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We investigate the scattering phenomena produced by a general finite-range nonseparable potential in a
multichannel two-probe cylindrical nanowire heterostructure. The multichannel current scattering matrix is
efficiently computed using the R-matrix formalism extended for cylindrical coordinates. Considering the con-
tribution of the evanescent channels to the scattering matrix, we are able to put in evidence the specific dips in
the tunneling coefficient in the case of an attractive potential. The cylindrical symmetry cancels the “selection
rules” known for Cartesian coordinates. If the attractive potential is superposed over a nonuniform potential
along the nanowire then resonant transmission peaks appear. We can characterize them quantitatively through
the poles of the current scattering matrix. Detailed maps of the localization probability density sustain the
physical interpretation of the resonances �dips and peaks�. Our formalism is applied to a variety of model
systems such as a quantum dot, a core/shell quantum ring, or a double barrier embedded into the nanocylinder.
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I. INTRODUCTION

In the last few years, there is an increased interest in
studying nanowire-based devices due to their broad applica-
tion area. They can be used as field-effect transistors �FETs�
�Ref. 1� or gate-all-around �GAA� FETs,2–4 nanowire reso-
nant tunneling diodes,5,6 solar cells as integrated power
sources for nanoelectronic systems,7 lasers,8 and also as
qubits.9 Their structural complexity has progressively in-
creased, and the material composition includes III-V materi-
als but also—so attractive for semiconductor industry—
group IV materials.

Description of electrical transport and charge distribution
in nanowire-based devices has to be done quantum mechani-
cally, and the most appropriate method for such open sys-
tems is the scattering theory. Due to the confinement of the
motion inside the nanowire, the electrons are free to move
only along the nanowire direction, so that these systems are
also called quasi-one-dimensional �quasi-1D� systems. Since
many nanowires have circular cross-sectional shape,2–4 we
present in this work a general method valid within the
effective-mass approximation for solving the three-
dimensional �3D� Schrödinger equation with scattering
boundary conditions in cylindrical geometries. The azi-
muthal symmetry suggests to use cylindrical coordinates,
with z axis along the nanowire. This reduces the scattering
problem to two dimensions �2D�: r and z directions. Its so-
lution is found numerically using the R-matrix
formalism10–18 extended for cylindrical coordinates.

An interesting effect in a multichannel scattering problem
is that as soon as the potential is not anymore separable, the
channels get mixed. If furthermore the scattering potential is
attractive then it leads to unusual scattering properties such

as resonant dips in the transmission coefficient just below the
next channel minimum energy. As it was shown analytically
for a � scattering potential19 or for point scatterers20 and later
on for a finite-range scattering potential,21,22 the dips are due
to quasi-bound-states splitting off from a higher evanescent
channel. So that evanescent channels cannot be neglected
when analyzing scattering in two- or three-dimensional
quantum systems. These findings were recently confirmed
numerically for a Gaussian-type scatterer23 and also for a
quantum dot or a quantum ring24 embedded inside nanowires
tailored in two-dimensional electron gas �2DEG�.

It is the aim of this work to show that we could find the
same features in the case of a cylindrical nanowire. Further-
more, in cylindrical nanowires, due to the 3D modeling, ev-
ery magnetic quantum number defines a 2D scattering prob-
lem, with different structure of dips for the same scattering
potential. Also, the cylindrical symmetry does not forbid any
intersubband transmission, so that we could find dips in front
of every plateau in the transmission coefficient. We apply our
method to a variety of model systems such as quantum dot,
quantum ring, or double-barrier heterostructure embedded
inside the nanowire.

II. MODEL

We consider a cylindrical nanowire with a constant poten-
tial on the surface. Inside the wire, the electrons are scattered
by a potential of finite extend.

A. Scattering problem for the cylindrical geometry

In the effective-mass approximation, the envelope func-
tion associated to the energy E satisfies a Schrödinger-type
equation
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�−
�2

2�
� + V�r����r� = E��r� . �1�

We use the symbol � to denote the effective mass of the
electrons, while m will denote the magnetic quantum num-
ber. The potential energy V�r� generally includes the
conduction-band offsets of the heterostructure materials, the
electron-electron interaction, and the effect of an external
applied bias. Without giving here explicit expressions of all
these contributions, we consider a general potential energy
V�r�. As long as there are no split gates on the surface of the
nanowire, the potential energy V�r� is rotational invariant

V�r� = V�r,z� �2�

and nonseparable in a small region of the structure called
scattering region. The z axis was considered along the nano-
wire as shown in Fig. 1.

A scattering potential which does not explicitly depend on
the azimuthal angle � imposes the eigenfunctions of the or-
bital angular-momentum operator Lz as solutions of Eq. �1�

�m�E;r,�,z� =
eim�

�2�
	m�E;r,z� , �3�

where m=0, 
1, 
2, . . . is the magnetic quantum number.
This is an integer number due to the requirement that the
function eim� should be single valued. The allowed values of
the energy E and the functions 	m�E ;r ,z� are determined
from the equation

�−
�2

2�
� �2

�r2 +
1

r

�

�r
−

m2

r2 +
�2

�z2� + V�r,z��	m�E;r,z�

= E	m�E;r,z� . �4�

Due to the localized character of the scattering potential, it is
appropriate to solve Eq. �4� within the scattering theory. In
such a way, every magnetic quantum number m defines a 2D
scattering problem. Furthermore, these 2D scattering prob-
lems can be solved separately if the scattering potential is
rotational invariant. How many of these problems have to be
solved depends on the specific physical quantity which has to
be computed.

