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We present a detailed theoretical analysis of light-absorption and luminescence of bulk semiconductors at
finite electron-hole densities and temperatures. The analysis is carried out within a real-time Green’s-function
formalism with self-energies evaluated in the self-consistent T-matrix approximation. The theory is applied to
a two-band model of GaAs, for which the single-particle self-energies and spectral functions and the absorption
and luminescence spectra are calculated. The effects of excitonic correlations on these quantities are
highlighted.
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I. INTRODUCTION

The photoluminescence of bulk semiconductor is an old
subject. Yet its study continues to clarify fundamental as-
pects of the dynamical correlations that exist in the excited
electron-hole �e-h� plasma. At low densities, when each lu-
minescing electron-hole pair is isolated from the rest of the
plasma, the correlations between the two particles are com-
pletely given by the solution to a hydrogenlike two-body
problem �e.g., Ref. 1�. In dense plasmas, additional correla-
tions with the surrounding particles significantly affect the
dynamics of the luminescing pair—both their individual mo-
tions through the plasma and the interaction between them.
At low temperatures, understanding of these correlations is
further complicated by the binding of a fraction of the
electron-hole population into excitons. In this paper, we re-
port on our effort to understand these correlations and how
they are manifested in photoabsorption and luminescence
spectra. We use a real-time Green’s-function theory2–6 with a
self-consistent T-matrix self-energy, which is designed to
treat two-body bound-state and scattering-state correlations
on equal footing. The partially ionized plasma is assumed to
be in quasithermal equilibrium. We have applied our theory
to bulk GaAs from cryogenic to room temperatures and from
zero density through the Mott transition.

Early theoretical works on medium carrier effects7–10 �see
also Ref. 11 and references therein� clarified the roles of
�static� screening and mean-field �exchange and “Coulomb
hole”� energy renormalizations. Correlations beyond the
mean field, including the effects of the bound exciton, were
studied in a self-consistent T-matrix approximation in a
model one-dimensional electron-hole system in Ref. 12 and
for bulk ZnSe in Ref. 13. The effects of dynamical screening
of the Coulomb potential were studied in, e.g., Refs. 14 and
15. Our theory is very close to that of Ref. 13, and although
we apply our theory to GaAs, our results may be considered
as a comprehensive exploration of the approach started in
Ref. 13. Many-body effects on luminescence from quantum
well systems have also been extensively studied �see, e.g.,
Refs. 16–18�.

In this paper, we lay out the theory in considerable detail,
discussing its strengths and limitations. The Kubo-Martin-
Schwinger �KMS� relation2,9 plays a fundamental role in
equilibrium Green’s-function theory. In applications, when-

ever approximations are adopted, one needs to verify the
preservation of this relation under the approximations. As
already pointed out in Refs. 16 and 17, the T-matrix formu-
lation does preserve the KMS relation between the suscepti-
bility and the luminescence spectrum. We give a more com-
prehensive discussion of the issue here. In the section on
numerical results �Sec. III�, we show, besides absorption and
luminescence spectra, also single-particle self-energies and
spectral functions. Discussion is focused on how the partially
ionized nature of the electron-hole plasma affects these quan-
tities.

The self-consistent T-matrix represents a resummation of
a �infinite� subset of terms �diagrams� in the perturbation
series of the relevant Green’s functions. The selection of dia-
grams is physically motivated: the treatment of the Coulomb
correlations within the luminescing electron-hole pair is ex-
act at the low-density limit, and at finite density, the T-matrix
self-energy takes into account the effects of interactions with
the partially ionized medium. Since the T matrix includes
correlations due to the bound exciton, it is expected to give
the dominant contribution to the self-energy at low to mod-
erate temperatures and densities, where the exciton fraction
of the population in the partially ionized plasma is appre-
ciable. At higher densities, however, other diagrammatic
contributions to the self-energy may also become important.
To improve accuracy, these diagrams, e.g., “particle-hole
channel” T matrix and exchange T matrix, as well as vertex
corrections beyond the screened Coulomb potential in the
susceptibility, need to be examined in future efforts.

As formulated below, our theory allows the treatment of
the emitted photon’s propagation through the plasma. In this
paper, however, we focus on Coulomb correlation effects and
evaluate the theory only to the lowest order in the photon-
material coupling: polariton effects and reabsorption are not
included. The issue of relaxing the weak-coupling approxi-
mation is briefly addressed in the concluding section �Sec.
IV�. A detailed account is deferred to a future publication.
Comparison with experiments is further complicated by such
issues as the occurrence of band-to-impurity transitions and
surface effects, which are also ignored here. �See Ref. 19 for
a discussion on the effects of doping within the framework of
our theory.� Our objective in this paper is a systematic study
of the effects of T-matrix correlations over a broad region of
the density-temperature space. We have not been able to find
systematic experimental data over a comparable parameter
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range. We hope to be able to perform theory-experiment
comparisons in the future when such data become available.

The present theory has been applied to a theoretical
analysis20,21 of the possibility of cooling of semiconductors
by up-conversion of photons in an absorption-luminescence
cycle.22–26 The equilibrium Green’s-function formalism and
the calculational techniques based on the Dyson equation
adopted here have been extensively applied to other quantum
fluids such as atomic plasmas �see, e.g., Ref. 27� and nucle-
onic matters �see, e.g., Refs. 28 and 29 for applications of the
self-consistent T matrix to the superfluid transition problem
in nuclear and neutron matters�.

We give an account of the general diagrammatic Green’s-
function theory and the self-consistent T-matrix approxima-
tion in Sec. II and Appendixes A and C. Numerical results
are presented and discussed in Sec. III. The paper concludes
with a summary in Sec. IV.

II. ABSORPTION AND LUMINESCENCE
AT WEAK PHOTON-MATTER COUPLING:

GREEN’S-FUNCTION FORMALISM

We formulate the light-absorption problem as the linear
response of the semiconductor to an external classical elec-
tric field. Luminescence is calculated as the fluctuations of
the quantized photon field coupled to the semiconductor. In
this section, we model the bulk semiconductor sample as a
translationally invariant infinite system. It is assumed that an
electron-hole plasma has been pre-excited in the sample and
has reached quasithermal equilibrium.

A. Absorption

We consider the propagation of light waves through a
direct-gap semiconductor. The light field induces a polariza-
tion density field Pt�x , t� which acts back on the light field. In
the absence of any other unbalanced charge or current den-
sities, the Maxwell equation obeyed by the transverse oscil-
lating electric field E�x , t� can be written as

� 1

c2

�2

�t2 − �2�E�x,t� = −
4�

c2

�2

�t2Pt�x,t� , �1�

with � ·E=� ·Pt=0. We consider light waves with frequen-
cies in a spectral region around the fundamental band gap.
Within this restriction, we write the semiconductor’s re-
sponse as Pt=P+Pb, where P denotes contributions from the
lowest interband electronic transitions and Pb denotes contri-
butions from all other transitions, which are spectrally re-
moved from the region of interest. Calculating P is the con-
cern of this subsection. The “background” polarization
density Pb is modeled by a real constant refractive index nb:
Pb�x , t�= �1 /4���nb

2−1�E�x , t�.
With Pt thus specified, the space-time Fourier transform

of Eq. �1� is

�−
nb

2�2

c2 + q2�E�q,�� =
4��2

c2 P�q,�� . �2�

Our Fourier-transform convention is such that E�q ,�� is the
coefficient of the plane wave ei�q·x−�t�. �For notational sim-

plicity we use the same symbol for a field and its Fourier
transform. The arguments indicate which function is repre-
sented.� Only linear response is considered here: P�q ,��
=�R�q ,��E�q ,��, where the susceptibility �R, to be calcu-
lated, depends on the electron-hole dynamics but not on the
electric field. �R is diagonal in momentum q and frequency
� by the assumption of space-time translational invariance of
the unperturbed semiconductor. Spatial isotropy is also as-
sumed, which reduces �R�q ,�� from generally a rotation
�rank-2� tensor to a scalar and makes it independent of the
direction of q. Substituting �RE for P in Eq. �2�, one obtains
the dispersion relation

q2 =
�2

c2 �nb
2 + 4��R�q,��� . �3�

For each fixed �real� frequency �, the propagating modes
inside the semiconductor are plane waves, each with a �pos-
sibly complex� wave number q��� satisfying Eq. �3�. The
intensity of each mode decays exponentially in space with a
rate 2 Im�q����. When the coupling between light and matter
is weak, i.e., �4��R�q ,����nb

2, one can solve Eq. �3� pertur-
batively in orders of O��R�. The zeroth-order solution is
q�0����=�nb /c. The leading-order solution for Im q��� is
obtained by substituting q�0���� into the right-hand side of
Eq. �3�: Im q�1����= 2��

nbc Im��R�q�0� ,���. In the weak-
coupling limit, this mode dominates over all others, leading
to the usual expression of the absorption coefficient ���� in
terms of the susceptibility:

���� =
4��

nbc
Im��R�q = �nb/c,��� �4�

In the remainder of this section, the susceptibility �R�q ,��
is defined within our microscopic electron-hole theory. A
Green’s-function diagrammatic-perturbation formalism is
used to set up approximations for the calculation of relevant
quantities. The self-consistent T-matrix approximation for �R

is specified and discussed. The microscopic theory starts
with setting up the Fock space from a basis set of single-
electron and single-hole orbitals, which are labeled by �crys-
tal� momenta and band indices �s, s�, etc., for conduction
electrons and j, j�, etc., for valence holes; when convenient,
we also use the band index “a” to represent any band, con-
duction or valence�. In this paper, for simplicity, we limit our
considerations to the lowest conduction and the highest
heavy-hole valence bands. So for GaAs, for example, the
band indices run through only the spin states s= �1 /2 and
j= �3 /2. The extension to include more bands is straight-
forward. The polarization density P�q , t� is the expectation
value of the total electric dipole operator restricted to the
bands in our model space and in the usual envelope-function

approximation: P̂�q�=− 1
V�sjk�d js�k�aj,q−kask+H.c.�, where

ask is the annihilation operator for an electron in the conduc-
tion band s with momentum k, etc., and d js�k�
=qe	 j̄�r�s
��k� is the single-site dipole moment, with qe as
the magnitude of electronic charge, 	 j̄�r�s
 as the atomic di-
pole transition element between conduction-band orbital s
and the valence-band orbital j̄ that corresponds to the hole
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orbital j, and ��k� as a cutoff function at large k.8 Our model
Hamiltonian for the electrons and holes is written in the form

Ĥ = Ĥeh + Ĥfield. �5�

Ĥeh governs the carriers’ motions in the absence of the light

field and is specified below. Ĥfield is the coupling to the elec-
tric field that effects the interband transitions. In the dipole

approximation it is given by Ĥfield=�dxP̂�x� ·E�x , t�, which,
restricted to our model space and in the rotating-wave ap-
proximation, is

Ĥfield�t� = �
sjkq

� d�

2�
�dsj�k� · E�q,��e−i�task

† aj,q−k
† + H.c.� .

�6�

In Eq. �6� the spectrum of E�q ,�� is limited to positive
frequencies.

