons, and Uk,k� is the interaction between electrons and
impurities.

We define f�k , t�= fk
�0�+gk�t� with a dynamical nonequilib-

rium part gk�t� for the total distribution function, where fk
�0�

= f0�
k� is the Fermi function for the equilibrium electrons.
We then note that the terms of zeroth order in gk in the
scattering parts of Eq. �3� cancel out due to detailed balance.
After incorporating these considerations, we can algebra-
ically simplify Eq. �3� into

�gk�t�
�t

= − eF�t�vk	−
� fk

�0�

�
k

 +

eF�t�
�

�gk�t�
�k

+ �g−k�t� − gk�t�� �
k��−k

Pe�k,k�� − gk�t� �
k�,q,�

��P+�k,k���nq� + fk�
�0�� + P−�k,k���nq� + 1 − fk�

�0��

+ gk��t��P+�k,k�� − P−�k,k���� + �
k�,q,�

gk��t��P+�k,k��

��nq� + 1 − fk
�0�� + P−�k,k���nq� + fk

�0��� , �6�

where vk= �1 /��d
k /dk is the group velocity of electrons
with the wave vector k and the k� sum for k��−k is carried
out near the resonance at k�=−k.

B. Elastic and inelastic-scattering rates

The transport relaxation rate from electron-impurity scat-
tering equals44

1

�k
� 2 �

k��−k

Pe�k,k�� =
�

�
�Uk,−k�2D�
k� . �7�

Here, the factor 2 arises from the 2kF �kF is the Fermi wave
vector at zero temperature� scattering across the Fermi sea
and D�
� is the total density of states given by

D�
� =
2Lx

�d

1
��W − 
�


, �8�

where Lx is the length of the superlattice.
For electron-phonon scattering, we define scattering rates
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W��k,k�� � �
q,�

P��k,k�� . �9�

Using Eq. �4� and writing ��q�=��
��k−k��2+q�

2 from the
Debye model, we find42,43

W��k,k�� =
S
�
�
�


��
k − 
k��
2 − ��

2�k − k��2�

�
��
k� � 
k��
��q��V��q��2

��
2 ��q�� , �10�

where 
�x� is the unit step function, S is the samples cross-
sectional area, ��=�c�, c� is the velocity of sound for the
phonon of � mode, qx= �k�−k�,

q� = �qy
2 + qz

2 =
1

��

��
k − 
k��
2 − ��

2�k − k��2, �11�

q = �qx
2 + q�

2 =
�
k − 
k��

��

, �12�

and the form factor in Eq. �10� takes the form

��q�� = exp�− q�
2 R2/2�

= exp�− ��
k − 
k��
2 − ��

2�k − k��2�R2/2��
2� �13�

for a transverse parabolic confinement within the yz plane
with the radius R for the cylindrical confinement model. The
quantity ��q�� arises from the consequence of momentum
conservation for q�. A smaller value of R in Eq. �13� implies
stronger electron-phonon scattering in Eq. �10�.

Upon assuming axial symmetry, we find that the strength
of the electron-phonon interaction �V��q��2 in Eq. �10� is
given by42

��q��V��q��2 =
���q��2

2�TF�qx�2�Mc�
2V	D2	�,� + 
 eh14

q
�2

Aq�
 ,

�14�

where V=SLx is the sample volume, �M is the mass density,
D is the deformation-potential coefficient, h14 is the piezo-
electric constant, �TF�qx� is the Thomas-Fermi dielectric
function,42 and Aq� is the structure factor for acoustic
phonons42 due to anisotropic electron-phonon coupling. We
further note from Eq. �10� that only one of W��k ,k�� is non-
zero, i.e., either W+�k ,k���0 for 
k��
k or W−�k ,k���0 for

k��
k. This directly yields the result

W��k,k�� = 
��
k� � 
k��
�

W��k,k�� , �15�

where W��k ,k��=W��k� ,k� is given by

W��k,k�� =
S
�


��
k − 
k��
2 − ��

2�k − k��2��V��q��2
q

��

��q�� .

�16�

C. Numerical procedure

Using the scattering rates introduced in Secs. II A and
II B, we may rewrite Eq. �6� into the concise form

�gk�t�
�t

= eF�t�vk

� fk
�0�

�
k
+

eF�t�
�

�gk�t�
�k

+
1

2�k
�g−k�t� − gk�t�� − gk�t��

k�

�W+�k,k���nk,k� + fk�
�0��

+ W−�k,k���nk,k� + 1 − fk�
�0�� + gk��t�

��W+�k,k�� − W−�k,k���� + �
k�

gk��t�

��W+�k,k���nk,k� + 1 − fk
�0�� + W−�k,k���nk,k� + fk

�0��� ,

�17�

where nk,k�=N0��
k−
k�� /�� is independent of �=� , t. By in-
troducing the notations fk

−= fk
�0� and fk

+=1− fk
�0�, we obtain the

discrete form for the total inelastic-scattering rate

Wj =
Lx

2�
	k �

j�,�

W��k,k���nk,k� + fk�
�� , �18�

where k� j	k and k�� j�	k for 1� j�N, 	k=2� / �N−1�d
with N�1 being an odd integer, and

Wj,j� = �
�

W��k,k���nk,k� + fk�
�� . �19�

We can also write

Wj
g�t� =

Lx

2�
	k�

j�

gk��t��W+�k,k�� − W−�k,k��� , �20�

and

dgk�t�
dt

= eF�t�vk

� fk
�0�

�
k
+

eF�t�
�

�gk�t�
�k

− gk�t��Wj + Wj
g�t��

+
1

2�k
�g−k�t� − gk�t�� +

Lx

2�
	k�

j�

gk��t�Wj,j�. �21�

In Eq. �21�, the quantity gkWj
g is the only nonlinear term in

gk.
Equation �21� is equivalent to the following matrix equa-

tion for 1� j�N:

dgj�t�
dt

= bj�t� − �
j�=1

N

aj,j��t�gj��t� , �22�

where k� j	k and k�� j�	k. The elements for the vector b�t�
in Eq. �22� are

bj�t� = eF�t�v j

� f j
�0�

�
 j
, �23�

and the elements for the matrix aJ�t� in Eq. �22� are
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aj,j��t� = 	 j,j�	Wj + Wj
g�t� +

1 − 	 j,�N+1�/2

2� j



− 	 j+j�,N+1	1 − 	 j,�N+1�/2

2� j

 −

eF�t�
�	k

cj,j� −
Lx

2�
	kWj,j�.