The potential energy which appears in Eq. �4� has gener-
ally two components,

V�r,z� = V��r� + Vscatt�r,z� . �5�

The first one V��r� describes the lateral confinement of the
electrons inside a cylinder of radius R and is translation in-
variant along the nanowire. We consider a hard wall potential

V��r� = �0, 0 � r � R

� , r 
 R ,
	 �6�

suitable for modeling either free-standing nanowires or nano-
wire transistors with no gate leakage current. Both situations
correspond to the state-of-the-art devices.

The scattering potential energy inside the nanowire
Vscatt�r ,z� has generally a nonseparable character in a domain
of finite range and is constant outside this domain. We con-
sider here the nonseparable potential localized within the
volume defined by the boundaries 
dz and R �see Fig. 1�,

Vscatt�r,z� = 
V1, r � �0,R�,z � − dz

Vs�r,z� , r � �0,R�,− dz � z � dz

V2, r � �0,R�,z � dz.

 �7�

There are no material definitions for the planes z= 
dz. Usu-
ally, they are chosen inside the highly doped regions of the
nanowire characterized by a slowly z-varying potential, prac-
tically by a constant potential. These regions play the role of
the source and drain contacts.

B. Scattering states

In the asymptotic regions �z��dz, i.e., source and drain
contacts, the potential energy is separable in the confinement
and the transport direction �V�r ,z�=V��r�+Vs� and Eq. �4�
can be directly solved using the separation of variables
method,

	m�E;r,z� = ��r���z� . �8�

The function ��r� satisfies the radial equation

−
�2

2�
� d2

dr2 +
1

r

d

dr
−

m2

r2 + V��r����r� = E���r� , �9�

while ��z� satisfies the one-dimensional �1D� Schrödinger-
type equation

�−
�2

2�

d2

dz2 + Vs���z� = �E − E����z� , �10�

where s=1 stays for the source contact �z�−dz� and s=2 for
the drain contact �z�dz�.

Due to the electron confinement inside the cylinder of
radius R, the solutions of Eq. �9� are given in terms of the
Bessel functions of the first kind Jm,

�n
�m��r� =

�2

RJ�m�+1�xmn�
Jm�xmnr/R�, n = 1,2, . . . , �11�

where xmn is the nth root of Jm�x�. The eigenfunctions �n
�m��r�

called transversal modes form an orthonormal and complete
system of functions. The corresponding eigenenergies are

E�n
�m� =

�2

2�
� xmn

R
�2

, n = 1,2, . . . �12�

and they depend only on the effective mass and the radius of
the cylindrical nanowire. It is worth to mention here that
��n

�m��r��2 and E�n
�m� depend only on �m�.

−d d

z
region
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z z

r

R

Source Drain

FIG. 1. The geometry of the 2D scattering problem.
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Every transversal mode together with the associated mo-
tion on the transport direction defines the scattering channel
on each side of the scattering area �s=1 for the source con-
tact and s=2 for the drain contact�. The scattering channels
are indexed by �mns� for each E.

If the total energy E and the lateral eigenenergy E�n
�m� are

fixed, i.e., for every E, m, and n, there are at most two lin-
early independent solutions of Eq. �10�. In the asymptotic
region, they are given as a linear combination of exponential
functions

�sn
�m��z� = �Ase

ik1nmz + Bse
−ik1nmz, z � − dz

Cse
ik2nmz + Dse

−ik2nmz, z � dz,
	 �13�

where As, Bs, Cs, and Ds are complex coefficients depending
on n, m, and E for each value of s=1,2. The wave vector is
defined for each scattering channel �mns� as

ksnm�E� = k0
��E − E�n

�m� − Vs�/u0, �14�

where k0=� /2dz and u0=�2k0
2 /2�. In the case of conducting

or open channels

E − E�n
�m� − Vs 
 0, �15�

ksnm are positive real numbers and correspond to propagating
plane waves. For the evanescent or closed channels

E − E�n
�m� − Vs � 0, �16�

ksnm are given from the first branch of the complex square-
root function ksnm= i�ksnm� and describe exponentially decay-
ing functions away from the scattering region. Thus, the
number of the conducting channels Nsm�E�, s=1,2, and m

0 is a function of energy, and for a fixed energy E this is
the largest value of n, which satisfies the inequality �15� for
given values of s and m.

Each conducting channel corresponds to 1 degree of free-
dom for the electron motion through the nanowire and, con-
sequently, there exists only one independent solution
	nm

�s� �E ;r ,z� of Eq. �4� for a fixed channel �mns� associated
with the energy E. For describing further on the transport
phenomena in the frame of the scattering theory, it is conve-
nient to consider this solution as a scattering state, i.e., as a
sum of an incoming component on the channel �mns� and a
linear combination of outgoing components on each scatter-
ing channel. In a convenient form,25 the scattering function
incident from the source contact �s=1� is written as

	nm
�1��E;r,z� =

�„N1m�E� − n…
�2� 
eik1nm�z+dz��n

�m��r� + �
n�=1

�

S1n�,1n
�m� �E�e−ik1n�m�z+dz��n�

�m��r� , z � − dz

�
n�=1

�

S2n�,1n
�m� �E�eik2n�m�z−dz��n�

�m��r� , z � dz, 
 �17a�

and the scattering function incident from the drain contact �s=2� as

	nm
�2��E;r,z� =

�„N2m�E� − n…
�2� 
 �

n�=1

�

S1n�,2n
�m� �E�e−ik1n�m�z+dz��n�

�m��r� , z � − dz

e−ik2nm�z−dz��n
�m��r� + �

n�=1

�

S2n�,2n
�m� �E�eik2n�m�z−dz��n�

�m��r� , z � dz. 
 �17b�

The step functions � with ��x
0�=1 and ��x�0�=0 assure
in the above expressions that the scattering functions are de-
fined only for conducting channels.