The quantum dynamical setting for calculating the sus-
ceptibility is as follows. A pre-excited electron-hole plasma
in the semiconductor is in quasithermal equilibrium at the
initial time t0, the state being determined by the temperature
T, the densities ne and nh �or the chemical potentials 	e and
	h� of the electron and hole populations, and the field-free

Hamiltonian Ĥeh. The assumption of well-defined densities

or chemical potentials implies that Ĥeh must be chosen to
conserve electron and hole numbers. At some point in time
after t0, a classical light pulse arrives and induces coherent

interband transitions according to Ĥfield. At subsequent times,
the polarization density serves as a measure of the effect of
the electric field perturbation. As stated above, E�x , t� is as-
sumed sufficiently weak for P�x , t� to be taken linear in
E�x , t�. We then follow standard treatments of linear re-
sponse theory �see, e.g., Ref. 30� to obtain the ratio of their
Fourier transforms �R�q ,��, taking t0→−
, as

�R�q,�� =  i

�
�� d�t − t��ei��t−t����t − t��

1

V
�

sjkk�

djs
��k�dsj

��k��

	�aj,q−k�t�ask�t�,ask�
† �t��aj,q−k�

† �t���
0, �7�

where a�t� and a†�t� are Heisenberg-picture operators rela-

tive to Ĥeh, a�t�=eiĤeh�t−t0�/�ae−iĤeh�t−t0�/�, etc., and 	¯
0 de-
notes expectation value in the quasithermal equilibrium state.

In keeping with the assumption of rotational invariance, Ĥeh
is assumed to conserve s and j, which makes the commutator
in Eq. �7� diagonal in the band indices. The superscript in dsj

�

denotes the �circular� polarization component �helicity� of
the dipole moment vector. The value of �R does not depend
on which sign is chosen. Since �R�q ,�� does not depend on
the light field, Eq. �7� is in particular valid in the steady-state
situation where the light pulse approaches the monochro-
matic limit.

In Eq. �7�, �R�q ,�� has been cast in a general form suit-
able for calculation in the diagrammatic Green’s-function
formalism. To proceed further, one needs to specify the

electron-hole Hamiltonian. We adopt a commonly used

model Ĥeh, which contains single-particle parabolic band en-
ergies and pairwise Coulomb forces:

Ĥeh = Ĥ1 + Ĥ2, �8�

where

Ĥ1 = �
ks

��s�k� + Eg�ask
† ask

† + �
kj

� j�k�ajk
† ajk, �9a�

�a�k� =
�2k2

2ma
, a = s, j ,

Ĥ2 =
1

2V
�

q�0kk�

V�q���
ss�

as,k+q
† as�,k�−q

† as�k�ask

+ �
j j�

aj,k+q
† aj�,k�−q

† aj�k�ajk

− �
sj

�as,k+q
† aj,k�−q

† ajk�ask + s ↔ j�� . �9b�

Eg is the band gap, and V�q�=
4�qe

2

�bq2 is the Coulomb repulsion,
where �b=nb

2 is the background dielectric constant. In the

interaction Hamiltonian Ĥ2, we have included only processes
that keep both particles in their respective initial bands: the
particles only exchange momentum. Auger and exchange-
type processes have been omitted. One can easily verify that

this Ĥeh satisfies the symmetry requirements—conservation
of s, j, ne, and nh and being isotropic—stipulated above.

The electron-hole Hamiltonian Ĥeh defines, in the stan-
dard way, a diagrammatic real-time Green’s-function theory,
which we summarize in Appendix A. The reader is referred
to this appendix for the notations and terminology used in
this paper. Our selections of diagram classes to be summed
follow from a “minimal list” of correlation effects considered
important for the problem at hand: �i� Coulomb scattering
and bound-state correlations between the electron-hole pair
in the light-absorption process, �ii� screening of Coulomb
interactions among charges, and �iii� interaction effects on
single-particle motions. Correlations of type �i� are embodied
in the T-matrix or ladder diagram contributions to the sus-
ceptibility �Figs. 1�a� and 1�b��. Each “rung” of the ladder is
a screened Coulomb potential with screening �correlations
�ii�� effected through a series of ring diagrams �Fig. 1�c��. As
explained below, we are at present not using the full dynami-
cally screened potential as represented in Fig. 1�c� but in-
stead a static �frequency-independent� approximation of it.
Between two scatterings in a ladder diagram, the motions of
the two particles are represented by single-particle Green’s
functions. These Green’s functions are dressed by a self-
energy that includes direct scattering to all orders �a T ma-
trix� with other particles and first-order exchange �Fock�
scattering �Fig. 1�d��. In the solution procedure, the equa-
tions represented by Figs. 1�b� and 1�d� are first solved self-
consistently. The resulting T matrix and single-particle
Green’s functions are then used to construct the susceptibil-
ity �Fig. 1�a��.
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For an equilibrium state parametrized by the temperature
T and chemical potentials 	e and 	h, the relevant Green’s
functions are defined in Appendix A 1. The Feynman rules
for developing the diagrammatic-perturbation series of these
Green’s functions are summarized in Appendix A 2. We
gather here the equations corresponding to the diagrams in
Fig. 1. For more details on their derivation, the reader is
referred to Appendix A 3. We work in momentum-frequency
space. Figure 1�b� gives the equation for the �retarded� T
matrix:

Taa�
R �p1,p2,q,�� = Waa��p1 − p2� + �

p3

Waa��p1 − p3�

gaa�
0R �p3,q,��Taa�

R �p3,p2,q,�� , �10�

where the T matrix Taa�
R for two scattering particles in the

orbitals a and a� gives the transition amplitude from initial
relative momentum �p2 to final relative momentum �p1. It
depends parametrically on the total momentum �q and total
energy �� of the particles.

For the effective screened interaction Waa�, we use the
so-called quasistatic limit of the plasmon pole approximation
of the screened Coulomb interaction �see, e.g., Refs. 1 and
10� represented by Fig. 1�c�. As a function of the momentum
transfer qt, it is given by

Waa��qt� = zaza�
4�qe

2

�b�qt
2 + �2�qt��

, �11�

where za is the sign of the charge of orbital a �−1 for
conduction-band electron orbitals and +1 for valence-hole
orbitals�. The qt-dependent inverse screening length � is
given by

�2�qt� =
�0

2

1 + C
�0

2qt
2

�pl
2

. �12�

Here �0 is a static inverse screening length:

�0
2 =

4�qe
2

�b
 �ne

free

�	e
+

�nh
free

�	h
� . �13�

�pl is the plasma frequency, �pl=�4�nqe
2

mr
, mr being the re-

duced mass of an electron-hole pair, and C is a numerical
constant, which we set equal to 3.0. This value of C has been
chosen to minimize the density-induced shift of the exciton
peak in the self-consistent T matrix from its low-density po-
sition. ne�h�

free is that part of the density of electron-hole pairs
which are not bound in excitons. The electrically neutral ex-
citons are not expected to contribute significantly to screen-
ing. Away from the zero-density, zero-temperature limit,
when the exciton peak acquires a sizable width, the defini-
tion of this “free-plasma” density is not free of ambiguities.
Here we estimate it to be equal to the density of a hypotheti-
cal noninteracting electron or hole gas at the same respective
chemical potential �and temperature� as the interacting
plasma in our theory. The single-particle energies in this hy-
pothetical plasma include the exchange and Coulomb hole
shifts �see below�.

The two-particle Green’s function gaa�
0R describes the

propagation of two particles in band orbitals a and a� be-
tween two successive interactions. Strictly speaking, our
many-body theory, starting with Hamiltonian �8�, includes
only Coulomb-induced effects. In applying the theory, how-
ever, we have added effects of phonon broadening to our
Green’s functions by constructing phenomenologically
model phonon-induced self-energies. Explicitly, we write
gaa�

0R as

gaa�
0R �p,q,�� = ��g̃aa�

0R �p,q,���−1 + �aa�
phR����−1. �14�

The model phonon-induced self-energy �aa�
phR��� for the par-

ticle pair is constructed in Appendix B. The “uncorrelated-
pair” Green’s function g̃aa�

0R , represented by two directed lines
in Fig. 1�b�, is the product of two single-particle Green’s
functions in band orbitals a and a�. As a retarded function, it
can be written as a dispersion integral over its imaginary
part:

g̃aa�
0R �p,q,�� = −

1

�
� d��

Im g̃aa�
0R �p,q,���

� − �� + i�
, �↓0,

�15�

and

Im g̃aa�
0R �p,q,�� = −

1

2�
� d��

2�
�1 − fa�� − ���

− fa������Aa�k,� − ���Aa��k�,��� .

�16�

Here fa���=1 / �e���−	a�+1� is the equilibrium Fermi distri-
bution function, with �=1 /kBT, and the subscripts a ,a�
=e�h� labeling the conduction-band �valence-hole-band� or-
bital. Aa�k ,���−2 Im Ga

R�k ,�� is the single-particle spec-
tral function, and the particle momenta k and k� are related
to the total and relative momenta by k=

ma

M q+p and k�
=

ma�
M q−p, with M =ma+ma�.

+= T

e

h

+= TT

e,h

+=
T

+
e

e

e

ee ee

= +

(a)

(b)

(c)

(d)

FIG. 1. Diagrammatic representation of the self-consistent
T-matrix approximation.
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Figure 1�d� represents the Dyson equation for the single-
particle Green’s function. Its solution’s retarded part is given
by

Ga
R�k,�� =

�

�� − �a�k� − �a
R�k,��

. �17�

From Ga
R one obtains the one-particle observables such as the

total density in each orbital:

na = �
k
� d�

2�
fa����− 2 Im Ga

R�k,��� . �18�

The self-energy consists of three contributions:

�a
R�k,�� = �a

TR�k,�� + �a
exch�k� + �a

CH. �19�

The T-matrix self-energy �a
TR gives the energy due to scat-

terings with other particles and is given by

�a
TR�k,�� = −

1

�
lim
�↓0

�
−



 Im �a
TR�k,���d��

� − �� + i�
�20�

and

Im �a
TR�k,�� =

1

2
� d��

2� �
a�

�baa��� + ��� + fa������

�
k�

�2 Im Taa�
R �p,p,q,� + ����

Aa��k�,��� , �21�

where baa����=1 /e���−	�−1, and 	=	a+	a� is the Bose
distribution function. The momenta in Eq. �21� are again

related by q=k+k� and p=
ma�k−mak�

ma+ma�
. The second and third

terms in Eq. �19� constitute a quasistatic approximation1,10 of
the dynamically screened exchange energy represented by
the last graphical term in Fig. 1�d�. This level of approxima-
tion is consistent with that of using the quasistatic approxi-
mation for the screened potential in the T matrix.9 The static
exchange energy is given by �a

exch�k�=�k�Waa�k
−k��� d�

2� fa���Aa�k� ,��, and the Coulomb hole energy is an
orbital-independent redshift given by the difference between
the screened and unscreened potentials, �a

CH

= �1 /2��q�Waa�q�−V�q��.
Independent of �aa�

phR��� introduced in Eq. �14�, we also
phenomenologically broaden Im Ga

R in calculating the den-
sity in Eq. �18�. The form and parametric dependency of this
broadening are specified in Appendix B �Eq. �B3��. It is not
used in any other parts of the calculation, and its effect on
Eq. �18� is negligible outside of the low-density regime.