�24�

By assuming that the field F�t� is turned on at t=0, the dif-
ferential Eq. �22� can be solved in combination with the ini-
tial condition gj�0�=0 for j=1,2 , . . . ,N. In addition, using
the so-called three-point central-difference formula,45 which
transforms the partial differential term �eF�t� /���gk�t� /�k in
Eq. �21� into a finite-difference term, we can write cj,j� in Eq.
�24� in a simple form

cj,j� =
1

2
�	 j,j�−1 − 	 j,j�+1� . �25�

Unfortunately, the quantities �g1 ,g2 , . . . ,gN� are not lin-
early independent of each other,43,44,46 which implies that the
matrix aJ�t� in Eq. �22� is a singular one. In fact, the condition
for the particle-number conservation requires that

�
j=1

N

gj�t� = 0. �26�

Combined with the fact that 
k=
−k and vk=−v−k, this yields
for 1� j�N

g1�t� = gN�t� = −
1

2 �
j=2

N−1

gj�t� , �27�

where j=1 and N are the two k-space points at the first
Brillouin-zone boundary. As a result of Eq. �27�, we can
renormalize the singular �N�N�-matrix aJ�t� in Eq. �22� into
a regular ��N−1�� �N−1��-matrix aJ��t� through the follow-
ing relation:

aj,j�
� �t� = aj,j��t� − �aj�t�� , �28�

where �aj�t��= �aj,1�t�+aj,N�t�� /2 and j , j�=2,3 , . . . ,N−1.
Consequently, Eq. �22� is renormalized and becomes

dgj��t�
dt

= bj��t� − �
j�=2

N−1

aj,j�
� �t�gj�

� �t� , �29�

where the vectors g��t� and b��t� are the same as the vectors
g�t� and b�t�, respectively, without the first and last elements
with j=1 and N. Similarly way, we correspondingly rewrite
Eq. �20�, by excluding the elements with j=1 and N, as

Wj
g�t� =

Lx

2�
	k �

j�=2

N−1

gj�
� �t��W+�j, j�� − W−�j, j�� − ��W+�j��

− �W−�j���� , �30�

where �W��j��= �W��j ,1�+W��j ,N�� /2.
The time-dependent current of the system can be found

from

I1D�t� = −
eWd	k

2��
�
j=2

N−1

gj��t�sin	
 j −
N + 1

2
�	kd
 , �31�

and the steady-state current I0 for a dc electric field is given
by I1D�t� at the t→� limit. In the presence of an ac electric
field, the ac current I1D�t� quickly establishes regular peri-
odic oscillations after the scattering time. We can therefore
define a long-time average current �I1D� from the transient
current I1D�t� through its limiting behavior36

�I1D� = lim
t0→�

1

t0
�

0

t0

I1D�t�dt , �32�

where t0 is much larger than the scattering time. The latter is
about 10–20 picoseconds for our chosen parameters accord-
ing to Figs. 2, 3, and 7. The long-time-averaged quantity
�I1D� includes contributions from both the dc and ac electric
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FIG. 2. �Color online� Calculated transient currents I1D�t� as a
function of time t �in �a�� and the k dependence of the steady-state
nonequilibrium part gk of the total distribution function �in �b�� for
four different values of the dc electric field, i.e., Fdc=0.5 �brown
dashed-double-dotted curves�, 25 �blue dashed-dotted curves�, 50
�green dashed curves�, and 500 V/cm �red solid curves�. Here, we
take Fac=0, n1D=1�105 cm−1, �0=3.75�1010 s−1, d=100 nm,
W=5 meV, T=1 K, and R=10 Å. The label �0.1 in �a� indicates
that the scale of the brown dashed-double-dotted curve has been
multiplied by a factor of 10.
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fields. Mathematically, �I1D� represents the time-independent
term after the Fourier transform I1D�t� is taken with respect
to t .

The first-order nonlinear integro-differential transport
equation in Eq. �29� is solved numerically by using an itera-
tion scheme on the uniform discrete time points tn=n	t�n
=0,1 ,2 , . . .� with a sufficiently small time step 	t. Initially,
we find gj��t1� by multiplying the expression on the right-
hand side of Eq. �29� with 	t and using gj�

� �t0�=0. Here, all
the site indices run fromj , j�=2, . . . ,N−1 excluding the two
end points. The electric fields are turned on at t=0. This
process is repeated by equating gj��tn�−gj��tn−1� to the 	t
times the expression on the right-hand side of Eq. �29� in
terms of gj�

� �tn−1�. The quantity 	t is taken as being suffi-
ciently small to ensure a convergence for the final result
gj�
� �t�.

D. Current-driven optical response

When a weak electromagnetic field impinges on a
condensed-matter system, the induced optical coherence will

be represented by the finite off-diagonal matrix elements of a
density matrix. However, in this case, the diagonal matrix
elements of this density matrix still describe the equilibrium
distribution of electrons within the resulting perturbed pic-
ture. We also note that the states of a dynamical system
driven solely by a dc electric field Fdc �with Fac=0� will be
designated as a nonequilibrium distribution function al-
though the off-diagonal matrix elements of a density matrix
are still zero in the absence an optical field. Therefore, a
system which is under the influence of both a weak electro-
magnetic field and a strong dc bias can be chosen to exhibit
the optical response of current-driven nonequilibrium elec-
trons.

In a linear-response theory for a weak optical field, the
induced density in a 1D quantum-dot superlattice takes the
form fluctuations in the density28

	n�x,�� ;�� = 	n�x;��	�2���
2�


 , �33�

where

	n�x;�� = 2�
k,k�

�k,k�
�0� ��̃�Hk,k�

�

�	 1

Nc
�
j,j�

eikjd−ik�j�d���x − j�d���x − jd�
 .

�34�

And wherein II0
k,k’���In Eqs. �33� and �34�, ���� and ��x� are

the ground-state wave functions of electrons in the radial and
x-directions, respectively �see Appendix A�. The drift veloc-
ity vd of electrons in the 1D quantum-dot superlattice is sim-
ply given by vd= I0 / �en1D�, where n1D is the linear density of
electrons and I0 is the steady-state current given by Eq. �31�
in the limit of t→� under a dc electric field Fdc. The spa-
tially nonuniform probe field can be introduced by using a
surface metal grating along the x-direction. In Eq. �34�, we
have defined �k,k�

�0� ��̃�= �f�k , t�− f�k� , t�� / ���̃− �
k�−
k��. In
addition, Hk,k�

� in Eq. �34� represents the matrix element of a
perturbed Hamiltonian, which is calculated as �see Appendix
A for the definition of the form factor F�q��

Hk,k�
� = ieEop�q��	F��q��

q�

	k�,k+q�+l�G, �35�

where l� is an arbitrary integer, and only the on-site overlap
of wave functions is included.28 Also, G=2� /d in Eq. �35� is
the smallest reciprocal-lattice vector.

When a probe field is applied, the induced optical polar-
ization in the system can be calculated as47 �see Appendix B
for the derivation of P�q��

P�q� =
− e2

Sd
��0��q;� − qvd�	F�q�

q

�

l�

	F��q + l�G�
�q + l�G� 


�Eop�q + l�G� . �36�

Here, S=�R2 is the cross-sectional area of the sample and
��0��q ; �̃����0��q ;�−qvd� is the Doppler-shifted irreducible
polarization.
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FIG. 3. �Color online� Calculated transient currents I1D�t� at
Fdc=500 V /cm �in �a�� for two values of the radius, i.e., R
=10 Å �red dashed curve� and R=15 Å �blue solid curve�, and for
two values of the dc electric field with R=15 Å �in �b��, i.e., Fdc

=50 V /cm �red dashed curve� and Fdc=500 V /cm �blue solid
curve�. The other parameters are taken as the same as those in Fig.
2.
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The total probe-field-induced polarization energy of the
system is calculated from

�
l

P�q + lG�Eop
� �q + lG� =

− e2

Sd
��0��q;� − qvd�

���
l
	F�q + lG�

�q + lG� 

�Eop

� �q + lG��2

. �37�

By assuming that Eop�q��E0, we can calculate the dimen-
sionless Lorentz ratio47 from the total probe-field-induced
polarization energy in Eq. �37� divided by �0�E0�2, which is
given by

�L�q;�� =
− e2

�0Sd
��0��q;� − qvd���

l

F�q + lG�
�q + lG� �2

.