The three-dimensional scattering states—solutions of Eq.
�1� for rotational invariant geometries—can be now written
as

�nm
�s� �E;r,�,z� =

eim�

�2�
	nm

�s� �E;r,z� . �18�

Being eigenfunctions of an open system, they are orthonor-
malized in the general sense17

�
−�

�

dz�
0

R

drr�
0

2�

d� �nm
�s� �E;r,�,z��n�m�

�s�� �E�;r,�,z��

= �mm��ss��nn�
��E − E��
gsnm�E�

, �19�

where gsnm�E� is the 1D density of states gsnm�E�
=� / ��2ksnm�E��.

The physical interpretation of the expression �17� is that
due to the nonseparable character of the scattering potential,
a plane wave incident onto the scattering domain is reflected
on every channel—open or closed for transport—on the
same side of the system and transmitted on every channel—
open or closed for transport—on the other side. The reflec-
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tion and transmission amplitudes are described by the com-
plex coefficients Ssn�,sn

�m� and Ss�n�,sn
�m� with s�s�, respectively,

and all of them should be nonzero. These coefficients define
a matrix with N1m�E�+N2m�E� infinite columns. For an el-
egant solution of the scattering problem, we extend S�m��E�
to an infinite square matrix and set at zero the matrix ele-
ments without physical meaning Ss�n�,sn

�m� �E�=0, n�Nsm�E�,
s=1,2. In this way, we define the wave transmission matrix19

or the generalized scattering matrix.26 This is not the well-
known scattering matrix �current transmission matrix� whose
unitarity reflects the current conservation. The generalized
scattering matrix is a nonunitary matrix, which has the big
advantage that it allows for a description of the scattering
processes not only in the asymptotic region but also inside
the scattering area.

For the sake of simplicity and also considering that for
rotational invariant potentials the 2D scattering problems
generated by every magnetic quantum number m can be
solved separately, the index m will be omitted in Secs.
II C–II E.

C. R-matrix formalism for cylindrical geometry

The scattering functions inside the scattering region are
determined using the R-matrix formalism, i.e., they are ex-
pressed in terms of the eigenfunctions corresponding to the
closed counterpart of the scattering problem.10–17 In our
opinion, this is a more appropriate method than the common
mode space approach which implies the expansion of the
scattering functions inside the scattering area in the basis of
the transversal modes �n�r�. As it is shown in Refs. 22 and
27, the mode space approach has limitations for structures
with abrupt changes in the potential or sudden spatial varia-
tions in the widths of the wire; it breaks even down for
coupling operators that are not scalar potentials such as in
the case of an external magnetic field. In the R-matrix for-
malism, the used basis contains all the information about the
scattering potential and this type of difficulties cannot ap-
pear.

Thus, the scattering functions inside the scattering region
are given as

	n
�s��E;r,z� = �

l=1

�

aln
�s��E��l�r,z� , �20�

with r� �0,R� and z� �−dz ,dz�.
The so-called Wigner-Eisenbud functions �l�r ,z� first

used in the nuclear physics28,29 satisfy the same equation as
	n

�s��r ,z� �Eq. �4�� but with different boundary conditions in
the transport direction. Since the scattering function 	n

�s��r ,z�
satisfies energy-dependent boundary conditions derived from
Eq. �17� due to the continuity of the scattering function and
its derivative at z= 
dz, the Wigner-Eisenbud function
�l�r ,z� has to satisfy Neumann boundary conditions at the
interfaces between the scattering region and contacts
��l /�z �z=
dz

=0, l
1. The infinite potential outside the
nanowire requires Dirichlet boundary condition on the cylin-
der surface for both functions 	n

�s��R ,z�=0 and �l�R ,z�=0.
The functions ��l�l
1 built a basis which verifies the orthogo-
nality and the closure relation. The corresponding eigenener-
gies to �l are denoted by El and are called Wigner-Eisenbud
energies. Since the Wigner-Eisenbud problem is defined on a
closed volume with self-adjoint boundary conditions, the
eigenfunctions �l and the eigenenergies El can be chosen as
real quantities. The Wigner-Eisenbud problem is, thus, the
closed counterpart of the scattering problem.

In the case of the one-dimensional system, it was recently
proven mathematically rigorously that the R-matrix formal-
ism allows for a proper expansion of the scattering matrix on
the real energy axis.18 In this section, we present an exten-
sion of the R-matrix formalism for the 2D scattering problem
with cylindrical symmetry.

To calculate the expansion coefficients aln
�s��E�, we multi-

ply Eq. �4� by �l�r ,z� and the equation satisfied by the
Wigner-Eisenbud functions by 	n

�s��E ;r ,z�. The difference
between the resulting equations is integrated over �−dz ,dz�
� �0,R�, and one obtains on the right-hand side the coeffi-
cient aln

�s��E�. After an integration by parts in the kinetic-
energy term and using the boundary conditions, one finds aln

�s�

and feed in it into Eq. �20�. So, the scattering functions in-
side the scattering region �z� �−dz ,dz� , r� �0,R�� are ob-
tained in terms of their derivatives at the edges of this
domain,

	n
�s��E;r,z� =

2dz

�
�

0

R

dr�r��R�E;r�,− dz,r,z�� �	n
�s��E;r�,z��

�z�
�

z�=−dz

− R�E;r�,dz,r,z�� �	n
�s��E;r�,z��

�z�
�

z�=dz

� , �21�

where the R function is defined as

R�E;r,z,r�,z�� �
�2

2�
�
l=1

�
�l�r,z��l�r�,z��

E − El

�

2dz
. �22�

The functions �	n
�s� /�z at z= 
dz are calculated from the

asymptotic form �17� based on the continuity conditions for
the derivatives of the scattering functions on the interfaces
between the scattering region and contacts.