A sum rule for the exact spectral function

�
−



 d�

2�
Aa�k,�� = 1 �22�

is easily deduced from the definition of the one-particle
Green’s function and the equal-time anticommutation rela-
tion between the creation and annihilation operators.2 It has
been proved31 that this sum rule is guaranteed for an approxi-
mate Aa�k ,�� if it is calculated via Eq. �17� with �i�

Im �a�k ,�� all negative and integrable, and �ii� the
frequency-dependent part of Re �a�k ,�� calculated via
Kramers-Kronig relation �20�. In our calculations, satisfac-
tion of condition �ii� is of course built in. It can also be
shown that our T-matrix approximation �Eqs. �10�, �16�, and
�21�� gives an Im �a�k ,�� that is all negative. So we expect
sum rule �22� to hold for our calculated spectral function.

Given Hamiltonian �8�, the temperature T, the electron
density ne=�sns and the hole density nh=� jnj, Eqs.
�10�–�21� form a closed set of equations which are solved
self-consistently, yielding the �retarded� T matrix Taa�

R , the
�retarded� single-particle Green’s function Ga

R, and the
chemical potentials 	e and 	h. The integral equations are
solved in three-dimensional momentum space in polar coor-
dinates and an angular momentum expansion is used. The
details are given in Appendix C. The T matrix and Green’s
functions are then substituted into the equation for the sus-
ceptibility represented by Fig. 1�a�:

�R�q,�� = − �
sjp1p2

djs
+ dsj

+ �gsj
0R�p1,q,���p1p2

+ gsj
0R�p1,q,��Tsj

R �p1,p2,q,��gsj
0R�p2,q,��� .

�23�

B. Luminescence

Experimentally luminescence is measured as light exiting
the semiconductor sample. In the limit of weak light-matter
coupling, the luminescence rate can be taken to be equal to
the rate of photon production inside the sample. This as-
sumes that each photon is created in a freely propagating
state inside the sample and escapes from the sample with
unit probability. Reabsorption and modifications of the pho-
ton density of states through interactions with the plasma
�polariton effects� are ignored. The weak-coupling limit is
assumed in our microscopic theory in this paper. The influ-
ences of polariton and reabsorption effects, as well as reflec-
tions at the sample’s surface, are briefly addressed in Sec. IV
below. A detailed account of these influences is deferred to a
future publication.

Our microscopic theory for luminescence starts with a
Hamiltonian in which the radiation field is quantized:

Ĥ = Ĥeh + Ĥ� + Ĥeh-�. �24�

Ĥeh is the interacting electron-hole Hamiltonian defined

above in Eq. �8�. Ĥ� is the free-radiation-field Hamiltonian:

Ĥ� = �
q�

��qc�q
† c�q, �25�

where c�q �c�q
† � is the annihilation �creation� operator for

photons with momentum q and polarization label � and �q
=cq /nb. The matter-field interaction term is, in first quan-

tized form for the electrons, Ĥeh-�=−�i
q

m0cA�xi� ·pi, where
A�xi� is the quantized vector potential field at the position of
the ith electron, pi is that electron’s momentum operator, and
m0 is the free-space electron mass. Here we have neglected
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the interaction term proportional to �i�A�xi��2. The vector
potential field is given by

A�x� = �
q�
�2��c

Vqnb
�c�q�̂�eiq·x + c�q

† �̂�
�e−iq·x� , �26�

with �̂� as the unit polarization vector labeled by � and V as
the quantization volume. In second quantizing �with respect

to the charges’ degrees of freedom� Ĥeh-�, we restrict it to the

electron-hole Fock space of Ĥeh, include only interband tran-
sition processes, and take the rotating-wave approximation.
The upshot is

Ĥeh-� =
1

�V
�

sj�qk
��sj

� �q�ask
† aj,q−k

† c�q + H.c.� ,

�sj
� �q� = −

qe

m0
�2��

qcnb
	s�p� j̄
 · �̂��q̂� . �27�

With Hamiltonian �24�, one can again develop a
diagrammatic-perturbation theory for Green’s functions in-
volving electrons, holes, and photons. The definitions and
some properties of the photon Green’s functions are summa-
rized in Appendix A 4. The perturbation series of the one-
photon Green’s function on the Keldysh time contour can be
organized into a Dyson equation �Eq. �A23��, which is dia-
grammatically represented in Fig. 2. The photon’s self-
energy ��

��q , t̄1 , t̄2� consists of all one-photon-irreducible
diagrams �i.e., diagrams that cannot be split into two discon-
nected parts by cutting one photon line� sandwiched between

two Ĥeh-� vertices. In the weak light-matter coupling limit,
��

� is given by Eq. �A26�. As indicated above, the lumines-
cence rate is related to the rate of change in the photon den-
sity, which in our theory is obtained through the function
D�

��q , t1 , t2��−i	cq�
† �t2�cq��t1�
. The Kadanoff-Baym ver-

sion �Eqs. �A24� and �A25�� of the photon Dyson equation is
a convenient form of the equation of motion for this func-
tion. For our purpose we subtract Eq. �A25� from Eq. �A24�,
sum over the momentum q, and take the equal-time limit
t2→ t1 to get

� �

�t1
+

�

�t2
��

q
iD�

��q,t1,t2��
t2→t1

= �
q
�

t0




dt1����
���q,t1,t1��D�

A�q,t1�,t1�

− D�
R�q,t1,t1����

���q,t1�,t1� + ��
�R�q,t1,t1��D�

��q,t1�,t1�

− D�
��q,t1,t1����

�A�q,t1�,t1�� . �28�

We see that the quantity on the left-hand side of Eq. �28�
is just the time rate of change in the photon density in circu-
lar polarization state �. Since our theory models the semi-

conductor sample as an infinite closed system, and at the
same time we assume all photons eventually exit the system,
this rate is identified with the luminescence �photon count�
rate per unit sample volume, which we denote by L�. In the
weak photon-matter coupling limit, for the lowest-order �in
�sj

� � L�, we take all the Green’s functions on the right-hand
side of Eq. �28� to be those for the initial uncoupled state:
quasithermal equilibrium for the interacting electron-hole
subsystem and free radiation field with zero photon density.
Each function in the integrand then depends only on the
difference between its two time arguments, and the time in-
tegral can be transformed into an integral over the frequency
variable conjugate to the relative time. It follows that the
luminescence spectrum R���� �i.e., the photon count rate per
unit frequency per unit sample volume�, defined by L�

=�d�R����, is given by

R���� = −
i

�
�
q

���
���q,��Im D�

R�q,��

− D�
��q,��Im ��

�R�q,��� . �29�

Furthermore, D�
��q ,���D�

�0���q ,��=0 and Im D�
R�q ,��

� Im D�
�0�R�q ,��=−����−�q�, giving

R���� =
1

2
nb

c
�3�

�
�2

i��
���q = �nb/c,�� . �30�

C. Preservation of the Kubo-Martin-Schwinger relations

In the derivation of our working equations �10�–�21� for
the electron-hole equilibrium state, we have used the Kubo-
Martin-Schwinger �KMS� relations between the retarded
parts and the ��� components of all two-time functions on
the Keldysh time contour. The �bosonic� KMS relation also
relates the luminescence spectrum R���=��R���� to the ab-
sorption spectrum in the following way. ��

�� is given by the
four-point electron-hole Green’s function Psj

� �Eq. �A27��,
while the linear susceptibility is given by the retarded part of
the same function by Eq. �A5�. From their definitions, Psj

�

and Im Psj
R obey KMS relation �A6�,9 from which one de-

duces

R��� = �nb

c�
�2

beh��,T����� , �31�

where beh�� ,T�=1 / �e���−	e−	h�/kBT−1�.
The KMS relations are satisfied by the exact Green’s

functions, but not necessarily by their approximations. So in
devising an approximation scheme, it is important to ensure
that the KMS relations are preserved. In the case of the
absorption-luminescence spectra, for example, a KMS-
preserving approximation would guarantee that ���� crosses
zero at ��=	e+	h, thereby canceling the singularity of
beh��� at the same point and ensuring the regularity of R���
given by Eq. �31�. In connection with the T-matrix approxi-
mation, this issue was discussed in, e.g., Refs. 16 and 17. We
give an expanded treatment in Appendix A 5, where we show
that KMS indeed holds for all the two-time functions in the
self-consistent T-matrix approximation. We also show that

= + Π

FIG. 2. Diagrams representing photon propagation in the
electron-hole medium.
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the phenomenological phonon-induced self-energy �aa�
phR���

is constructed to preserve KMS.

III. RESULTS AND DISCUSSIONS

With our theory presented above, we have computed the
single-particle Green’s functions of the partially ionized,
quasiequilibrium electron-hole plasma in bulk GaAs and,
from them, the absorption-luminescence spectra. The elec-
tron and hole masses are set at me=0.067m0 and mh
=0.48m0, m0 being the free-space electron mass, and the
background dielectric constant at �b=13, giving the exciton
Rydberg ER=4.2 meV and the exciton Bohr radius aB
=13 nm. We have performed this calculation over a wide
range of temperatures �30–500 K� and electron-hole densities
�1012–1018 cm−3�. We discuss some results in this section.
The single-particle Green’s functions can of course yield all
thermodynamical observables,30 but we will restrict our dis-
cussion to those observables relevant to the luminescence
problem.

The calculation scheme as laid out in Sec. II is rather
involved. To better understand the physics contained in
the numerical results, we have repeated the calculations
taking certain further approximations and compared results
with the full self-consistent T-matrix approximation. The
various levels of approximation are described and motivated
here. From here on, the full self-consistent T-matrix approxi-
mation is denoted by TG. The TG�0� approximation is
defined as replacing the Green’s function outside the T ma-
trix in the T-matrix self-energy diagram in Fig. 1�d� with the
“independent-particle” Green’s function, which has the form
of the free-particle Green’s function but with a single-particle
spectrum, denoted �̃a�k�, being the kinetic energy shifted by
the static self-energies ��̃a�k�=�a�k�+�a

exch�k�+�a
CH�. This

corresponds to replacing the spectral function inside the in-
tegral in Eq. �21� with a delta function, which renders the
integral trivial, thereby eliminating one of the most time-
consuming computing steps in the calculation. In TG�0��q
=0�, we further approximate the T matrix at finite total mo-
mentum as Taa�

R �p ,p ,q ,���Taa�
R (p ,p ,0 ,�−�2q2 / �2�ma

+ma���) in the expression for the self-energy �Eq. �21��. This
replacement is exact at the low-density limit. The screened
Hartree-Fock �SHF� approximation takes the simplification
further by neglecting the T-matrix contribution �a

TR to the
self-energy in Eq. �19�. The value of the constant C in the
inverse screening length � �Eq. �12�� is set to minimize the
density-induced exciton shift in TG�0�. The same value is
used for the other approximations. Another approximation,
denoted by T�2�G, is the same as TG in the thermodynamical
calculation, i.e., self-consistent calculation of the Green’s
function and the T-matrix self-energy in Eqs. �10�–�21� �Figs.
1�b�–1�d��. But in the final step of constructing �R in Eq. �23�
�Fig. 1�a��, a single-pass infinite-order ladder sum for the T
matrix is performed with Green’s functions dressed by a
second-order Coulomb self-energy. This approximation is
motivated by indications that the full TG self-energy may
overestimate the absorption linewidth of the exciton that
arises from collisions with other excitons, and that vertex-
correction diagrams, not included in TG, may be needed to

redress this problem. These vertex corrections are quite com-
plicated and their proper treatment will be left to future
work. In T�2�G, the second-order self-energy ignores the con-
tributions from exciton collisions. Hence from the differ-
ences between TG and T�2�G results, we may estimate the
magnitude of the vertex corrections. We also define the
T�2�G�0� and the T�2� G�0��q=0� approximations as carrying
out the same calculations as TG�0� and TG�0��q=0�, respec-
tively, in the thermodynamic calculation and then dressing
the T matrix to second order in obtaining �R. We note here
that KMS is preserved by the T matrix in TG�0� but not in
TG�0��q=0�.