�38�

The optical response of the system can be derived from
the Lorentz ratio. As a matter of fact, the loss function
Im��L�q ;��� is directly associated with the optical absorp-
tion by electrons in the 1D quantum-dot superlattice, while
Re��L�q ;��� gives rise to the modulation of refractive index
of the system by electrons.

The many-body effects can be described by introducing a
dielectric function ��q ;�� of electrons in the 1D quantum-
dot superlattice, which replaces a bare irreducible polariza-
tion function ��0��q ;�−qvd� introduced in Eq. �38� by a
screened one ���0��q ;�−qvd� /��q ;���. In the calculation of
��q ;��, we adopt the self-consistent-field approach,48,49

which is given by �see Appendix C for the derivation of
��q ;�� and the definition of Vc��q���

��q;�� = 1 − ��0��q;� − qvd��
l

Vc��q + lG���F�q + lG��2.

�39�

By using the derived dielectric function in Eq. �39�, the
Coulomb-renormalized loss function Im��L�q ;��� is found
to be

Im��L�q;��� =
e2

�0Sd
A�Fdc�

���
l

F�q + lG�
�q + lG� �2	W sin2�qd/2�

D�q� 

�	��� − �qvd − D�q�� , �40�

where �see Appendix C�

A�Fdc� = d�
−�/d

�/d

dkf�k,t�cos�kd� �41�

is the Fdc-dependent amplitude factor which is related to the
inverted center of mass in the quantum-dot superlattice
direction,50 and

D�q� = �A�Fdc�
2W sin2�qd/2�

�
�

l

Vc��q + lG��

��F�q + lG��2�1/2

�42�

is the depolarization shift D�q�.
The current-driven effect on the optical response of elec-

trons in a 1D quantum-dot superlattice is reflected in the vd
dependence of the loss function Im��L�q ;��� in Eq. �40�.

III. NUMERICAL RESULTS AND DISCUSSIONS

For ease of notation, we define � j =�k at the energy 
 j
=
k in Eq. �7�,

1

� j
= �0��W − ���

�W − 
 j�
 j
, �43�

where �0 is the value of 1 /� j at 
 j =�. For a fixed electron
temperature T and linear density n1D, the electron chemical
potential � is determined from the following relation:

n1D =
	k

�
�
j=1

N
1

exp��
 j − ��/kBT� + 1
. �44�

The Fermi wave vector equals kF=�n1D /2 at T=0 K. We
choose GaAs as the host material for our numerical calcula-
tions and employ the following parameters:51 the velocities
of sound c�=5.14�105 cm /sec, ct=3.04�105 cm /sec, the
mass density �M =5.3 g /cm3, the piezoelectric constant
h14=1.2�107 V /cm, the deformation-potential coefficient
D=−9.3 eV, the host-material dielectric constant �b=12,
and the half width �=d /4. For the Bloch oscillations, we
consider a dc field. For dynamical localization, on the other
hand, a combination of dc and ac fields is considered. The
other parameters will be directly indicated in the figure cap-
tions.

A. Damped Bloch oscillations

Figure 2�a� displays the time-dependent current I1D�t� for
various strengths of applied dc fields Fdc. For Fdc
=0.5 V /cm �brown dashed-double-dotted curve�, a transient
current reaches the steady-state value very quickly without
experiencing any Bloch oscillations. This indicates that the
Bloch oscillations of the system are completely suppressed
by electron scattering. When the dc field is increased to
Fdc=25 V /cm �blue dashed-dotted curve�, the Bloch oscil-
lations are barely seen with only one current maximum
around t=5 ps after the field is turned on. Here, the Bloch
oscillations are overly damped. When Fdc is further increased
to 50 V/cm �green dashed curve�, the Bloch oscillations start
to become visible with one complete oscillation. In this case,
the Bloch oscillations are heavily damped. Finally, for Fdc
=500 V /cm �red solid curve� the Bloch oscillations are sig-
nificant with many periods of oscillation, where the Bloch
oscillations are only slightly damped. This high field is em-
ployed to bring out the effect, although the Boltzmann model
may not apply in the strict sense because the potential-energy
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drop across the period equals the bandwidth. We show in
Fig. 2�b� the steady-state nonequilibrium part gk of the dis-
tribution function as a function of the wave vector k along
the superlattice direction. For Fdc=0.5 V /cm �brown
dashed-double-dotted curve�, we find a positive �negative�
peak in gk around k=−kF �k=kF�. Here, the two Fermi edges
sit at �kFd� �� /2, respectively, in a 1D quantum-dot su-
perlattice for our chosen density. The slight asymmetry in
positive and negative peaks gives rise to a net steady-state
current. As the dc field is increased to Fdc=25 V /cm �blue
dashed-dotted curve�, the positive peak at k=−kF becomes
stronger and expands leftward to the Brillouin-zone bound-
ary at k=−� /d. Simultaneously, the negative peak at k=kF
also enhances itself and pushes toward k=−kF. In addition,
gk starts to build up itself at the other Brillouin-zone bound-
ary �k=� /d� to meet the k-space periodicity requirement. As
the dc field further increases to Fdc=50 V /cm �green dashed
curve�, these observed features in gk at Fdc=25 V /cm are
further enlarged until a constant gk� �0.5 is reached sepa-
rately within three successive regions, i.e., −� /d�k�−kF,
−kF�k�kF, and kF�k�� /d for Fdc=500 V /cm �red solid
curve�. This high-field behavior in gk implies that the total
steady-state distribution function will show up nearly as a
constant of 0.5 across the whole Brillouin zone, in strong
contrast with the square shape of the initial distribution func-
tion of equilibrium electrons at low temperatures.

Figure 3�a� presents transient currents I1D�t� for two val-
ues of the localization radius R at a high dc field Fdc
=500 V /cm. For R=15 Å �blue solid curve�, the large-
amplitude Bloch oscillations are found with a very small
steady-state current before the decoherence time T2�15 ps
�beyond which the Bloch oscillations decay� is reached. On
the other hand, the amplitude of the initial Bloch oscillations
is significantly reduced for R=10 Å �red dashed curve�,
where phonon scattering is relatively stronger. However, the
steady-state current in this case is enhanced. We display in
Fig. 3�b� the transient currents I1D�t� for two values of Fdc
with the same localization radius R=15 Å. In comparison
with the complete Bloch oscillations at a high field Fdc
=500 V /cm �blue solid curve�, they are greatly damped at
Fdc=50 V /cm �red dashed curve� due to an increased
Bloch-oscillation period TB=2� /�B�T2, where �B
=eFdcd /� is the Bloch frequency. At the same time, how-
ever, the steady-state current is significantly enhanced. The
above dependences of the magnitude of the steady-state cur-
rent on the radius of the wire and Fdc will be studied in more
detail in the following.