With these results, the scattering functions inside the scat-
tering domain are expressed in terms of the wave transmis-
sion matrix S,
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�� �E;r,z� =
i

�2�
��E��1 − ST�E��K�E�R� �E;r,z� , �23�

where the component �sn� of the vector �� is the scattering
function 	n

�s��E ;r ,z�, n
1, s=1,2, and ST denotes the ma-
trix transpose. The diagonal matrix K has on its diagonal the
wave vectors �14� of each scattering channel

Ksn,s�n��E� =
ksn�E�

k0
�nn��ss�, �24�

n ,n�
1, s ,s�=1,2, and the vector R� �E ;r ,z� as

R� �E;r,z� =
u0

�k0
�
l=1

�
�l�r,z��� l

E − El
, �25�

where �� l is a vector with the components

��� l�sn =
1

�k0
�

0

R

�l„r,�− 1�sdz…�n�r�rdr , �26�

n
1, s=1,2. The diagonal matrix �sn,s�n��E�=�(Ns�E�−n)
��ss��nn�, n
1, s=1,2, assures nonzero values only for the
scattering functions corresponding to the conducting chan-
nels.

Using further the continuity of the scattering functions on

the surface of the scattering area and expanding R� �E ; 
dz ,r�
in the basis ��n�r��n
1, we find the relation between matrixes
S and R

S�E� = �1 − 2�1 + iR�E�K�E��−1���E� , �27�

with the R matrix given by means of a dyadic product,

R�E� = u0�
l=1

�
�� l�� l

T

E − El
. �28�

According to the above relation, R is an infinite-dimensional
symmetrical real matrix. The above form allows for a very
efficient numerical implementation for computing the R ma-
trix.

The expression �27� of the S matrix in terms of the R
matrix is the key relation for solving 2D scattering problems
using only the eigenfunctions and the eigenenergies of the
closed system. On the base of Eq. �27�, the wave transmis-
sion matrix is calculated and after that the scattering func-
tions in each point of the system are obtained using Eqs. �17�
and �23�.

To come back to the dependence on m, we point out that
the Wigner-Eisenbud functions and energies are m depen-
dent, so that the matrixes R, K, and � and the vector

�� �E ;r ,z� are m dependent in relations �27� and �23�.

D. Reflection and transmission coefficients

Using the density current operator,

j�r� =
�

2i�
���r� � ��r�� − ��r�� � ��r�� , �29�

one can define, as usual, the transmission and reflection
probabilities.30 ��r�� denotes the complex conjugate of the
scattering wave function �18�.

The r component of the density current jr�r ,� ,z� is zero
in leads because �n�r� are real functions. The component �
of the incident density current is m dependent,

�jinc�r,�,z��� =
�2

�

1

�2��2

1

r
m��n�r��2,

so that if one sums over all m values then they cancel each
other. This is also valid for the reflected and transmitted cur-
rent fluxes. What remains is the z component of the particle
density current jz�r ,� ,z�, which integrated over the cross
section of the nanocylinder with the corresponding measure
rdr, provides the very well-known relations for the transmis-
sion and reflection probabilities. The probability for an elec-
tron incident from source s=1 on channel n to be reflected
back into source on channel n� is

Rnn�
�1� =

k1n�

k1n
�S1n�,1n�2, �30�

and the probability to be transmitted into drain s=2 on chan-
nel n� is

Tnn�
�1� =

k2n�

k1n
�S2n�,1n�2. �31�

The reflection and transmission probabilities for evanescent
�closed� channels are zero. The total transmission and reflec-
tion coefficients for an electron incident from reservoir s=1
are defined as

T�1� = �
n,n�

Tnn�
�1� , R�1� = �

n,n�

Rnn�
�1� . �32�

More detailed properties of the many-channel tunneling and
reflection probabilities are given in Ref. 30, but note that our
indexes are interchanged with respect to the definitions used
there. Of course, all these coefficients are m dependent.

E. Current scattering matrix

Further, we define the energy-dependent current scatter-
ing matrix as

S̃�E� = K1/2�E���E�S�E�K−1/2�E� , �33�

so that its elements give directly the reflection and transmis-
sion probabilities

�S̃1n�,1n�E��2 = Rnn�
�1� �E�, �S̃2n�,2n�E��2 = Rnn�

�2� �E� , �34�

�S̃2n�,1n�E��2 = Tnn�
�1� �E�, �S̃1n�,2n�E��2 = Tnn�

�2� �E� . �35�

The diagonal � matrix assures that the matrix elements of

S̃ are nonzero only for the conducting channels, for which
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the transmitted flux is nonzero. Using the R-matrix represen-
tation of S �Eq. �27��, we find from the above relation

S̃�E� = ��E��1 − 2�1 + i��E��−1���E� , �36�

with the infinite-dimensional matrix �

��E� = u0�
l=1

�
�� l�� l

T

E − El
= K1/2�E�R�E�K1/2�E� �37�

and the column vector

�� l�E� = K1/2�E��� l, �38�

with l
1. According to the definition �37� the matrix � is a

symmetrical one �=�T, and from Eq. �36� it follows that S̃
also has this property S̃= S̃T. On this basis, one can demon-
strate that the tunneling coefficient characterizes one pair of
open channels irrespective of the origin of the incident flux

Tnn�
�1� = �S̃2n�,1n�2= �S̃1n,2n��

2=Tn�n
�2� . This is a well-known prop-

erty of the transmission through a scattering system and it
shows that the current scattering matrix used here is properly

defined. The restriction of S̃ matrix to the open channels is
the well-known current scattering matrix11,13,14 commonly
used in the Landauer-Büttiker formalism. For a given energy
E, this is a �N1+N2�� �N1+N2� matrix which has to satisfy
the unitarity condition, according to the flux conservation.

The relation �36� is the starting point for a resonance
theory,13,25 which allows for an explicit analytical expression
for the transmission peak as a Fano resonance with a com-
plex asymmetry parameter.