A. Equilibrium properties of the partially ionized plasma

It is clear from the formal development in Sec. II that the
single-particle spectral function Aa�k ,���−2 Im Ga

R�k ,��
is the key quantity in determining the system’s thermody-
namic properties as well as the medium effects on the
electron-hole pair involved in the absorption-luminescence
process. In our formulation, as given in Eq. �17�, the spectral
function is in turn determined by the retarded self-energy
�a

R�k ,��. The real part of the self-energy can be interpreted
as an effective potential seen by the particle, while
−Im �a

TR�k ,�� /� is the decay rate of a particle in orbital
�a ,k� into other system states at frequency �.

In a noninteracting system, where the self-energy is
absent, the “retarded” boundary condition places the pole
in Ga

R�k ,�� just below the real � axis: Ga
R�k ,��

=lim�↓0 � / ���−�a�k�+ i��, in which case Aa�k ,��
=2������−�a�k��. Of the three Coulomb-induced contribu-
tions to �a

R�k ,�� in Eq. �19�, the exchange �a
exch�k� and

Coulomb-hole �a
CH ones are independent of frequency �or

instantaneous� and amount to a shift in the delta-function
peak position in Aa�k ,�� from the free-fermion value �a�k�.
This is the result in the SHF approximation. The T-matrix
contribution �a

T�k ,��, being frequency dependent, can lead
to nontrivial modifications of the spectral function. Algebra-
ically, we have

Aa�k,�� =
− 2� Im �a

R�k,��
��� − �a�k� − Re �a

R�k,���2 + �Im �a
R�k,���2 .

�32�

Peak structures may occur at frequencies where ��=�a�k�
+Re �a

R�k ,�� is satisfied and Im �a
R is not too large. In the

weak-correlation limit, where ��a
TR�� ��a+�a

exch+�a
CH�, usu-

ally only one peak is present, which can be interpreted as a
quasiparticle resonance.

We show the imaginary parts of the self-energies of both
fermion species at k=0, T=30 K, and density=1016 cm−3

calculated in the TG approximation in Fig. 3 and in the TG�0�

approximation in Fig. 4. The four curves in each figure, la-
beled �aa��, with a ,a�=e ,h, give the contributions to Im �a

TR

due to scattering off a population of particles of species a�.
�In this section, we also use the subscripts e and h in addition
to the band orbital indices s and j. Since there is only one
band, with two spin projections, for each species in our
model, and the two spin states are degenerate, there is no
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ambiguity.� Comparing the �eh� to �ee� curves, for example,
one can see the exciton resonance strongly enhances the
“scattering-out” rate and shifts its spectral distribution to-
ward the resonance. The distribution is slightly broader in
TG ��eh� and �he� curves in Fig. 3� than in TG�0� �Fig. 4�.
This broadening in TG results from the spread in the corre-
lated spectral function of the medium particle participating in
the scattering compared to a delta-function peak in TG�0�.

The spectral functions at the same momentum, tempera-
ture, and density are shown in Fig. 5 for both electrons and
holes in the TG and TG�0� approximations. The shifts by the
static parts of the self-energy in TG are �e

exch�0�=−0.231ER,
�h

exch�0�=−0.074ER, and �e
CH=�h

CH=−0.402ER. Both spec-
tral functions have widths of ��1–2�ER. It is clear from the
self-energies that the states within the peaks of the spectral
functions contain strong excitonic correlations, and hence the
peaks should not be interpreted as quasiparticle resonances.
Ae�0 ,�� is broader than Ah�0 ,�� due to the overall stronger
Im �e

TR. The TG�0� electron spectral function develops two
peaks because the TG�0� Im �e

TR is sharper and hence smaller
at the frequencies where ��=�e�k�+Re �e

R�k ,�� is satisfied.

To convey a picture of the dependencies of the self-
energies and spectral functions on physical parameters, we
show a set of results of these quantities for another tempera-
ture �T=10 K� and density �61015 cm−3� in Figs. 6–9.
The imaginary part of the electron self-energy is shown for
k=0 in three approximations in Fig. 6. Comparing with Fig.
3, one can see that the TG self-energy does not change much
between 10 and 30 K. The TG�0� curve, by contrast, becomes
much sharper at 10 K. This difference in behavior can be
understood as follows. In expression �21� for Im �e

TR�0 ,��,
Im TR is dominated by exciton formation with a hole in the
medium at around total momentum q=0, which implies that
at zero electron momentum �k=0�, the most important con-
tributions to the hole momentum sum come from k��0. In
TG�0�, the “input” hole spectral function is a delta function
Ah�k� ,���=2�������− �̃h�k���. Carrying out the �� integra-
tion, one can see that the frequency dependence of
Im �e

TR�0 ,�� basically tracks that of Im TR(0 ,0 ,0 ,�
+ �̃h�0�). That is, the width of the self-energy in TG�0� is
similar to the collisional width of the T matrix, which grows
as temperature rises, when the ionization channel becomes
increasingly open as final states in the scattering process. In
TG, the input hole spectral function is the self-consistent
one, which has a significant width even at 10 K. In this case,
the convolution of the relatively sharp peak of Im Teh

R at 10 K

FIG. 3. �Color online� Imaginary part of the T-matrix self-
energy vs frequency for k=0 at T=30 K and density=1016 cm−3 in
the TG approximation �see text for definition�. The labels of the
four lines, aa�, with a ,a�=e ,h, correspond to the self-energy of a
particle of species a due to scattering off the population of species
a�. E=��−Eg for the electron self-energy �curves ee and eh�,
where Eg is the band gap, and E=�� for the hole self-energy
�curves he and hh�. ER is the exciton Rydberg.

FIG. 4. �Color online� Imaginary part of the T-matrix self-
energy vs frequency for k=0 at T=30 K and density=1016 cm−3 in
the TG�0� approximation �see text for definition�. The labels are
explained in Fig. 3.

FIG. 5. �Color online� Spectral functions vs frequency for k=0
at T=30 K and density=1016 cm−3 in two approximations. The
line labels are defined in the text and the axis labels in Fig. 3.

FIG. 6. �Color online� Imaginary part of the electron T-matrix
self-energy vs frequency for k=0 at T=10 K and density=6
1015 cm−3 in various approximations. The line labels are defined
in the text and the axis labels in Fig. 3. See text for a discussion of
the numerical noises in this and the following figures.
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with Ah�0 ,��� still gives a broad peak for Im �e
TR�0 ,��. The

result of the TG�0��q=0� approximation is also shown in Fig.
6, which agrees quite well with that of TG�0� in the peak
region. The insufficient resolution of the q grid that we use
leads to the numerical noises seen in frequencies below the
peak in TG�0� and TG�0��q=0�. �The part of the noise that
extends across to positive values has been removed by hand
and the value of Im �e

TR set to zero there.� TG avoids the
noise problem by having a smooth spectral function in the
integrand in Eq. �21�. The problem is much worse in
TG�0��q=0� than in TG�0� because of the former’s violation
of KMS, leading to spurious fluctuations near the chemical
potential �here 	−Eg�−4ER� even in the numerically accu-
rate �converged, noise-free� result. We have not tried to im-
prove on the numerical accuracy for Im �a

TR in these two
approximations because, as shown in Figs. 8 and 9, these
noises do not pose a significant problem for the precision of
the spectral functions calculated from these Im �a

TR.
We show Im �e

TR for k=2aB
−1 in Fig. 7. Its magnitude is

several times smaller than it is at k=0, and the effect of
taking the TG�0� approximation is relatively more drastic at
this momentum. The spectral functions for the two momenta
are shown in Figs. 8 and 9. The lower peak in TG�0� can still
be seen for k=2aB

−1 on the logarithmic scale. At k=0,

Ae�0,�� at 10 K is similar to that at 30 K. The upper peak in
TG�0� is higher at 10 K because of a sharper dropoff of
Im �e

TR. At k=2aB
−1, the T-matrix self-energy is small com-

pared to the shifted static electron energy �e+�e
exch+�e

CH

=ER, which implies that the peak in Ae is essentially a qua-
siparticle resonance. For the same reason, the difference be-
tween TG and TG�0� is smaller in the spectral function than
in the T-matrix self-energy.

An overall view of the spectral functions calculated in
TG�0��q=0� are shown as contour plots in the energy-
momentum plane in Figs. 10 and 11 at T=10 K and a rela-
tively low density=21015 cm−3. In each graph, the quasi-
particle peak and the excitonic correlations �lower peak� at
low momenta are clearly visible. This picture agrees with
results in previous works9 �see also Ref. 32�. The corre-
sponding contour plots for results in TG are not shown. Due
to the considerable broadening of the peaks in TG �Fig. 8�,
such plots would not show the two-peak structure.

We next consider the thermodynamic quantities. Equation
of state �18�, together with the condition ne=nh, relates the

FIG. 7. �Color online� Imaginary part of the electron T-matrix
self-energy vs frequency for k=2 inverse exciton Bohr radii at T
=10 K and density=61015 cm−3 in various approximations. The
line labels are defined in the text and the axis labels in Fig. 3.

FIG. 8. �Color online� Electron spectral function vs frequency
for k=0 at T=10 K and density=61015 cm−3 in various approxi-
mations. The line labels are defined in the text and the axis labels in
Fig. 3.

FIG. 9. �Color online� Electron spectral function vs frequency
for k=2 inverse exciton Bohr radii at T=10 K and density=6
1015 cm−3 in various approximations. The line labels are defined
in the text and the axis labels in Fig. 3.