In Fig. 4, we study the steady-state current I0 as a function
of Fdc for different phonon and impurity scattering rates. The
field scales as 1 /d. The results are consistent with the exact
relaxation-time results obtained earlier by Lyo.8 Figure 4�a�
exhibits I0 as a function of Fdc for two values of R. For a
stronger phonon scattering with R=10 Å �solid squares on
red curve�, we first find a linear-transport behavior I0�Fdc in
the weak-field regime Fdc�25 V /cm corresponding to �B
��0 ,�ph, where �ph represents the effective phonon-
scattering rate �see the discussion of Fig. 6�a� below�. When
Fdc�25 V /cm, on the other hand, I0 varies inversely with
Fdc and evolves into a 1 /�B dependence for Fdc
�25 V /cm, where �B��ph,�0. At Fdc=25 V /cm, a sharp

current peak is seen. When the phonon scattering is reduced
with R=15 Å �solid triangles on blue curve�, the peak cur-
rent Ip is shifted to a lower field because the field Fp at the
peak value of I0 is proportional to �ph for small �0.8 More-
over, the magnitude of Ip is also reduced since it is roughly
proportional to �ph /�0.8 Furthermore, the high-field current
at Fdc=500 V /cm decreases when �ph is reduced, which can
be attributed to the fact that the steady-state current is pro-
portional to �ph /�B in the high-field limit �B��0 ,�ph.

8 We
present in Fig. 4�b� I0 as a function of Fdc for two values of
�0. For a large �0=3.75�1012 s−1 �solid triangles on blue
curve�, the low-field I0 is drastically reduced in comparison
with that for a small �0=3.75�1010 s−1 �solid squares on
red curve� because I0�1 /��0 for �0��ph.

8 However, the
high-field I0 at Fdc=500 V /cm remains the same, indepen-
dent of �0. In addition, Fp shifts to a high field because Fp

���0 for �0��ph.
8 A report on the field dependence of tun-

neling current based on the Fokker-Planck approximation
was given earlier in the absence of elastic scattering.52

In order to demonstrate the above discussed scaling rela-
tionships of Ip, Fp, and the high-field I0 in the negative dif-
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FIG. 4. �Color online� Calculated steady-state currents I0 as
functions of the dc electric field Fdc for two values of R �in �a�� and
two values of �0 �in �b��. We choose R=10 Å �solid squares on red
curve� and R=15 Å �solid triangles on blue curve� in �a�, while we
assume �0=3.75�1010 s−1 �solid squares on red curve� and �0

=3.75�1012 s−1 �solid triangles on blue curve� in �b�. The other
parameters are taken as the same as those in Fig. 2.
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ferential conductance �NDC� regime with respect to �ph and
�0, we introduce a dimensionless scaling parameter s by ex-
pressing the electron-phonon-scattering interaction using
�V��q��2→s�V��q��2, where �V��q��2 is given by Eq. �14� or
through the replacement �ph→ �̄ph�s�ph. Figure 5�a� dis-
plays Fp as a function of s for a small �0. A linear depen-
dence was found, which implied that Fp in this case, is pro-
portional to �̄ph under the condition �̄ph��0.8 This
relationship is consistent with our previous analytical result
based on the relaxation-time approximation. Figure 5�b�
shows the high-field steady-state current I0 as a function of s
and demonstrates that I0 increases with �̄ph linearly for small
�̄ph, but nonlinearly for large �̄ph. Again, this behavior is
consistent with the predictions of our previous exact result.8

Therefore, the nonlinear-dependence region in Fig. 5�b� re-
flects a switching behavior from the strong-field regime
��B��̄ph� to the weak-field regime ��B��̄ph�.

For impurity scattering, we can also introduce a dimen-
sionless scaling factor s through �0→ �̄0�s�0. Figure 6�a�
exhibits Fp as a function of �s. We find from the figure that
Fp increases as Fp���̄0 with �̄0 for large �̄0, but becomes
independent of �̄0 for small �̄0. This confirms our previous

analytical result8 which predicts that Fp is equal to
�� /ed���ph��ph+ �̄0�. Therefore, the constant value in Fig.
6�a� as �̄0→0 corresponds to ��ph /ed, from which we can
extract the value of effective phonon-scattering rate �ph�3
�1011 s−1. We show Ip in Fig. 6�b� as a function of s, which
exhibits a decrease in Ip with increasing �̄0 for large �̄0, and
approaches a constant with decreasing �̄0 for small �̄0. This
again confirms our previous analytical result8 which predicts
that Ip is equal to �e�n1D /4meff

� d���ph / ��ph+ �̄0�.
Figure 7�a� displays I1D�t� for two temperatures T at a

high dc field Fdc=500 V /cm. In comparison with the result
at T=1 K �red solid curve�, the increased temperature T
=20 K �blue dashed curve� only reduces the amplitude of
the Bloch oscillations but does not change the oscillation
period. In addition, the steady-state current also decreases
with increasing T. We show in Fig. 7�b� the steady-state cur-
rent I0 as a function of Fdc for two temperatures. Compared
with the result at T=1 K �solid squares on red curve�, I0
becomes smaller for the higher temperature T=20 K �solid
triangles on blue curve�.

To compare the different T dependences of I0 in the
linear-response and the high-field NDC regime, we display I0
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FIG. 5. Calculated field Fp at the peak of the steady-state current
�in �a�� and the steady-state current I0 at Fdc=500 V /cm �in �b�� as
functions of the phonon interaction scaling factor s. The other pa-
rameters are taken as the same as those in Fig. 2 except for d
=80 nm. The dimensionless scaling factor s in this figure measures
the simple scaling relation, i.e., �V��q��2→s�V��q��2.
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scaling relation, i.e., �0→s�0. The s scale in �b� has been broken to
highlight the behavior of Ip for small values of s.
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in Fig. 8�a� as a function of T for Fdc=5 V /cm �solid tri-
angles on black curve�, Fdc=150 V /cm �solid squares on
blue curve�, and Fdc=500 V /cm �inverted solid triangles on
red curve�, respectively. In the linear-response regime at
Fdc=5 V /cm, I0 decreases rapidly at low temperatures with
increasing T as well known due to electron-phonon scatter-
ing. This rapid drop is visibly slowed down in the low-field
NDC regime for Fdc=150 V /cm with much smaller low-
temperature values of I0. For Fdc=500 V /cm in the high-
field NDC regime, the low-temperature values of I0 are fur-
ther reduced. More importantly, I0 becomes nearly
independent of T at high temperatures. This T-independent
behavior at Fdc=500 kV /cm can be seen more clearly in
Fig. 8�b�, where I0 is plotted within the small range of 30
�T�65 K. This T-independent behavior in the NDC re-
gime is consistent with previous findings in one dimension8

and three dimensions.53,54

B. Damped dynamical localization

In the coexistence of dc and ac fields, electrons execute
simultaneous drift and oscillatory motion. Figure 9�a� pre-