In the numerical computations, the matrices S, R, �, S̃,
and � have the dimension 2N�2N and the vectors �� l and
�� l�E� have 2N components, where N is the number of scat-
tering channels �open and closed� taken numerically into ac-
count. The number of the Wigner-Eisenbud functions and
energies computed numerically establishes the maximum
value for the index l.

III. CYLINDRICAL NANOWIRE HETEROSTRUCTURE
MODEL SYSTEMS

The formalism presented above is general and can be ap-
plied to a variety of the cylindrical nanowire heterostruc-
tures. We consider a series of heterostructures embedded in
an infinite cylindrical nanowire of radius R=5 nm and effec-
tive mass �=0.19m0 �corresponding to transverse mass in
silicon�. We set in all our computations dz=16 nm �see Fig.
1� and the total number of channels �open and closed� N=8.
In our calculations, the results do not change if more chan-
nels are added. In Fig. 2 the energies of the transversal
modes E�,n

�m� until 1 eV are plotted, for different magnetic
quantum numbers m, according to Eq. �12�. The difference
between two successive energies of the transversal modes is
m dependent, due to the roots xmn of the Bessel functions Jm.

A. Quantum dot embedded into the nanocylinder

1. Same radius as the host cylinder

In Fig. 3�a� a cylindrical quantum dot embedded into a
cylindrical nanowire with the same radius is sketched. This
kind of structures and even compositionally modulated also
called as “nanowire superlattice”31 are already realized tech-
nologically on different materials basis, as is summarized in
a recent review article.32

Depending on the band offsets between the dot material
and the host material, the potential produced by the dot can
be repulsive, yielding a quantum barrier, or attractive, yield-
ing a quantum well. As it is mentioned in Ref. 31, the inter-
faces between the dot and the host material may be consid-
ered sharp for nanowires with diameter less than 20 nm. We
consider here that the dot yields an attractive potential V�r ,z�
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FIG. 2. �Color online� Energies E�,n
�m� of the transversal modes

for a cylinder with R=5 nm and �=0.19m0.
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=8 nm.
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represented in Fig. 3�b� by a rectangular quantum well of
depth Wb=−0.5 eV and width w=8 nm.

The total tunneling coefficient T�1� versus the incident en-
ergy E is plotted in Fig. 4, for different magnetic quantum
numbers m and different quantum well depths Wb.

In the absence of the quantum well Wb=0.0 eV, one can
recognize the abrupt steps33 in the tunneling coefficient. The
transmission increases with a unity, every time a new chan-
nel E�,n

�m� becomes available for transport, i.e., becomes open.
The length of the plateaus is given by the difference between
two successive transversal mode energies, which differ for
different m values. Due to the almost square dependence of
the transverse energy levels on the channel number, the
length of the plateaus increases. By increasing the depth of
the well, deviations from the steplike transmission appear.
There are no effects due to the influence of the evanescent
channels24 because the scattering potential for this configu-
ration remains furthermore separable in the confinement and
the transport direction V�r ,z�=U�r�+W�z�.

The spectral representation of the 2D Hamiltonian in this
situation is a superposition of the spectrum of each channel,
without being perturbed by the channel mixing. Considering
an attractive potential in z direction, there is always at least
one bound state34,35 below the continuum spectrum for every
channel n �see Fig. 7�a��. In turn, the bound states of the
higher channels n get embedded in the continuous part of the
lower channels, forming bound states in continuum �BIC�.
Since the potential is separable, there is no mix of states and
the BIC states cannot be seen as scattering states.

2. Surrounded by host material

Further we study a cylindrical dot embedded into the
nanocylinder but whose radius R� is smaller than the cylinder
radius R, so that the dot gets surrounded by the host material
�see Fig. 5�a��. We consider here again the case that the dot
yields an attractive potential, i.e., a rectangular quantum

well, plotted in Fig. 5�b�. Even we have chosen a small value
for the depth of the quantum well Wb=−0.05 eV, there are
significant deviations in the tunneling coefficient from the
steplike characteristic �see Fig. 6�. Just before a new channel
gets open, below E�,n

�m� , there is a dip, i.e., sharp drop, in the
tunneling coefficient. These dips are owing to the modifica-
tion of the tunneling coefficient due to the evanescent
�closed� channels.19 This is a multichannel effect that was
until now studied only in Cartesian coordinates for quantum
wires tailored in two-dimensional electron gas.19,21–24 The
dips can be understood considering the simple couple-mode
model.19,21,22

For a dot surrounded by the host material, the scattering
potential V�r ,z� is not anymore separable, so that the scatter-
ing mixes the channels.19,21,22 As soon as the scattering po-
tential is attractive, the diagonal coupling matrix element

Vnn
�m��z� = �

0

R

�n
�m��r�V�r,z��n

�m��r�rdr � 0 �39�

acts for every channel n as an effective 1D attractive
potential,21 which always allows for at least one bound
state34,35 below the threshold of the continuum spectrum. We
have sketched in Fig. 7 the energy spectrum of a channel n:
the continuous part represented by continuous line is real and
starts at E�,n

�m� ; the bound state represented by a cross �we
consider for simplicity only one� is also real but just below
the threshold. By mixing the channels, this bound state be-
comes a quasibound state or resonance, i.e., with complex
energy, whose real part gets embedded into the continuum
spectrum of the lower channel, and the imaginary part de-
scribes the width of the resonance. The spectrum of the 2D
scattering problem is a superposition of the above-discussed
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Wb=0.05 eV �dashed line�, and Wb=0.5 eV �dotted-dashed line�.
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spectra and is sketched in Fig. 7�b� for spectra corresponding
to channels 1 and 2. These resonances can be seen now as
dips in the tunneling coefficient. The energy difference be-
tween the position of the dips and the next subband minima
E�,n

�m� gives the quasi-bound-state energy. The positions of the
dips, i.e., the quasi-bound-state energy, depend on the chan-
nel number n and on the magnetic quantum number m
and—of course—on the detailed system parameters. In Car-
tesian coordinates, the specific symmetry of the channels
�odd and even� do not allow for dips in the first plateau.23 In
the cylindrical geometry, this symmetry is broken, so that we
obtain a dip in front of every plateau. Our numerical method

allows for a high-energy resolution in computing the tunnel-
ing coefficient, so that we were able to find the dips also in
front of higher-order plateaus.