FIG. 10. A contour plot of the electron spectral function in the
TG�0��q=0� approximation at T=10 K and density n=2
1015 cm−3. The electron mass is me=0.067m0.
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three thermodynamic variables temperature, chemical poten-
tial, and density for each fermion species. This relation is
governed by the statistical distribution of the spectral weight
of the single-particle state carried in fa��� and the spectral
weight distribution due to the Hamiltonian carried in
Aa�k ,��. Figure 12 shows the chemical potential 	=	e
+	h �actually �	−Eg� /kBT� as a function of temperature for
three values of the density, and Fig. 13 shows the density
dependence of 	 for T=30 K. Results from TG, TG�0�, and
SHF are shown together with those from a noninteracting
electron-hole model �dashed-dotted curves labeled “Free”�.
On a gross scale, 	 follows the expected trends of decrease
with temperature and increase with density. In Fig. 12 the
linear behavior at high temperature is characteristic of a
Boltzmann gas. Where the Free curves deviate from straight
lines at low temperature mark the onset of degeneracy. Com-
parison among the four approximations shows that a large
part of the interaction effect is already contained in the SHF,
which is essentially an independent-particle model with
renormalized single-particle spectra. The redshift of the band
edge, induced by the screened Hartree-Fock and Coulomb
hole interactions, pushes the chemical potential down. On a
finer scale, one can see the effect of Coulomb correlations
�T-matrix self-energy� on 	 at low temperatures �at T� the
exciton binding energy ER=4.2 meV�60 K and below�

and/or high densities. Correlations, especially excitonic cor-
relation in the e-h T matrix, further lowers the single-particle
energy and hence the chemical potential.

In Fig. 14 we show our estimates of the mean ionization
ratios �ne

free+nh
free� /2n. The overall trend of the ratios as func-

tions of density and temperature agrees with expectations. At
low densities, the system approaches complete ionization. As
the plasma becomes denser, the bound-state fraction in-
creases with the rate of encounter between electrons and
holes. These behaviors agree with the predictions of the Saha
equation and its generalization, the Beth-Uhlenbeck
formula33 �see also Refs. 34–37�. At the high-density limit,
the weakening of the binding potential by screening and
Pauli blocking raises the ionization ratio again to unity. We
note that our recipe for estimating the ionization ratios of the
electron and hole populations does not constrain the two to
be equal. Indeed, as shown in Fig. 15 for T=30 K, nh

free at
high density is significantly smaller than ne

free, which reflects
the fact that 	h is lowered by a larger amount by excitonic
correlations from its “free” value at the same density than 	e.
�Recall that the single-particle dispersions in our hypotheti-
cal “free” system include the static self-energy renormaliza-
tions.�

B. Absorption and luminescence spectra

The Green’s functions and T matrices shown in Sec. III A
are used in Eq. �23� to calculate the susceptibility and hence

FIG. 13. �Color online� Chemical potential vs density for T
=30 K. See Fig. 12 and text for the definitions of symbols.

FIG. 14. �Color online� Mean ionization ratio vs density at vari-
ous temperatures in the TG approximation.

FIG. 11. A contour plot of the hole spectral function in the
TG�0��q=0� approximation at T=10 K and density n=2
1015 cm−3. The hole mass is mh=0.48m0.

FIG. 12. �Color online� Chemical potential �	=	e+	h� in units
of kBT vs temperature for various densities. Results for four ap-
proximations are used; see text for their definitions.
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the photoabsorption spectra �Eq. �4��. We show the absorp-
tion spectra ���� at T=30 K for various densities in the TG
approximation in Fig. 16. At n=1013 cm−3, our result ap-
proaches the “independent-pair” limit in which the photon
changes into the electron-hole pair almost unaffected by the
surrounding low-density plasma. Phonon coupling contrib-
utes a sizable fraction of the exciton linewidth here. As den-
sity goes up, the exciton peak is rather efficiently damped by
interactions, embodied by the T-matrix self-energy Im �TR,
with the partially ionized plasma. Moreover, the self-energy
pulls the band edge downward, which tends to redshift the
entire absorption spectrum. At the same time, increasing
screening by the ambient plasma reduces the exciton’s bind-
ing energy. These two counteracting effects lead to relatively
small variations in the exciton’s spectral position on density,
which has been discussed in the literature �see, e.g., Refs. 7,
8, 10, and 38�. We can see from Fig. 16 that up to n
=1015 cm−3 in TG, the exciton peak is slightly lowered, and
by n=1016 cm−3, the broadened exciton peak merges with
the redshifted electron-hole continuum.

We have mentioned above that TG may overestimate the
density-induced damping of the exciton, but the proper in-
clusion of the associated “vertex corrections” is a compli-
cated task that we defer to the future. We are then motivated
to introduce the T�2�G approximation. We show the absorp-

tion spectra calculated in this approximation in Fig. 17 for
the same parameters as in Fig. 16. As expected, collisional
damping is much reduced in T�2�G. We note, however, that
the exciton peak at n=1016 cm−3 is shifted down by a rather
significant amount. It may be reasonable to expect the real
absorption spectra to lie within the range of results spanned
by the two approximations. In Fig. 18 we further compare
T�2�G with T�2�G�0� at low temperature �T=10 K� and mod-
erately low density �n=61015 cm−3�. The exciton peak in
T�2�G is shifted downward from its low-density position by
�0.4ER, while it stays almost unshifted in T�2� G�0�. We re-
iterate that the parameter C in the inverse screening length
has been fixed at one value for all approximations and values
of thermodynamic parameters used. In general, the calcu-
lated density-induced exciton shift does depend on the cho-
sen value of C.14 The static band-edge shift in TG ��e

exch

+�h
exch=−0.86ER� is actually smaller than that in TG�0�

��e
exch+�h

exch=−0.97ER�, but this is more than offset by a
weaker �more effectively screened� potential in TG�0� ��0
=0.87aB

−1� than in TG ��0=0.56aB
−1�.

Our luminescence spectra are obtained from the absorp-
tion spectra via KMS relation �31�. We show the spectra
R��� for T=30 K and various densities in TG and T�2�G in
Figs. 19 and 20, respectively. As in the absorption spectra,
the correlation-induced width of the exciton is smaller in

FIG. 15. �Color online� Ionization ratios vs density at T
=30 K.

FIG. 16. �Color online� Absorption spectra of the electron-hole
system in bulk GaAs �including only the heavy-hole valence band�
at T=30 K and various densities in the TG approximation. The
density unit is cm−3; Eg is the band gap and ER is the exciton
Rydberg.

FIG. 17. �Color online� Absorption spectra of the electron-hole
system in bulk GaAs at T=30 K and various densities in the T�2�G
approximation. The density unit is cm−3; Eg is the band gap and ER

is the exciton Rydberg.

FIG. 18. �Color online� Comparison of calculated absorption
spectra from various approximations at T=10 K and density=6
1015 cm−3. Eg is the band gap and ER is the exciton Rydberg.
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T�2�G than in TG. As discussed above, the differences be-
tween these two sets of results may be an estimate of the
uncertainties in our predictions that can be attributed to the
limitations of the TG approximation. It is noteworthy that the
absorption spectra at n=1016 cm−3 shown in both Figs. 16
and 17 cross over to gain ������0� at around ��−Eg�
−0.73ER. By virtue of the built-in preservation of the KMS
relation in both TG and T�2�G, as explained in Sec. II C and
Appendix A 5, this crossing point is exactly the chemical
potential. The zero-crossing ���� and the singular Bose
function b��� in Eq. �31� thus combine to give a smooth
positive R��� as shown in Figs. 19 and 20.

In Fig. 21, we show the radiative recombination coeffi-
cient B, defined as B=�d�R��� /n2, as a function of tempera-
ture at n=1015 cm−3. While the Coulomb interaction raises
the luminescence rate by 2–4 orders of magnitude, the
screened Hartree-Fock approximation yields almost the same
predictions as the various T-matrix approximations, except at
low temperatures. The effects of T-matrix correlations are
evident in the spectral distribution, but not the total flux, of
the emitted photons. The behaviors of B and their implica-
tions for the possibility of cooling of the semiconductor
sample by laser irradiation are discussed in detail in Ref. 21.

Finally, we mention that many of the quantities we calcu-
late here are not very sensitive to changes in our estimate of

the ionization ratio. For example, we have checked that re-
placing the lowest mean ionization ratio in Fig. 14 ��0.2� by
unity would only cause small changes in ���� and moderate
changes in the spectral functions in that case.

IV. SUMMARY AND OUTLOOK

From a diagrammatic-perturbation perspective, we have
presented a self-consistent T-matrix theory of equilibrium
properties of an electron-hole plasma at finite temperature
and density and its absorption and luminescence spectra. The
derived Dyson equation for the single-particle Green’s func-
tions and the equation for the two-particle T matrix are
solved self-consistently. Effects of correlations with the sur-
rounding mixture of unbound carriers and excitons are dis-
cussed. Our diagrammatic framework allows systematic im-
provement on the present level of approximation: the next
step would be to include vertex corrections “matching” the
T-matrix self-energy and other contributions to the self-
energy.

In this paper we have focused our attention on the effects
of Coulomb correlations, including the carrier-photon cou-
pling only to lowest orders for the absorption-luminescence
spectra. Formally, this approximation in the luminescence
calculation is obtained by solving photon Dyson equation
�A23� �Fig. 2� to first order in the photon self-energy ��

� �or

second order in Ĥeh�. By solving Eq. �A23� to all orders
instead, one can properly treat polariton and reabsorption
effects. To compare with experiments, in which photons are
detected outside the sample, trapping by reflection at the sur-
face also needs to be taken into account. Our ongoing inves-
tigation into these aspects so far indicates that, acting to-
gether, polariton coupling, reabsorption, and surface
reflection reduce the overall luminescence rate considerably
as expected. In the luminescence’s spectral distribution, the
exciton peak tends to suffer a larger reduction than the
plasma continuum region. These issues will be discussed in
more detail in a future publication.
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APPENDIX A: REAL-TIME GREEN’S FUNCTIONS
FOR SEMICONDUCTOR OPTICS

1. Electron and hole Green’s functions

For the photoabsorption problem in the linear-response
approximation, the electron and hole Green’s functions are

defined by the Hamiltonian Ĥeh given in Eqs. �8� and �9�.
Heisenberg-picture operators relative to Ĥeh are defined with

the convention that a Heisenberg operator Ô�t� and its

Schrödinger-picture counterpart ÔS coincide at the initial

time t0: Ô�t�=eiĤeh�t−t0�/�ÔSe−iĤeh�t−t0�/�. The state of the
electron-hole system at t= t0 is supposed to be given. To ex-
ploit Feynman-diagram perturbation methods, the Green’s
functions are usually defined as expectation values �in the
initial state� of path-ordered products of field operators on a
double time contour �the Keldysh contour� that, as illustrated
in Fig. 22, goes from t0 along the real-time axis to t→
 and
back to t0. We label the forward �backward� branch C+ �C−�
and the combined contour C. For the special case where the
initial state is in thermal equilibrium, which is the case in
this paper, it is useful to extend the contour into the complex
time plane, as labeled by C0 in Fig. 22.3,5 In this subsection,
we consider the Green’s functions only on C, postponing the
extension to C0 in Appendix A 2.