sents calculated time-dependent currents I1D�t� for three val-
ues of Fac=100 V /cm �brown dashed curve�, Fac
=300 V /cm �red dashed-dotted curve�, and Fac
=500 V /cm �blue solid curve� at Fdc=30 V /cm and �ac
=0.1 THz. The ac current establishes regular periodic oscil-
lations quickly in a time scale larger than the scattering time,
which roughly corresponds to �act=0.3 shown in Fig. 9: the
time interval between each period here is 10 ps, while the
relaxation �scattering� time is about 0.3 ps. For Fac
=100 V /cm, I1D�t� largely follows the wave profile of
cos�2��act� except for some small distortions. However,
when Fac is increased to 500 V/cm, significant higher har-
monics, such as 2�ac ,3�ac , . . ., can be seen from damped fast
oscillations superposed on the shoulders between minima
and maxima that occur for Fac=100 V /cm. This is attributed
to the increase in the argument of the mth-order Bessel func-
tion Jm�eFacd /h�ac�.36,38 Here, m=0,1 ,2 , . . . is an integer la-
beling an m-photon-assisted tunneling process.55 We display
in Fig. 9�b� I1D�t� for Fdc=0 �blue dashed curve� and Fdc
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FIG. 7. �Color online� Calculated transient currents I1D�t� at
Fdc=500 V /cm as a function of t �in �a�� for two values of the
temperature, i.e., T=1 K �red solid curve� and T=20 K �blue
dashed curve� and the steady-state current I0 as a function of Fdc �in
�b�� for two values of the temperature, i.e., T=1 K �solid squares
on red curve� and T=20 K �solid triangles on blue curve�. The
other parameters are taken as the same as those in Fig. 2.
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FIG. 8. �Color online� Calculated steady-state currents I0 as
functions of the temperature �in �a�� for three values of Fdc, i.e.,
Fdc=5 V /cm, Fdc=150 V /cm, and Fdc=500 V /cm correspond to
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triangles on red curves, respectively. A blowout view of the curves
in �a� is presented in �b� for 30�T�65 K to highlight the high-
temperature behaviors. Here, we take d=80 nm, and the other pa-
rameters are taken as the same as those in Fig. 2.
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=300 V /cm �red solid curve� at Fac=300 V /cm and �ac
=0.1 THz. Compared with the result at Fdc=0, there exists a
rigid phase shift for Fdc=300 V /cm, in addition to the sup-
pression of minima that occur for Fdc=0. In this case, asym-
metry is introduced by a finite dc electric field, which has a
profound effect on time-averaged currents. In fact, the time-
averaged current remains to be zero for all values of Fac and
�ac in the absence of drift at Fdc=0, reflecting the purely
oscillating ac current.

Figure 10�a� compares the calculated transient currents
I1D�t� for �0=3.75�1012 s−1 �blue dashed curve� and �0
=3.75�1011 s−1 �red solid curve� at Fdc=30 V /cm, Fac
=300 V /cm, and �ac=0.1 THz. When �0 is increased to
3.75�1012 s−1, the fast oscillations associated with higher
harmonics are quickly quenched by elastic scattering of elec-
trons along with a reduced peak strength, giving rise to a
partial recovery of the result under a weak Fac �see the brown
dashed curve in Fig. 9�a��. Figure 10�b� presents I1D�t� for

R=10 Å �blue solid curve� and R=15 Å �red dashed-dotted
curve� at Fdc=30 V /cm, Fac=300 V /cm, and �ac
=0.1 THz. In this case, however, we find that the increased
phonon scattering with R=10 Å only enhances the magni-
tude of the oscillation peaks, but the phase of I1D�t� remains
unchanged. Therefore, the inelastic phonon scattering of
electrons stabilizes the higher harmonics induced by Fac
=300 V /cm. The so-called dynamical localization occurs
whenever the quantity x�eFacd /h�ac becomes the root xj

�m�

of Jm�x�, where j=1,2 , . . . labels the roots. Physically speak-
ing, the dynamical-localization phenomenon can be regarded
as the continued localization of an initially localized wave
packet.38 This can be reflected in the zeros of the calculated
time-averaged current �I1D� for some specific values of Fac or
1 /�ac.

We compare in Fig. 11�a� the calculated time-averaged
currents �I1D� as a function of 1 /�ac for three values of Fac
=100 V /cm �solid squares on red curve�, Fac=300 V /cm
�solid triangles on green curve�, and Fac=500 V /cm �in-
verted solid triangles on blue curve� at Fdc=30 V /cm. The
sign of �I1D� here is determined by the signs of Fac and Fdc.
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FIG. 9. �Color online� Calculated transient currents I1D�t� as
functions of the scaled time �act for three different amplitudes Fac of
an applied ac electric field �in �a��, and for with/without a dc elec-
tric field �in �b��. In �a� we set Fdc=30 V /cm and display the re-
sults for Fac=100 �brown dashed curve�, Fac=300 �red dashed-
dotted curve�, and Fac=500 V /cm �blue solid curve�, while in �b�
we take Fac=300 V /cm and present the results for Fdc=0 �blue
dashed curve� and Fdc=300 V /cm �red solid curve�. Here, we set
�ac=0.1 THz, n1D=1�105 cm−1, �0=3.75�1012 s−1, d=80 nm,
W=5 meV, T=1 K, and R=10 Å.
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FIG. 10. �Color online� Calculated transient currents I1D�t� as
functions of �act for two values of �0 �in �a�� and two values of R
�in �b�� with Fdc=30 V /cm and Fac=300 V /cm. We choose �0

=3.75�1012 s−1 �blue dashed curve� and �0=3.75�1011 s−1 �red
solid curve� in �a�, while we assume R=10 Å �blue solid curve�
and R=15 Å �red dashed-dotted curve� in �b�. The other parameters
are taken as the same as those in Fig. 9.
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Here, the point of intersection of each curve with the hori-
zontal dashed line for a large value of Fac represents the first
root x1

�m� of J�m��eFacd /h�ac� for different values of �m�.36,38

When Fac is reduced, the intersection point moves leftward
due to decreasing x1

�m� with a smaller and smaller �m� value.
As the last intersection point x1

�0� is passed for Fac
=100 V /cm, the point of intersection vanishes, and the dy-
namical localization in this case becomes completely sup-
pressed. Once the intersection point is passed, �I1D� becomes
more and more negative with decreasing 1 /�ac. On the other
hand, for large values of Fac, the magnitude of �I1D� is
greatly reduced and approaches zero in the large 1 /�ac re-

gime. This is a consequence of decreasing �Jm�x�� with in-
creasing x for all values of m:

Jm�x� =� 2

�x
cos
x −

1

2
m� −

1

4
�� , x =

eFacd

h�ac
� 1.

Figure 11�b� presents �I1D� as a function of 1 /�ac at Fac
=300 V /cm for Fdc=30 V /cm �solid squares on blue
curve� and Fdc=300 V /cm �solid triangles on red curve�.
For Fdc=300 V /cm, there is no intersection point. In this
case, the strong Bloch oscillations under Fdc=300 V /cm
completely suppress the dynamical localization. For a large
value of 1 /�ac, the magnitude of �I1D� will eventually ap-
proach a value ��1 /�B� determined by Fdc=300 V /cm, in
contrast with a very small value under Fdc=30 V /cm. In the
latter case, the dominant contribution to �I1D� comes from the
term containing J1�eFacd /h�ac�.36 For a large Fdc, on the
other hand, the dominant contribution to �I1D� is from the
term containing J0�eFacd /h�ac�.36 Therefore, �I1D� is deter-
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FIG. 12. �Color online� Calculated long-time average currents
�I1D� as functions of 1 /�ac for two values of �0 �in �a�� and two
values of R �in �b�� with Fdc=30 V /cm and Fac=300 V /cm. We
choose �0=3.75�1012 s−1 �solid squares on blue curve� and �0

=3.75�1013 s−1 �solid triangles on red curve� in �a�, while we
assume R=10 Å �solid squares on blue curve� and R=15 Å �solid
triangles on red curve� in �b�. The horizontal black dashed lines are
used as a guideline for �I1D�=0. The other parameters are taken as
the same as those in Fig. 9.
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FIG. 11. �Color online� Calculated long-time average currents
�I1D� as functions of inverse frequency 1 /�ac for three values of Fac

�in �a�� and two values of Fdc �in �b��. We choose Fac=100 V /cm
�solid squares on red curve�, Fac=300 V /cm �solid triangles on
green curve�, and Fac=500 V /cm �inverted solid triangles on blue
curve� in �a�, while we assume Fdc=30 V /cm �solid squares on
blue curve� and Fdc=300 V /cm �solid triangles on red curve� in
�b�. The horizontal black dashed lines are used as a guideline for
�I1D�=0. The other parameters are taken as the same as those in Fig.
9 except for Fdc=30 V /cm in �a� and Fac=300 V /cm in �b�.
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mined by J0�eFacd /h�ac� for a large Fdc and by
J1�eFacd /h�ac� for a small Fdc.