Further insight about the quasibound states of the evanes-
cent channels can be gained by looking at the wave func-
tions, whose square absolute value �	nm

�s� �E ;r ,z��2 gives the
localization probability density. Considering that the scatter-
ing states are orthonormalized in the general sense, the more
appropriate quantity to analyze would be the local density of
states,

g�E;r,z� = �	nm
�s� �E;r,z��2gsnm�E� , �40�

which differs from the localization probability density just by
1D density of states. For this reason, we plot the localization
probability density in arbitrary units.

Our numerical implementation based on the R-matrix for-
malism allows us to produce high-resolution maps of the
wave functions inside the scattering region �see Eq. �23��. In
Figs. 8 and 9 the localization probability density
�	nm

�1��E ;r ,z��2 of an electron is represented, incident from
source �s=1� and has a total energy corresponding to the dips
in Fig. 6. The total energy E and the channel �nm�, on which
the electron is incident, are specified at every plot. Let us
discuss Fig. 8�a�. The total energy E=0.238 eV is less than
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the energy of the second transversal mode E�,2
�0� =0.244 eV,

so that only the first channel is open; thus the incident wave
from the source contact is nodeless in r direction. But, as can
be seen in Fig. 8�a�, the scattering wave function inside the
scattering region has a node in the r direction, i.e., position in
r where the wave function is zero. This means that the wave
function corresponds to the quasi-bound-state splitting off
from the second transversal mode, which is an evanescent
one. The quasibound state is reachable now in a scattering
formulation due to the channel mixing. The wave function
has a pronounced peak around the scattering potential, i.e.,
z� �−4,4� nm, which decreases exponentially to the left and
to the right. To the left of the scattering potential, one ob-
serves the interference pattern produced by the incident wave
and the reflected one, while to the right only the transmitted
part exists.

The wave function considered in Fig. 8�b� has the energy
less than the third transversal channel E�,3

�0� =0.6006 eV, so
that the incident part of the scattering state on the second
mode n=2 has one node in r direction. But the scattering
function shows—inside the scattering region—two nodes in
the r direction, so it corresponds to a quasi-bound-state split-
ting off from the above evanescent channel: the third one.
One gets similar pictures for all m values, with the difference
that for m�0 the wave functions are zero for r=0 like it is

shown in Fig. 9 for the case �m�=1. In Figs. 8 and 9, one can
observe that the transmitted part of the scattering wave func-
tion is zero, in agreement with the resonant backscattering
specific to the quasibound states of the evanescent
channels.19,21

The extension of the quasibound state of an evanescent
channel is given outside the scattering region by the expo-
nential decaying functions exp��k1nm��z+dz�� for z�−dz and
exp�−�k2nm��z−dz�� for z�dz, where ksnm is defined in Eq.
�14�. This means that the closer the resonance to the thresh-
old of the evanescent channel E�,n

�m� , the slower the exponen-
tial function decreases, yielding long exponential tails into
the leads. This can be clearly seen for the quasibound state
represented in Fig. 9�a�, whose energy is just 0.92 meV be-
low the subband minimum E�,2

�1� =0.394 eV �see Fig. 6�b��.
Since the localization probability density enters the quantum
calculation of the charge distribution, one gets difficulties in
setting the correct boundaries for the Hartree calculations,
i.e., Schrödinger-Poisson system. This has to be studied in a
future work.

Increasing the strength of the attractive potential to Wb=
−0.15 eV, one can see more dips23 in the tunneling coeffi-
cient in Fig. 6. Interesting is that there are two dips in the
first and second plateaus for m=0, while for �m�=1 there is
only one dip in every plateau. This can be easily understood
if one thinks at the effective attractive potential Vnn

�m� �Eq.
�39�� created for every subband �nm�. In the case of m�0,
the transversal modes �n

�m��r� are zero on the cylinder axis
r=0, so that the effective potential for every subband is
weakened. To confirm that the dips correspond to higher-
order quasibound states, we plot in Fig. 10 the probability
density of the scattering states at the energies corresponding
to the two dips in every plateau for m=0. For the dips on the
first plateau �Figs. 10�a� and 10�b��, both scattering wave
functions have a node in r direction corresponding to the
transversal channel n=2. For the dips on the second plateau
�Figs. 10�c� and 10�d��, the wave functions have two nodes
in r direction corresponding to the transversal channel n=3.
But looking in the z direction, the scattering state for the
lower-energy dip in every plateau is nodeless, while the one
for higher-energy dip in every plateau has a node at z=0,
which arises from the second quasibound states of the next
evanescent channel.

B. Core/shell quantum ring

Now, consider the same rectangular quantum well but off
centered. This would correspond to a quantum ring embed-
ded into the nanocylinder, as sketched in Fig. 11�a� and could
be realized in a core-shell heterostructure with supplemen-
tary structuring along the nanowire. The tunneling coefficient
T�1��E� for m=0 is plotted in Fig. 12, showing the character-
istic dips due to the quasibound states of the evanescent
channels.