Two-point and four-point electron and hole Green’s func-
tions are used in this paper. The single-particle, or two-point,
fermion Green’s functions are defined as

Ga�k, t̄1, t̄2� = − i	TC�aak�t̄1�aak
† �t̄2��
0, a = s, j , �A1�

where TC���t̄1���t̄2�� equals ��t̄1���t̄2� if t̄1 comes later than
t̄2 on the contour C and equals −��t̄2���t̄1� if t̄1 comes earlier
for any pair of fermion operators � and �. 	¯
0 denotes
taking the expectation value in the initial �at t0� quasiequilib-
rium state defined by the temperature T ��=1 /kBT� and the
chemical potentials 	e and 	h:

	Ô
0 �
Tr��̂Ô�

Tr �̂
, �̂ = e−��Ĥeh−	eN̂e−	hN̂h�. �A2�

It is convenient for calculations to write the Green’s function
in four components according to which branch, C+ or C−, the

time arguments t̄1 and t̄2 reside in. Explicitly, write t̄1 as the
pair �t1 ,b1�, where t1 is the actual time and b1=� designates
the branch �same for t̄2�, and the four components
Ga

b1b2�k , t1 , t2� are

Ga
++�k,t1,t2� = − i	T+�aak�t1�aak

† �t2��
0,

Ga
+−�k,t1,t2� = i	aak

† �t2�aak�t1�
0,

Ga
−+�k,t1,t2� = − i	aak�t1�aak

† �t2�
0,

Ga
−−�k,t1,t2� = − i	T−�aak�t1�aak

† �t2��
0.

T+ denotes ordinary time ordering and T− denotes antitime
ordering. We also use the common notations Ga

��k , t1 , t2�
�Ga

+−�k , t1 , t2� and Ga
��k , t1 , t2��Ga

−+�k , t1 , t2�, and define
the retarded and advanced Green’s functions

Ga
R/A�k,t1,t2� = � �„��t1 − t2�…�Ga

��k,t1,t2� − Ga
��k,t1,t2�� .

�A3�

Since under Ĥeh the system remains in �quasi�equilibrium,
the two-point functions depend only on the relative time t1
− t2. Under this condition, and taking t0→−
, all single-
particle properties of the system can be obtained from one
function for each fermion species—the single-particle spec-
tral function Aa�k ,���−2 Im Ga

R�k ,��, � being the fre-
quency variable conjugate to t1− t2. In particular,
Re Ga

R�k ,�� is obtained from the spectral function via the
Kramers-Kronig relation and the other two-point functions
are obtained via the KMS relation: Ga

��k ,��=−iAa�k ,���1
− f�� ,T ,	a�� and Ga

��k ,��= iAa�k ,��f�� ,T ,	a�, where
f�� ,T ,	a�=1 / �e���−	a�/kBT+1� is the fermion distribution
function at temperature T and chemical potential 	a. As the
definition of �R �Eq. �7�� indicates, we will also use an
electron-hole �four-point� Green’s function, which we define
as

Psj��̄1, �̄2� = i	TC�ajq−k�t̄1�ask�t̄1�ask�
† �t̄2�ajq−k�

† �t̄2��
0,

�A4�

where �̄1= �k ,q−k , t̄1� and �̄2= �k� ,q−k� , t̄2�. Similar to the
two-point functions, we also have

Psj
���1,�2� = i	�ajq−k�t1�ask�t1�ask�

† �t2�ajq−k�
† �t2��
0,

Psj
���1,�2� = i	�ask�

† �t2�ajq−k�
† �t2�ajq−k�t1�ask�t1��
0,

Psj
R/A��1,�2� = � �„��t1 − t2�…�Psj

���1,�2� − Psj
���1,�2�� ,

with �1= �k ,q−k , t1�, etc. Comparing these expressions with
Eq. �7�, we have, for quasiequilibrium,

�R�q,�� = −
1

�V
�

sjkk�

djs
��k�dsj

��k��Psj
R �k,q − k,k�,q − k�,�� .

�A5�

The general four-point Green’s function has four distinct
time arguments. It is clear from definition �A4� that Psj is a

C+

C−

C C C+ −= ∪

→ ∞

0t−∞ ←
Re t

Im t

0t i β− �

0C

FIG. 22. Contour in the complex time plane.
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limiting case with only two distinct time arguments. The
more general four-point functions are not needed here. KMS
relations have also been proved9 for the components of Psj:

Psj
���� = bsj��,T��Psj

R ��� − Psj
R†���� , �A6�

Psj
���� = �1 + bsj��,T���Psj

R ��� − Psj
R†���� , �A7�

where bsj�� ,T�=1 / �e���−	s−	j�/kBT−1� is the Bose distribu-
tion function, and Psj

R and Psj
� denote matrices whose ele-

ments are the four-point Green’s functions arranged in the
basis of initial and final momentum pairs.

2. Feynman rules for diagrammatic-perturbation series

Standard time-dependent perturbation theory procedures
in the interaction picture5,6,30 are followed. For the field-free

electron-hole system, the Coulomb interaction Ĥ2 is the per-
turbation. Our convention is again that the interaction-picture

operator ÔI coincides with its Schrödinger-picture counter-

part at the initial time t0: ÔI�t�=eiĤ1�t−t0�/�ÔSe−iĤ1�t−t0�/�. Two-
point Green’s function �A1� can be written in terms of
interaction-picture field operators as

Ga�k, t̄1, t̄2� = − i	TC�U−+�t0,t0�aak�I��t̄1�aak�I�
† �t̄2��
0

�A8�

for a=s , j, where U−+�t0 , t0� is the interaction-picture evolu-
tion operator along C from �t0 ,+� to �t0 ,−�:

U−+�t0,t0� = TC�exp�−
i

�
�

C

dt̄Ĥ2�I��t̄��� . �A9�

If the initial state were uncorrelated, i.e., if the density op-
erator �̂ could be written as the exponential of a one-body
operator, Wick’s theorem would be applicable to the expec-
tation values of path-ordered operator products in Eq. �A8�,
resulting in the Feynman rules for enumerating the perturba-
tion terms �see, e.g., Refs. 5 and 6�. This condition is not
satisfied by our �̂ �Eq. �A2��, which has a two-body operator

Ĥ2 in the exponential. The common way to handle this par-
ticular complication,3,5 which we follow, is to add the seg-
ment C0, from �t0 ,−� to t0− i��, to the contour and extend
the definition of Heisenberg- and interaction-picture opera-
tors to �complex� times on C0, t= t0− i , with  � �0,���. The
Green’s functions and the interaction-picture evolution op-
eration are likewise extended to the contour C�C0, which
we denote by C���,

Ga�k, t̄1, t̄2� = − i
	TC����U0+�t0 − i��,t0�aak�I��t̄1�aak�I�

† �t̄2��
I

	U0+�t0 − i��,t0�
I

�A10�

for t̄1 , t̄2�C���, where

U0+�t0 − i��,t0� = TC����exp�−
i

�
�

C���
dt̄Ĥ2�I��t̄���

�A11�

and

	Ô
I �
Tr��̂IÔ�

Tr �̂I

, �̂I = e−��Ĥ1−	eN̂e−	hN̂h�. �A12�

For time arguments restricted to the real-time part C of the
contour, Eq. �A10� reduces to Eq. �A8�. In �̂I we have now a
density operator that allows Wick decomposition of each
term in the expansion of Eq. �A10�, enabling efficient enu-
meration of the terms via a set of Feynman rules.5,6 For
notational clarity and consistency, we state the Feynman
rules for the two-point Green’s function here as follows:

�1� To enumerate all perturbation terms of order n in the

perturbing Hamiltonian Ĥ2�I��t̄�, draw all topologically dis-
tinct connected diagrams with two �open� external points, n
interaction �or V� lines �denoted by directed thin wavy lines�,
and 2n+1 particle lines �denoted by directed thin solid lines�.
These graphical elements are illustrated in Fig. 23. An exter-
nal point is an open end of a particle line. All other ends of
particle and V lines terminate at internal vertices, at each of
which one V line meets two particle lines, one incoming and
the other outgoing.

�2� A particle line is labeled by an orbital index �which
indicates also the species� and momentum which flows in the
direction of the arrow. A V line is labeled by a momentum,
which flows in the arrow’s direction, and an orbital index at
each end. A time argument �on the contour C���� is assigned
to each vertex. The orbital indices carried by the two particle
lines and that by the V line meeting at a vertex must be the
same. The two external points are labeled by the two time
arguments and the orbital index of the Green’s function
whose perturbation series the diagrams represent. The arrow
of the particle line connected to an external point is directed
toward �away from� the point if the point is associated with
an annihilation �creation� operator in the Green’s function.
Along any continuous chain of successive particle lines,
whether an open one between two external points or a closed
one forming a loop, the arrows must go in the same direc-
tion. The arrow’s direction in any V line may be arbitrarily
set.

�3� For each particle line with orbital index a, momentum
k, and the arrow directed from a vertex or external point t̄2 to
a vertex or external point t̄1, write down a factor
iGa�0��k , t̄1 , t̄2�, where Ga�0� is the noninteracting one-body
Green’s function:

Ga�0��k, t̄1, t̄2� = − i	TC����aak�I��t̄1�aak�I�
† �t̄2��
I. �A13�

�4� For each interaction �or V� line with momentum qt

between vertices labeled t̄1 ,a1 and t̄2 ,a2�, write the factor

−�i /��za1
za2

V�qt��̄�t̄1− t̄2�, where V�qt� is the �repulsive�
Coulomb potential V�qt�=

4�qe
2

�bqt
2 , za1

,za2
= �1 are the signs of

a

k
t1
_

t2
_

q

a1 t1
_

a2 t2
_

FIG. 23. Graphical elements. The directed thin solid line repre-
sents iGa�0��k , t̄1 , t̄2�. The thin wavy line represents

−�i /��za1
za2

V�q��̄�t̄1− t̄2�. See text for explanation of the symbols.
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the charges carried by the particle in orbitals a1 and a2, re-
spectively, and

�̄�t̄1 − t̄2� = �
��t1 − t2� if t̄1, t̄2 � C+

− ��t1 − t2� if t̄1, t̄2 � C−

i�� 1 −  2� if t̄1, t̄2 � C0

0 elsewhere,
�

with t̄1= t0− i 1, etc., on C0.
�5� For a closed particle line loop attached to only one

vertex so that the two time arguments of the corresponding
iGa�0��k , t̄1 , t̄2� approach each other, the equal-time limit is to
be taken as t̄1↑ t̄2 �t̄1 comes before t̄2 on the contour C����.

�6� Impose momentum conservation at each vertex: the
sum of momenta entering a vertex must equal the sum of
momenta exiting the vertex. Sum over all independent mo-
menta �in the continuum limit, replace �k with �dk / �2��3�
and orbital indices.

�7� Integrate over time at each vertex. The time
integral is �C���dt̄=�t0


dt�along C+�−�t0

dt�along C−�

− i�0
��d �along C0�.

�8� Assign a factor of �−1�Nl, where Nl is the number of
fermion loops in the diagram.