We show in Fig. 12�a� a comparison of �I1D� as a function
of 1 /�ac at Fdc=30 V /cm and Fac=300 V /cm for �0
=3.75�1012 s−1 �solid squares on blue curve� and �0
=3.75�1013 s−1 �solid triangles on red curve�. Here, the in-
creased impurity scattering of electrons kills the dynamical-
localization features completely. Figure 12�b� compares �I1D�
as a function of 1 /�ac for R=10 Å �solid squares on blue
curve� and R=15 Å �solid triangles on red curve� at Fdc
=30 V /cm and Fac=300 V /cm. Remarkably, the increased
phonon scattering with R=10 Å in this case not only leaves
the intersection points unchanged, but also increases the
magnitude of the oscillation peaks in the small 1 /�ac regime,
as seen from Fig. 10�b�. We must emphasize that phonon
scattering plays a complete opposite role on the dynamical
localization in comparison with impurity scattering.

Figure 13�a� presents �I1D� as a function of Fac for three

different values of �ac at Fdc=30 V /cm, where �ac
=0.1 THz �solid squares on red curve�, �ac=1 THz �solid
triangles on blue curve�, and �ac=2 THz �inverted solid tri-
angles on green curve�. Here, the intersection point x1

�m� for
different values of �m� moves leftward with increasing �ac
due to decreasing x1

�m� with a smaller and smaller �m� value.
The explanation for this is similar to that given in Fig. 11�a�.
The values of �I1D� for different �ac becomes the same as
Fac=0. Moreover, �I1D� becomes more and more negative in
the high-Fac regime when �ac increases due to enhanced
�Jm�eFacd /h�ac�� with a large value of �ac. In Fig. 13�b�, two
results for �I1D� are compared as a function of Fac at �ac
=2 THz for Fdc=30 V /cm �solid squares on blue curve�
and Fdc=300 V /cm �solid triangles on red curve�. At Fdc
=300 V /cm, there exists no intersection point anymore, and
the dynamical localization in this case becomes completely
suppressed by strong Bloch oscillations. For Fac=0, the two
values of the dc current �I1D� for Fdc=30 and 300 V/cm are
accidentally close as seen from the solid triangles on blue

0.4

0 2

�ac = 0.1 THz
�ac = 1.0 THzA

)

0.2 ac
�ac = 2.0 THz

0.
1
�A

0.0

D
>

(

-0.2 Fdc = 30 V / cm<
I 1D

0 100 200 300 400 500
-0.4

Fac ( V / cm )

0.4

0 2 � = 2 THz

A
)

0.2 ac

0.
1
�A

0.0

D
>

(0

-0.2 Fdc = 30 V / cm
F = 300 V / cm

<
I 1D

0 100 200 300 400 500
-0.4

Fdc = 300 V / cm

Fac ( V / cm )(b)

(a)

FIG. 13. �Color online� Calculated long-time average currents
�I1D� as functions of the amplitude of an ac-field component Fac for
three values of �ac �in �a�� and two values of Fdc �in �b��. We choose
�ac=0.1 THz �solid squares on red curve�, �ac=1 THz �solid tri-
angles on blue curve�, and �ac=2 THz �inverted solid triangles on
green curve� in �a�, while we assume Fdc=30 �solid squares on blue
curve� and Fdc=300 V /cm �solid triangles on red curve� in �b�. The
horizontal black dashed lines are used as a guideline for �I1D�=0.
The other parameters are taken as the same as those in Fig. 9 except
for Fdc=30 V /cm in �a� and �ac=2 THz in �b�.
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FIG. 14. �Color online� Calculated long-time average currents
�I1D� as functions of Fac for two values of �0 �in �a�� and two values
of R �in �b�� with Fdc=30 V /cm and �ac=2 THz. We choose �0

=3.75�1012 s−1 �solid squares on blue curve� and �0=3.75
�1013 s−1 �solid triangles on red curve� in �a�, while we assume
R=10 Å �solid squares on blue curve� and R=15 Å �solid triangles
on red curve� in �b�. The horizontal black dashed lines are used as a
guideline for �I1D�=0. The other parameters are taken as the same
as those in Fig. 9.
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curve in Fig. 4�b�, one sitting in the nearly linear-response
regime and the other in the NDC regime.

Calculated results for �I1D� are compared for �0=3.75
�1012 s−1 �solid squares on blue curve� and �0=3.75
�1013 s−1 �solid triangles on red curve� in Fig. 14�a� as a
function of Fac with Fdc=30 V /cm and �ac=2 THz. Here,
the increased impurity scattering makes the intersection point
�i.e., the dynamical localization� disappear from the shown
Fac region, and the magnitude of the oscillations is greatly
suppressed. We display in Fig. 14�b� �I1D� as a function of
Fac for R=10 Å �solid squares on blue curve� and R
=15 Å �solid triangles on red curve� at Fdc=30 V /cm and
�ac=2 THz. The enhanced phonon scattering with R
=10 Å only slightly increases the magnitude of the oscilla-
tion peak but leaves the intersection point unshifted. This
again demonstrates the opposite roles played by elastic and

inelastic scattering of electrons, respectively, on the dynami-
cal localization of the current system.

A comparison of the results for the calculated �I1D� is
given in Fig. 15�a� as a function of the amplitude of Fdc for
Fac=100 V /cm �solid squares on red curve�, Fac
=300 V /cm �solid triangles on green curve� and Fac
=500 V /cm �inverted solid triangles on blue curve�, where
�ac=2 THz is assumed. In the limit of Fac=0, this becomes
the I-V curve studied earlier. A dc-field-induced Esaki-Tsu
peak1 is gradually built up at a dc field Fdc which decreases
with decreasing Fac: the dynamical-localization intersection
point moves to the left at the same time. Moreover, the nega-
tive minimum also shifts to the left, disappearing at Fdc=0.
There is only one Esaki-Tsu-type peak in this figure, which
qualitatively agrees with the early experimental observation
by Winnerl et al.56 Eventually, the three �I1D� curves for
different values of Fac merge into one for large Fdc, and the
dynamical localization in the system is completely sup-
pressed by the strong Bloch oscillations. The results for �I1D�
are presented as a function of Fdc in Fig. 15�b� for �ac
=0.1 THz �solid squares on blue curve�, �ac=1 THz �solid
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FIG. 15. �Color online� Calculated long-time average currents
�I1D� as functions of the amplitude of a dc-field component Fdc for
three values of Fac �in �a�� and three values of �ac �in �b��. We
choose Fac=100 V /cm �solid squares on red curve�, Fac