The localization probability density for the energies
marked with symbols in Fig. 12 is plotted in Fig. 13. By
shifting the potential from the cylinder axis and keeping the
same parameters as for the quantum dot surrounded by the
host material, one can recognize the same behavior of the
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FIG. 9. �Color online� Localization probability density
�	nm

�1��E ;r ,z��2 for an electron incident from reservoir s=1 into chan-
nel �nm� and with total energy E indicated on the plots. The ener-
gies are the dips in Fig. 6�b� for Wb=−0.05 eV.
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wave functions corresponding to the quasibound states as in
the previous case. This means that the quasibound states of
an evanescent channel extend over the whole width of the
nanowire, independent where the scattering potential is lo-
cated in the lateral direction. Similar results hold for m�0.

Considering a deeper quantum well, one is surprised to
see in Fig. 14 that for m=0 only one dip appears in the first
plateau but two dips in the second plateau. This can be un-
derstood considering that if the transversal channel �n

�m��r�
has a node at the off-centered position of the scattering po-
tential, then Vnn

�m� �Eq. �39�� is being weakened allowing for
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FIG. 10. �Color online� Localization probability density
�	nm

�1��E ;r ,z��2 for an electron incident from reservoir s=1 into chan-
nel �nm� and with energy E indicated on the plots. The energies are
the dips in Fig. 6�a� for Wb=−0.15 eV.
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less quasibound states. Interesting is to take a closer look at
the scattering states corresponding to the second quasibound
state on the second plateau marked with a symbol in Fig. 14.
For this energy, there are two open channels, and we have

represented in Fig. 15 the localization probability density for
both of them. One can recognize immediately the structure
of the wave function with two nodes in r direction corre-
sponding to the third evanescent channel and one node in z
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FIG. 14. �Color online� The tunneling coefficient T�1� for differ-
ent magnetic quantum numbers m for a ring surrounded by the host
material. The parameters are as in Fig. 11, but Wb=−0.15 eV. The
symbols show the energies, at which the wave functions are ana-
lyzed in the next plots.
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FIG. 13. �Color online� Localization probability density
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�1��E ;r ,z��2 for an electron incident from reservoir s=1 into chan-
nel �nm� and with energy E indicated on the plots. The energies
correspond to the symbols in Fig. 12.
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FIG. 15. �Color online� Localization probability density
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�1��E ;r ,z��2 for an electron with m=0 incident from reservoir s
=1 into both open channels �a� n=1 and �b� n=2 and with energy E
corresponding to the second quasibound state on the second plateau
in Fig. 14.
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direction specific to the second quasibound state. Specific for
the quasibound states of an evanescent channel is also the
exponential decaying far from the scattering potential. But
the interference patterns on the left and on the right of the
scattering potential are quite different for these two scatter-
ing wave functions. This can be explained by looking at
intrasubband and intersubband transmission probabilities
represented in Fig. 16 and which give detailed information
about the channel mixing. The intrasubband transmission T11

�1�

is strongly influenced by the channel mixing, showing two
pronounced dips; while the intrasubband transmission T22

�1�

shows only one dip and a second asymmetric Fano line.13,22

Both intersubband transmission probabilities T12
�1� and T21

�1� co-
incide and show asymmetric Fano lines with zero minima.
Now it is clear that there is no interference pattern to the
right of the quantum ring in Fig. 15�a� because both trans-
mission probabilities T11

�1� and T12
�1� are zero for the second

quasibound state. One recognizes in Fig. 15�a�, for the first
channel, the strong interference pattern between the incident
part and the reflected part. For the scattering wave function
incident on the second channel T22

�1� has values close to 1 and
also T21

�1� has a maximum. In such a way, one sees in Fig.
15�b� right to the scatterer an interference pattern between
the transmitted wave in the first channel and the one trans-
mitted in the second channel. One can recognize far from the
scattering potential the structure of the second channel with a
node in the r direction.

C. Double-barrier heterostructure along the nanowire

In Fig. 17�a� a double-barrier heterostructure along the
cylindrical nanowire is sketched. Such systems with sharp
interfaces between the layers are realized experimentally
based on InAs/InP �Ref. 5� or on GaAs/AlGaAs.6 We con-

sider rectangular barriers of height Vb=0.5 eV, widths b
=4 nm, and the width of the rectangular quantum well w
=8 nm, as is plotted in Fig. 17�b�. The total tunneling coef-
ficient T�1��E� for m=0 is plotted in Fig. 18�a� in linear scale.
The barriers suppress the transmission, except for a series of
sharp peaks due to the quasibound states between the barri-
ers. With vertical dashed lines, we have represented the en-
ergies of the first three transversal channels E�,n

�0� , n=1,2 ,3.
One can observe that the tunneling coefficient can reach val-
ues higher than 1, if there are more channels open. In case of
no-applied bias between source and drain contact, the scat-
tering potential is separable and has variations only in z di-
rection V�r ,z�=V�z�, where V�z� describes a 1D double-
barrier potential. The scattering does not mix the channels,
so that the total tunneling coefficient is given by the summa-
tion of the intrasubband transmission probabilities for every
open channel T�1��E�=�nTnn

�1��E�. The intrasubband transmis-
sion probability on every open channel is the transmission
through a double-barrier structure but shifted with the trans-
versal energy of the channel E�,n

�m� . So that it can be also
computed as for a double-barrier resonant tunneling �DBRT�
diode Tnn

�1��E�=TDBRT��+E�,n
�m� �.