3. Approximations as partial sums of diagram classes

Using the usual launching point for approximations, we
formally organize the perturbation series of Ga�k , t̄1 , t̄2� into
a Dyson equation

Ga�k, t̄1, t̄2� = Ga
�0��k, t̄1, t̄2� +

1

�
�

C���
dt̄1�dt̄2�Ga

�0��k, t̄1, t̄1��

�a�k, t̄1�, t̄2��Ga�k, t̄2�, t̄2� , �A14�

where the self-energy −�i /���a includes in the exact case all
amputated one-particle-irreducible �1PI� two-point diagrams
�a diagram is one-particle irreducible if it cannot be sepa-
rated into two disjoint parts by cutting one particle line�.
Approximations usually come in the form of picking a finite
subset of 1PI diagrams to represent �a and solving Eq. �A14�
for the Green’s function. It is also common to make the
approximation self-consistent, as we do in this paper, by re-
placing each thin particle line in �a by the full Green’s func-
tion, i.e., the solution of the equation itself. In the diagram-
matic representation of Dyson equation �A14�, the full
Green’s function is denoted by a thick directed solid line �see
Fig. 1�. At this point, one argues �see, e.g., Ref. 3� that the
full Green’s function has a finite correlation �or memory�
time, i.e., for both t̄1 and t̄2 on C, Ga

b1b2�k , t1 , t2� decays to
zero when �t1− t2� exceeds a certain time scale for all four
combinations of �b1 ,b2�. If one time argument is a finite time
on C while the other time is on C0, we can take t0 to be
sufficiently large and negative so that the Green’s function
vanishes too. Then one can see that at the limit t0→−
, if
both external times in Eq. �A14� are on C, and all the particle
lines in �a are full Green’s functions �thick lines�, the con-
tributions from C0 to all the integrals over internal time can
be neglected. This argument should apply to the exact

Green’s functions of reasonable models of interacting many-
body systems, including ours. For a Ga calculated with Eq.
�A14� via an approximate �a, the property of finite memory
time can be considered a consistency check.

In sum, the extension of the contour to include C0 has
been used to set up the perturbation theory for Ga. Since the
system is in equilibrium, the physics does not depend on the
value of the initial time t0. In particular, if we are only inter-
ested in real-time Green’s functions, we can shift t0 to −
, in
which case the contributions from C0 vanish. Hence in all
our equations the time integrals are taken over C.

We next write the equations corresponding to Figs.
1�b�–1�d� according to the Feynman rules stated above. The
box labeled “T” represents the T matrix which Fig. 1�b� de-
fines as an infinite sum of ladder diagrams. It is an amputated
four-point diagram: it is connected to other diagram parts at
four exposed vertices, two of which are to be joined to in-
coming particle lines and the other two to outgoing particle
lines. It is redrawn with full labeling in Fig. 24: the box
represents �−i /��Taa��p1 , t̄1 , t̄1� ,p2 , t̄2 , t̄2� ,q�, which is the am-
plitude for two particles with orbital indices a ,a� scattering
from initial total momentum �q and relative momentum �p2
to final total momentum �q and relative momentum �p1.
Each rung of the ladder is a screened Coulomb potential,
denoted by a thick wavy line, which is defined by the dia-
grams in Fig. 1�c�. The screened potential as defined is non-
local in time, but as discussed in Sec. II, we approximate it
by a time-local, static screened potential Waa��qt� given in
Eq. �11�. This results in the T matrix depending on only two
time arguments: Taa��p1 , t̄1 , t̄1� ,p2 , t̄2 , t̄2� ,q�= �̄�t̄1− t̄1���̄�t̄2

− t̄2��Taa��p1 , t̄1 ,p2 , t̄2 ,q�. In this notation, the equation tran-
scribed from Fig. 1�c� is

Taa��p1, t̄1,p2, t̄2,q�

= �̄�t̄1 − t̄2�Waa��p1 − p2� + �
p3

Waa��p1 − p3�

�
C

dt̄3g̃aa�
0 �p3, t̄1, t̄3,q�Taa��p3, t̄3,p2, t̄2,q� , �A15�

where g̃aa�
0 �p3 , t̄1 , t̄3 ,q�= �i /��Ga�k , t̄1 , t̄3�Ga��k� , t̄1 , t̄3�, with

k=
ma

M q+p3, k�=
ma�
M q−p3, and M =ma+ma�. The contribution

of the T matrix to the self-energy �a
T �second diagram on the

right-hand side of Fig. 1�d�� is then given by

�a
T�k, t̄1, t̄2� = − i �

a�k�

Taa��p, t̄1,p, t̄2,q�Ga��k�, t̄2, t̄1� ,

�A16�

with p=
ma�
M k−

ma

M k� and q=k+k�.

Tq , p1

at1

_

t2

_

t1

_ ,
t2

_ ,
a

,

q , p2

FIG. 24. Graph representing the T matrix: �−i /���̄�t̄1− t̄1���̄�t̄2

− t̄2��Taa��p1 , t̄1 ,p2 , t̄2 ,q�. See text for explanation of the symbols.
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The time-branch components �a
Tb1b2 and Taa�

b1b2, with
b1 ,b2=�, as well as �a

TR/A and Taa�
R/A, are defined in a similar

way as those for the Green’s functions, except that when
being expressed in terms of the “less than” and “greater
than” functions, �a

TR/A, �a
T��, Taa�

R/A, and Taa�
�� may acquire

additional time-local terms. For example,

Taa�
R/A��1,�2� = ��t1 − t2�Waa��p1 − p2� � �„��t1 − t2�…

�Taa�
� ��1,�2� − Taa�

� ��1,�2�� ,

with �n= �pn , tn�, n=1,2, and the total momentum label q
being suppressed. Also,

�a
TR/A�k,t1,t2� = ��t1 − t2��

a�

Waa��0�na� � �„��t1 − t2�…

��a
T��k,t1,t2� − �a

T��k,t1,t2�� ,

but here, for a neutral system, the sum over the time-local
�Hartree� terms adds up to zero.

It can be shown �e.g., Ref. 4� that for two-time quantities
satisfying Dyson-type equations �A14� and �A15� on C, their
respective retarded components also satisfy the same equa-
tions in ordinary time. We explain in Appendix A 5 below
that in the T-matrix approximation, the T matrix and the self-
energy in frequency space satisfy the KMS relations

�a
T��k,�� = 2i Im �a

TR�k,���1 − f��,T,	a�� , �A17�

�a
T��k,�� = − 2i Im �a

TR�k,��f��,T,	a� , �A18�

Taa�
� �q,�� = �Taa�

R �q,�� − Taa�
R† �q,����1 + b��,T,	a + 	a��� ,

�A19�

Taa�
� �q,�� = �Taa�

R �q,�� − Taa�
R† �q,���b��,T,	a + 	a�� .

�A20�

Here Taa�
� and Taa�

R denote T matrices in the relative momen-
tum basis. This leads to our working equations �10�–�21� in
the text.

4. Photon Green’s functions

We use a quantized field Hamiltonian Ĥ �Eq. �24�� in our
theory of luminescence. The corresponding Hilbert space is
then the direct product of the electron-hole Fock space and
the photon Fock space. The Heisenberg operators in this sec-

tion are defined relative to this Hamiltonian, instead of Ĥeh
as in Appendix A 1 above. Except for this difference, the
electron and hole Green’s functions are again given by Eq.
�A1�. Here the initial state to be used in the expectation value

	¯
0 is �̂=e−��Ĥeh−	eN̂e−	hN̂h� � �0
	0�, where �0
 denotes the
vacuum state in the photon subspace. We define the two-
point photon Green’s function on the Keldysh contour C as

D��q1, t̄1,q2, t̄2� = − i	TC�c�q1
�t̄1�c�q2

† �t̄2��
0, �A21�

where c�q�t̄� �c�q
† �t̄�� denotes the annihilation �creation� op-

erator for a photon in the state of polarization �direction� �

and wave vector q. Again, it is convenient to also define the
components of D� on the specific time branches:

D�
++�q1,t1,q2,t2� = − i	T+�c�q1

�t1�c�q2

† �t2��
0,

D�
+−�q1,t1,q2,t2� = − i	c�q2

† �t2�c�q1
�t1�
0,

D�
−+�q1,t1,q2,t2� = − i	c�q1

�t1�c�q2

† �t2�
0,

D�
−−�q1,t1,q2,t2� = − i	T−�c�q1

�t1�c�q2

† �t2��
0.

The functions D�
� and D�

R/A are also defined in the same way
as the fermion functions. One goes as before to the interac-
tion picture to set up a perturbation formalism. Here the un-

perturbed Hamiltonian is Ĥ1+ Ĥ� and the perturbation is Ĥ2

+ Ĥeh-�. The initial photon state being the vacuum, Wick’s
theorem can be applied to the expectation values of path-
ordered photon field operators on C without the help of the
contour extension C0. To parallel the development in Appen-
dix A 2, we extend the photon field operators to C0 but set
the photon-carrier coupling to zero on C0. Feynman rules are
derived in a similar way as in the field-free case above. The
rules for writing perturbation terms for the two-point photon
Green’s function are the following:

�1�� For perturbation terms of order 2m in Ĥeh-��I� �terms

of odd orders vanish� and order n in Ĥ2�I�, draw all topologi-
cally distinct connected diagrams with two external points,
m+1 photon lines �represented by directed thin dashed lines
in Fig. 25�, n interaction �V� lines, and 2�n+m� fermion
lines, with m photon-fermion coupling �or �� vertices each of
which annihilates a photon and creates an electron-hole pair
�represented by a dot joined to an incoming photon line and
a pair of outgoing electron-hole lines in Fig. 25�, and m
photon-fermion coupling �or ��� vertices each of which an-
nihilates an electron-hole pair and creates a photon. Each
external point is joined by a photon line to the rest of the
diagram. Each photon line goes from a �� vertex or an ex-
ternal point to a � vertex or an external point. A fermion line
goes from a � vertex or a V vertex to a �� vertex or a V
vertex.

�2�� Rules �2�–�8� in Appendix A 2 apply with the follow-
ing modifications. The fermion lines do not go to the external
points; they are organized into internal loops. If a fermion
loop does not contain any � �or ��� vertex, the arrows on the
lines must all go in one direction. In a fermion loop with
photon coupling, � and �� vertices must appear alternately
along the loop. Along the succession of fermion lines be-
tween a � vertex and a �� vertex, separated only by V ver-

q λ
t1
_

t2
_ t

_

λ
s

j

t
_

j

s
λ

FIG. 25. Graphical elements. The thin directed dashed line rep-
resents iD��0��q , t̄1 , t̄2�. The vertex joined to an incoming photon
line �dashed arrow� and a pair of outgoing electron-hole lines �solid
arrows� represents �−i /���sj

� �t̄�. The vertex joined to an outgoing
photon and an incoming electron-hole pair represents �i /���sj

���t̄�.
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tices, the arrows on the lines lead from the � vertex to the ��

vertex. Of the two fermion lines connected to a � or ��

vertex, one must be an electron line and the other a hole line.
�3�� Each photon line is labeled by a momentum and a

polarization direction index. Each � or �� vertex is labeled
by a �Keldysh� time argument. The two external points are
labeled by the two time arguments and the polarization index
of the photon Green’s function whose perturbation series the
diagrams represent. The arrow of the photon line connected
to an external point is directed toward �away from� the point
if the point is associated with an annihilation �creation� op-
erator in the Green’s function.