=300 V /cm �solid triangles on green curve�, and Fac=500 V /cm
�inverted solid triangles on blue curve� in �a�, while we assume
�ac=0.1 THz �solid squares on blue curve�, �ac=1 THz �solid tri-
angles on red curve� and �ac=2 THz �inverted solid triangles on
green curve� in �b�. The other parameters are taken as the same as
those in Fig. 9 except for �ac=2 THz in �a� and Fac=300 V /cm in
�b�. The horizontal black dashed lines are used as a guideline for
�I1D�=0.
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FIG. 16. �Color online� �a� Steady-state current I0 as a function
of dc electric field Fdc. �b� Depolarization shift D�q� as a function
of Fdc with qd=� /2. The temperatures chosen are T=1 K �solid
squares on blue curves� and T=10 K �solid triangles on red
curves�. The parameters used in these calculations are: n1D

=105 cm−1, �0=3.75�1011 sec−1, d=40 nm, W=5 meV, and R
=10 Å.
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triangles on red curve�, and �ac=2 THz �inverted solid tri-
angles on green curve� and for Fac=300 V /cm. Here, the
negative minimum is completely suppressed when �ac re-
duces to 0.1 THz. At the same time, the Esaki-Tsu-type peak
is pushed to a high dc field for �ac=0.1 THz. Again, �I1D�
curves for three values of �ac merge into one as Fdc becomes
very large.

C. dc-field-driven optical absorption

In Fig. 16�a�, we plot the tunneling current I0 �see its
definition after Eq. �34�� as a function of the applied dc elec-
tric field Fdc for T=1 K �solid squares on blue curve� and
T=10 K �solid triangles on red curve�. When Fdc is small,
the I0�Fdc Ohm’s law is obeyed in the low-field regime,
similar to Fig. 7�b�. The phonon-scattering rate is enhanced
as the temperature is increased. Consequently, I0 is reduced,
as expected, at low electric fields. In addition, when Fdc is
large, an inverse law behavior I0�1 /Fdc is observed in the
NDC regime after passing through the Esaki-Tsu peak.1

However, in this range of high applied dc electric field, I0
unexpectedly increases with T because the increased phonon-
scattering rate has been overcome by the role played by the
reduction in the center of mass ��1 /d�, as explained by Lyo,8

which is different from the result in Fig. 7�b� with a larger
value of d. In Fig. 16�b�, we compare the depolarization shift
D�q� at qd=� /2 as a function of Fdc for T=1 K and T
=10 K. As seen from Eq. �42�, the dependence of D�q� on
Fdc comes from the amplitude prefactor A�Fdc�, which de-
creases monotonically with increasing Fdc due to piling up
of electrons at one of the Brillouin-zone boundaries at
k=−� /d. When Fdc is small, fk� fk

�0�. Consequently, D�q�
decreases with increasing T in the low-field range due to
increased thermal population of large-k states with a higher
kinetic energy. When Fdc is large in the NDC regime, how-
ever, D�q� increases with T due to an anomalous enhance-
ment of A�Fdc� by nonlinear electrons, as explained for Fig.
16�a�.

We compare in Fig. 17�a� the peak energies ��qvd
+D�q�� for fixed qd=� /2 as a function of Fdc at two tem-
peratures T=1 K and T=10 K. It is clear from Fig. 17�a�
that the many-body depolarization shift, D�q�, dominates the
Doppler shift, �qvd, in the whole range of Fdc except when
Fdc�50 V /cm. For Fdc�50 V /cm, there is a plateau in the
peak energy which is due to the compensation from the lin-
ear reduction in vd with decreasing Fdc in this low-field limit.
From Fig. 17�b� we further find that the peak strength, which
is proportional to �A�Fdc�, decreases with increasing Fdc in
addition to an anomalous enhancement by nonlinear elec-
tronic effects within the NDC regime at a higher tempera-
ture.

Our result in Eq. �40� shows that the peak strength is
�sin�qd /2� /q2, which scales as �1 /q for small q. In Fig.
18�a� we set at T=1 K. We see that there is a dramatic
enhancement of the peak strength when q is reduced. How-
ever, D�q��sin�qd /2� and at T=1 K, shown in Fig. 18�b�, is
reduced for a smaller value of q �solid triangles on red
curve�.

IV. CONCLUSIONS

We presented numerical results for the time-dependent
and steady-state currents in a strong nonlinear dc electric

field for an electron gas in a 1D quantum-dot superlattice. A
microscopic model was employed for the scattering of elec-
trons by phonons and static impurities within the framework
of the Boltzmann equation. For the steady-state I-V curves,
we studied the scaling relations between the strengths of
elastic, inelastic scattering and the peak current, the electric
field at the peak current, and the high-field current in the
NDC regime. The scaling results are very similar to those
predicted by the recent exact analytic treatment based on a
relaxation-time model for electron-phonon scattering.8 The
results demonstrate different roles played by elastic and in-
elastic scattering on the damped Bloch oscillations and the
nonlinear steady-state current.

We have also calculated the time-dependent current and
the long-time-averaged current under a nonlinear ac field via
the same model. The results demonstrate opposite roles
played by elastic and inelastic scattering on the damped dy-
namical localization. While elastic scattering suppresses dy-
namical localization at all frequencies, inelastic scattering
has no effect on dynamical localization. Furthermore, it en-
hances the ac current amplitude at high frequencies. Effects
of the combined ac and dc fields on the current were also
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FIG. 17. �Color online� �a� Peak energies ��qvd+D�q�� and �b�
relative peak strengths at qd=� /2 as functions of Fdc at T=1 K
�solid squares on blue curves� and T=10 K �solid triangles on red
curves�. The other parameters used in these calculations are the
same as in Fig. 16.
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studied. We found a suppression of dynamical localization by
strong Bloch oscillations and features in the Esaki-Tsu peaks
under a finite ac electric field in the presence of electron
scattering. Finally, we also studied the ac response of the
current under the composite field F�t�=Fdc+Fac cos�2��act
+�� by varying the phase �. The phase dependence was
found to be very weak.

On the basis of calculated nonequilibrium electron distri-
bution from the Boltzmann equation, we were further em-
ploy a self-consistent-field approach which in turn estab-
lished a general formalism for the optical response of driven
nonequilibrium electrons in the presence of a bias field
which is allowed to be strong.

Within the framework of the developed theory, we have
investigated the dependence on dc field of the peak energy
and the peak strength in the absorption spectrum, for current-
driven nonequilibrium electrons in a 1D quantum-dot super-
lattice at various temperatures and with different probe-field
wave numbers. Both the peak energy and peak strength have
been found to be reduced with increasing dc field. Our cal-
culations have further demonstrated the following: �1� the
peak energy and peak strength are both reduced when the
temperature is increased for the linear transport of electrons;
�2� the peak energy and peak strength are enhanced by rais-
ing the temperature for the nonlinear transport of electrons.

ACKNOWLEDGMENTS

One of the authors �S.K.L.� wishes to thank Wei Pan for
valuable discussions. Sandia is a multiprogram laboratory
operated by Sandia Corporation, a Lockheed Martin Co., for
the U.S. DOE under Contract No.DE-AC04-94AL85000.
D.H. would like to thank the Air Force Office of Scientific
Research �AFOSR� for its support. G.G. was supported by
AFRL under Contract No. FA 9453-07-C-0207.