This identity can be used as a verification of the numerical
implementation of our method because the first quantity is
computed with the 2D code, while the second quantity is
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FIG. 17. �Color online� �a� Sketch of a double-barrier hetero-
structure along the nanowire and �b� the scattering potential V�r ,z�.
The height of the barriers is Vb=0.5 eV, the width of the barriers is
b=4 nm, the width of the quantum well is w=8 nm, and the radius
of the nanowire is R=5 nm.
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FIG. 18. �Color online� Total tunneling coefficient for m=0 in
�a� linear scale and �b� logarithmic scale vs total energy E for a
double-barrier heterostructure along the nanowire, as depicted in
Fig. 17. The symbols represent the poles: their real part on x axis
and the imaginary part on right y axis. The peaks are indexed by
�n , i�, where n denotes the incident channel and i denotes the reso-
nance between the barriers. The same indexes are used in Table I.
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computed with the 1D code.14 This is explicitly illustrated in
a logarithmic plot of the tunneling coefficient in Fig. 18�b�.
We represent here by vertical dashed lines the positions of
the first three transversal channels E�,n

�0� , n=1,2 ,3. By
dotted-dashed lines, we have represented the tunneling coef-
ficient through the DBRT; but the energies are shifted with
the transversal channel energy, as is written in the legend.
The curve for the first channel �red dotted line� is just under
the total transmission curve �black continuous line�. One can
observe that the 1D double-barrier potential allows for four
resonances �quasibound states� between the barriers, i.e., ev-
ery dashed curve has four peaks below the barrier height.

On the same plot, we have plotted with symbols the poles

of the current scattering matrix S̃ computed using the method
presented in Ref. 13 recently developed for 2D geometries.25

The real part is on the axis of abscissae, while the imaginary
part is on the right axis of ordinates. One can see that among
the poles there exist resonant ones marked by filled symbols,
with very low widths, i.e., ��10−4 eV, and which are very
well separated from the others. Using the same axis of ab-
scissae for the real part and for the tunneling coefficient, one
can directly see that to every resonant pole corresponds a
transmission peak. Increasing the energy but keeping the
same channel, the widths of the poles increase, and also the
widths of the transmission peaks.

This physical interpretation of the tunneling coefficient
peaks allows us to label them in Fig. 18 by a pair of numbers
�n , i�, where n describes the incident channel and i describes
the resonance �quasibound state� between the barriers.

In Table I the localization probability densities
�	nm

�1��Eres,i ;r ,z��2 are represented for the double-barriers re-
gion z� �−8,8� nm and r� �0,5� nm, for every indexed
peak in Fig. 18. One can observe that the wave functions
have pronounced maxima between the barriers and decrease
very quickly inside the barriers. They are localized between
the barriers, corresponding—indeed—to resonances �quasi-
bound states� between barriers and not to quasibound states
of evanescent channels. Furthermore, the order i of the reso-
nance between the barriers gives the number of nodes in the
z direction, namely, i−1, while the channel number n gives

the number of nodes in the r direction, namely, n−1. This
provides a picture of the orbitals of the “artificial atom,”
which represents this quantum structure.36

Similar behavior is observed for higher magnetic quantum
numbers m. In Fig. 19 the total tunneling coefficient is rep-
resented and in Table II the localization probability densities
for the indexed peaks for the case �m�=1 are represented. The
positions of the transmission peaks vary for different m val-
ues due to the dependence on m of the transversal energy
channels E�,n

�m� . The scattering wave functions at resonances
for different m values have different positions of nodes in the
r direction, and for any m�0 they are zero on the cylinder
axis.

IV. SUMMARY AND DISCUSSION

We have presented a general theory for computing the
scattering matrix and the scattering wave functions for a gen-

TABLE I. �Color online� Localization probability density
�	nm

�1��Eres,i ;r ,z��2 for an electron with m=0 incident from reservoir
s=1 into channel n and corresponding to the resonance i between
the barriers. The axis of abscissae is z� �−8,8� nm, and the axis of
ordinates is r� �0,5� nm for all plots.
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FIG. 19. �Color online� Total tunneling coefficient for �m�=1 vs
total energy E for a double-barrier heterostructure along the nano-
wire as depicted in Fig. 17. The peaks are indexed by �n , i�, where
n denotes the incident channel and i denotes the resonance between
the barriers. The same indexes are used in Table II.

TABLE II. �Color online� Localization probability density
�	nm

�1��Eres,i ;r ,z��2 for an electron with �m�=1 incident from reservoir
s=1 into channel n and corresponding to the resonance i between
the barriers. The axis of abscissae is z� �−8,8� nm, and the axis of
ordinates is r� �0,5� nm for all plots.
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eral finite-range-extended scattering potential inside a cylin-
drical nanowire. This formalism was applied to a variety of
model systems such as a quantum dot, a quantum ring, and a
double-barrier heterostructure embedded into the nanocylin-
der. We have recovered the features for a nonseparable at-
tractive scattering potential in a multichannel two-probe
nanowire tailored in the two-dimensional electron gas. The
difference to the Cartesian geometry is that every magnetic
quantum number defines a two-dimensional scattering prob-
lem with the different structure of dips for the same scatter-
ing potential. How many of these problems have to be solved
depends on the further physical quantity calculation. Further-
more, the cylindrical symmetry does not yield the same “se-
lection rules” for tunneling coefficient as the Cartesian sym-
metry, so that dips could be observed in every subband. For
stronger attractive potential, more than one dip can appear
due to the higher-order quasibound states of the next evanes-
cent channel. For quasibound states localized between barri-
ers, it was possible to compute the poles of the scattering
matrix, which provide a quantitative characterization of the
resonances. Furthermore, the peaks of the resonant tunneling

can be indexed by channel number and resonance index. De-
tailed maps of the localization probability density sustain the
physical interpretation of the resonances �dips and peaks�
found in the studied nanowire heterostructures.

It will be the subject of next works to see how the buildup
of charge around the scattering nonseparable attractive po-
tential influences the overall electrical characteristics of the
nanowire-based devices. A complete description taking into
account the electron-electron interaction, at least in the Har-
tree approximation, shall allow to compare the results with
the measured data.
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