APPENDIX A: TIGHT-BINDING WAVE FUNCTION

The tight-binding wave function of electrons in a 1D
quantum-dot superlattice in the x direction can be written
as28

�k�r�� = ����
eim


�2�
	 1

�Nc
�

j

eikjd��x − jd�
 , �A1�

where r�= �x ,��� is the three-dimensional �3D� position vector,
�� = �y ,z� is a two-dimensional position vector in the yz plane,

 is the azimuth angle, m=0, �1, �2, . . . is the angular
quantum number, k is the wave number of electrons in the x
direction, x= jd with j=0, �1, �2, . . . gives the position for
the center of the jth unit cell, d is the superlattice period, and
Nc represents the total number of unit cells in the superlat-
tice. In the nearest-neighbor tight-binding model, the corre-
sponding kinetic energy of electrons in the �k�r�� state is
given by 
k=W�1−cos�kd�� /2, where �k��� /d in the first
Brillouin zone.

Using the tight-binding wave function given by Eq. �A1�,
the form factor F�q� first introduced in Eq. �35� is calculated
as

F�q� =� dxeiqx���x��2 = exp
−
q2�2

4
� , �A2�

where we assume that ���x��2=exp�−x2 /�2� / ����� with �
�d /2 being a half width.

APPENDIX B: INDUCED OPTICAL POLARIZATION

The induced optical polarization of the system first intro-
duced in Eq. �36� can be calculated by means of47

P�q� =
ie

Sd
� dx	n�x;��
 eiqx

q
� =

2ie

Sd
�
k,k�

�k,k�
�0� ��̃�

�Hk,k�
� 	F�q�

q

	k�,k+q+lG, �B1�

where l is an arbitrary integer, G=2�/d and S=�R2 is the
sample cross-sectional area. A further detailed calculation of
Eq. �B1� yields

P�q� =
− e2

Sd
��0��q;� − qvd�	F�q�

q

�

l�

	F��q + l�G�
�q + l�G� 


�Eop�q + l�G� . �B2�

Here, ��0��q ; �̃����0��q ;�−qvd� in Eq. �B2� is the Doppler-
shifted irreducible polarization, given by
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FIG. 18. �Color online� �a� Relative peak strengths and �b� de-
polarization shifts at T=1 K as functions of Fdc for qd=� /2 �solid
squares on blue curves� and qd=� /10 �solid triangles on red
curves�. The other parameters used in these calculations are the
same as in Fig. 16.
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��0��q;�̃� = 2�
k

�k,k+q
�0� ��̃� = 
 2Wd

��2�̃2�sin2
qd

2
���

−�/d

�/d

dkfk cos�kd�

�
1

�1 − �W/��̃�sin�qd/2�sin��k + q/2�d� + i0+��1 − �W/��̃�sin�qd/2�sin��k − q/2�d� + i0+��
� 	�

−�/d

�/d

dkfkcos�kd�
2Wd sin2�qd/2�
����̃ + i0+�2 , �B3�

where we denote fk� f�k , t� for a short notation. In q. �B3�,
we assume a weak electron-tunneling effect �i.e.,
�W /��̃�sin�qd�sin�kd��1�, and that only the leading-term
contribution with respect to W is retained for the last ap-
proximate equation.

The approximation made in arriving at the last step in Eq.
�B3� has significantly simplified the calculations in the paper,
and the derived analytical solution highlights the physics in-
volved in the optical probing process. In principle, however,
this approximation only holds for weak electron tunneling. In
order to justify the approximation made in Eq. �B3�, we
evaluate the following relative error:

	��0�

��0� = �
−�/d

�/d

dkfk cos�kd�

�Re	 1

1 − �W/��̃�sin�qd/2�sin��k + q/2�d� + i0+

�
1

1 − �W/��̃�sin�qd/2�sin��k − q/2�d� + i0+ − 1,

�B4�

which depends on q and �̃=�−qvd, as well as on Fdc

through fk.
From our numerical calculations �not shown here� we find

that when ��̃ is large, �	��0� /��0�� becomes independent of
Fdc. However, �	��0� /��0�� changes with Fdc as ��̃ ap-
proaches zero. There exists an unshifted Z-type feature
around a finite value of ��̃0, which is enhanced at smaller
values of Fdc. The maximum relative error �	��0� /��0�� nearby
��̃0 reaches 30% at Fdc=200 V /cm. In addition, we also
find that when ��̃ is either large or zero, �	��0� /��0�� remains
the same for all values of qd. The Z-type feature is found to
shift to a higher value of ��̃ with increasing qd. However,
the maximum relative error �	��0� /��0�� is always kept at
15%, independent of qd. From these observations, we con-
clude that the approximation made in Eq. �B3� can be justi-
fied at least for Fdc�200 V /cm in the NDC regime. For
even lower values of Fdc, we expect the results presented in
this paper to remain qualitatively unchanged.

APPENDIX C: MANY-BODY SCREENING EFFECT

Using the self-consistent-field theory, the interaction
Hamiltonian of the system in the absence of an external field
is expressed as47

Hk,k�
� =

1

Nc
�
j,j�

eik�j�d−ikjdUH�q;��

�	� dxe−iqx���x − jd���x − j�d�
 , �C1�

where

UH�q;�� =� �d��− e�H�q,�;��� . �C2�

In Eq. �C2�, the perturbed Hartree potential �H�q ,� ;�� can
be determined by solving the Poisson’s equation, from which
we obtain

�− e�H�q,�;��� =
e2

2�0�b
� d2���

2�
	n�q,��;��

�K0��q���� −����� , �C3�

where �b is the dielectric constant of the host material and
K0�x� is the modified Bessel function of the second kind.
Also, 	n�q ,�� ;�� in Eq. �C3� is the Fourier transform of the
density fluctuation 	n�x ,�� ;�� in Eq. �33� with respect to x.
This is given by 	n�q ,�� ;��=	n�q ;����2���� /2��, and
yields by using Eq. �34�

	n�q;�� =
1

d
��0��q;� − qvd�F�q��

l

F��q + lG�

�UH�q + lG;�� . �C4�

Finally, substituting Eqs. �C3� and �C4� into Eq. �C2�, we
arrive at the following self-consistent equation:

UH�q;�� = ��0��q;� − qvd�Vc��q��F�q�

�	�
l

F��q + lG�UH�q + lG;��
 , �C5�

where the Coulomb interaction between electrons in a 1D
quantum-dot superlattice is given by57
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Vc��q�� = 
 e2

2�0�bd
�� d2��

2�
�2���� d2���

2�
�2����K0��q���� − ����� .

�C6�

Replacing q with q+ l�G and multiplying both sides of Eq.
�C5� by F��q+ l�G�, we eventually obtain the dielectric func-
tion of the system after performing a summation over l�

��q;�� = 1 − ��0��q;� − qvd��
l

Vc��q + lG���F�q + lG��2.

�C7�

By using ��q ;�� in Eq. �C7�, Eq. �38� is renormalized into

�L�q;�� =
− e2

��0Sd
A�Fdc�

���
l

F�q + lG�
�q + lG� �2 2W sin2�qd/2�

���� − qvd� + i0+�2 − D2�q�
.

�C8�

Therefore, the current-driven effect does not only change the
magnitude of the optical response, but may also modify the
depolarization shift. The energy at which the absorption peak
is located is simply given by �qvd+D�q�, which depends on
Fdc through vd and A�Fdc�. Moreover, the peak strength also
depends on Fdc through A�Fdc�.
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