�4�� For each photon line with polarization index � and
momentum q, write the factor iD��0��q , t̄1 , t̄2�, where D��0� is
the free-photon Green’s function:

D��0��q, t̄1, t̄2� = − i	TC�c�q�I��t̄1�c�q�I�
† �t̄2��
I. �A22�

�5�� For each � vertex with the time argument t̄, and �, s,
and j being the polarization index of the incoming photon
line and the orbital indices of the outgoing electron-hole
lines, respectively, write the factor �−i /���sj

� �t̄�. For the ��

vertex with the same labels, write �i /���sj
���t̄�.

�6�� Impose momentum conservation at each � or �� ver-
tex �and as before at vertices with V lines�. Integrate over all
independent internal momenta. Integrate over time at each �
or �� vertex along C �and along C��� at each V vertex as
before�. Sum over independent polarization and fermion or-
bital indices.

The perturbation series can again be organized into a
Dyson equation for the photon Green’s function:

D��q, t̄1, t̄2� = D�
�0��q, t̄1, t̄2� + �

C

dt̄1�dt̄2�D�
�0��q, t̄1, t̄1��

��
��q, t̄1�, t̄2��D��q, t̄2�, t̄2� , �A23�

where the photon self-energy −i��
��q , t̄1� , t̄2�� contains in the

exact case all one-photon-irreducible diagrams contributing
to the two-point photon Green’s function with the two termi-
nal photon lines removed. This equation is represented
graphically in Fig. 2, where the full iD� is denoted by a
directed thick dashed line and −i��

� by a bubble labeled �.
In time-branch components, Eq. �A23� can be written as the
Kadanoff-Baym equation

�i�
�

�t1
− ��q�D�

��q,t1,t2� = ��
t0




dt1����
�R�q,t1,t1��D�

��q,t1�,t2� + ��
���q,t1,t1��D�

A�q,t1�,t2�� , �A24�

�− i�
�

�t2
− ��q�D�

��q,t1,t2� = ��
t0




dt1��D�
R�q,t1,t1����

���q,t1�,t2� + D�
��q,t1,t1����

�A�q,t1�,t2�� . �A25�

These equations are used to derive photon rate equation �28�.
Equation �A23�, or equivalently, Eqs. �A24� and �A25�, is general and so includes effects of propagation and reabsorption

of the luminesced photon in the electron-hole medium. But these effects are ignored in this paper: we approximate D�
� only up

to second order in Ĥeh-�. That is, we include only the first two terms in the geometric series solution to Fig. 2, and for the �
bubble, only terms with no photon lines are taken. In this approximation, ��

� can be written as

��
��q, t̄1, t̄2� = −

i

V�2 �
sjs�j�kk�

�sj
� �s�j�

�� 	TC�aj,q−k�t̄1�ask�t̄1�as�k�
† �t̄2�aj�,q−k�

† �t̄2��
0, �A26�

where the expectation value is over fermion Heisenberg operators evolved by Ĥeh and is thus exactly the four-point electron-
hole function −iPsj in Eq. �A4�. Using the definitions for d js and �sj

� and the relation 	s�p� j̄
� i�m0	s�r� j̄
,8 with � being a
typical transition frequency, we can write in Fourier space

��
���q,�� =

2��

V�nb
2 �

sjkk�

djs
� �k�dsj

� �k��Psj
��k,q − k,k�,q − k�,�� . �A27�

5. Preservation of the KMS relations in approximations

In this section, we show that the �fermionic� KMS relation
is consistently satisfied by the self-consistent T-matrix �TG�
approximation to the single-particle Green’s function �Eqs.
�10�–�21��, and that the �bosonic� KMS relation between the
luminescence and absorption spectra �Eq. �31�� is preserved

by our approximation. We start by recalling some results for
a general two-time function F on C given in terms of two
other two-time functions F0 and K by a Dyson-type equation
F=F0+F0KF. Here we write two-time functions as matrices
with each row or column labeled by a time argument and
state indices. Matrix multiplication means a time integration
along C together with a summation over state indices. One
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can readily prove that if the time-branch components of F0
and K satisfy the relation

F0
���t1,t2� = � ��t1 − t2�F0

s�t1� + �„��t1 − t2�…F0
��t1,t2�

+ �„��t2 − t1�…F0
��t1,t2� �A28�

�same for K�, then so do F’s components. We call Eq. �A28�
property A. We only consider cases where either the time-
local term in F0

�� or that in K�� is zero �e.g., the time-local
term in the two-point Green’s function is zero�. We also in-
clude the time-local term to the advanced and retarded func-
tions by defining FR=F++−F�=F�−F−− and FA=F++−F�

=F�−F−− �same for F0 and K�. With all three functions
having property A, it can be shown that the Dyson-type
equation implies �see, e.g., Ref. 4�

F� = �I + FRKR�F0
��I + FAKA� + FRK�FA, �A29�

from which follows

FR − FA = �I + FRKR��F0
R − F0

A��I + FAKA� + FR�KR − KA�FA.

�A30�

It is clear that the time integrations in matrix multiplications
involving time-branch components are over ordinary time.

We consider the conditions under which the T matrix sat-
isfies the KMS relation. In matrix notation, Eq. �A15� is
Taa�=Waa�+Waa�g̃aa�

0 Taa� �the total momentum label q is
suppressed�. Suppose both Waa� and g̃aa�

0 have property A.
Then so does the T matrix, and Eqs. �A29� and �A30� can be
used. Substituting Waa� for F0 and g̃aa�

0 for K, one gets

Taa�
� = Taa�

R g̃aa�
0�Taa�

A , �A31�

Taa�
R − Taa�

A = Taa�
R �g̃aa�

0R − g̃aa�
0A �Taa�

A . �A32�

Fourier transform these two equations to frequency space
and further suppose that g̃aa�

0 ��� satisfies the bosonic
KMS relations g̃aa�

0� ���= �1+baa������g̃aa�
0R ���− g̃aa�

0A ���� and
g̃aa�

0� ���=baa�����g̃aa�
0R ���− g̃aa�

0A ����. Then it is clear from
Eqs. �A31� and �A32� that Taa���� satisfies the same rela-
tions.

We next consider the suppositions made in the last para-
graph. That Waa� has property A follows trivially from
its definition: Waa�

���t1 , t2�= ���t1− t2�Waa�, Waa�
� =0, where

we denote the matrix of the time-independent screened po-
tential in the relative momentum basis by Waa�. One can also
readily check that g̃aa�

0 , as given by the two-point Green’s
functions below Eq. �A15�, has property A if Ga and Ga�
have it. Furthermore, if Ga��� satisfies the fermionic
KMS relations, g̃aa�

0� ��� is given, in the momentum con-
ventions of Eq. �16�, by g̃aa�

0� �p ,q ,��=−�i /2����d��fa��
−���fa�����Aa�k ,�−���Aa��k� ,���. Comparing this expres-

sion with Eq. �16�, and noting 1− fa��−���− fa�����= fa��
−���fa����� /baa����, one sees that KMS for g̃aa�

0� ��� is sat-
isfied. A similar argument holds for g̃aa�

0� ���.
In defining the phenomenological phonon-induced two-

fermion self-energy �Appendix B�, we construct the imagi-
nary part of the retarded component Im �aa�

phR���. The real
part is obtained through the Kramers-Kronig relation to en-
sure the retarded nature of �aa�

phR. The “lesser” and “greater”
components of the self-energy are then defined through the
bosonic KMS relations. Since the Bose distribution function
baa���� is singular at �=	a+	a�, we ensure the regularity
of �aa�

ph� by requiring Im �aa�
phR��� to pass through zero

at the same point. The particle-pair Green’s function gaa�
0

is obtained through the Dyson-type equation gaa�
0 = g̃aa�

0

+ g̃aa�
0

�aa�
ph gaa�

0 . Equations �A31� and �A32� can again be ap-
plied, showing that gaa�

0 has property A and satisfies KMS.
One can invoke similar arguments in extending property

A and the KMS relations to other quantities. These two prop-
erties are passed on from Taa� and Ga to �a

T through Eq.
�A16�, and then from �a

T and Ga
�0� to Ga through the Dyson

equation.
To recap, we have self-consistently established the pres-

ervation of the KMS relations for the two-point Green’s
function in the TG approximation: we assume that the “in-
put” Ga, in the T-matrix self-energy, satisfies �fermionic�
KMS and show that the “output” Ga obtained as the solution
of the Dyson equation also satisfies KMS. Moreover, the
particle-pair Green’s function gaa�

0 and the T matrix Taa� cal-
culated from this Ga satisfy the bosonic KMS relations. The
electron-hole Green’s function Psj giving both the absorption
and luminescence spectra �Eqs. �A5� and �A27�� is given in
our theory by �1 /�V�Psj =gsj

0 +gsj
0 Tsjgsj

0 . Arguments similar to
those above show that bosonic KMS relation �A6� between
Psj

� and Psj
R is indeed preserved in the T-matrix approxima-

tion.

APPENDIX B: THE EFFECTS OF PHONONS

In this appendix, the construction of the phonon contribu-
tions to the self-energies is briefly explained. More details
can be found in Ref. 21. The phenomenological phonon-
induced self-energy �aa�

ph ��� for the two-particle Green’s
function gaa�

0R �p ,q ,�� is introduced in Eq. �14�. Its imaginary
part is constructed as a temperature- and frequency-
dependent function and its real part is then obtained by the
Kramers-Kronig relation. First, the magnitude scale of
Im �aa�

ph is modeled as a function �ph
0 of temperature:

�ph
0 �T� = �LAT +

�LO

e�LO/kBT − 1
,

where, for GaAs, we take the longitudinal-acoustic phonon
width �LA=3.9 	eV, the longitudinal-optical phonon width
�LO=30.4 meV, and the LO phonon energy �LO=36 meV.
We impose two requirements in modeling the frequency de-
pendency: Im �aa�

ph decays exponentially as �→−
 and, as
discussed in Appendix A 5, it crosses zero at the chemical
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potential. We choose to satisfy these two conditions with the
definition

Im �aa�
ph ��,T� =

2�ph
0 �T�

1 + eS���−�0�1 −
2

e����−	� + 1
� , �B1�

where �=1 /kBT. At all densities low enough so that the band
gap renormalized by the static self-energies, Eg+�e

exch�0�
+�e

CH+�h
exch�0�+�h

CH �see Eq. �19� and following discus-
sion�, has not reached the lowest exciton energy, �0 is set to
the lowest exciton energy ��0=Eg−ER�. Otherwise, �0 is set
to the renormalized band-gap energy. The dimensionless pa-
rameter S is set equal to 4. This phonon width with the cited
parameter values has been fitted with good agreement to the
low-density luminescence data of Ref. 39. The complex pho-
non self-energy is given by

�aa�
ph ��� = −

1

�
lim
�↓0

�
−



 Im �aa�
ph ����d��

� − �� + i�
. �B2�

As explained in the text, when calculating the density in
Eq. �18�, we also phenomenologically broaden the spectral
function in the integrand. If Aa�k ,�� is the spectral function
as calculated in Eq. �17�, the broadened spectral function is
given by

Aa
ph�k,�� =� d��

2�
Aa�k,� − ���

2

��ph
0 cosh�2���/�ph

0 �
.

�B3�

This broadening is used only in Eq. �18�, not anywhere else
in our theory.

APPENDIX C: ANGULAR MOMENTUM EXPANSION
AND NUMERICAL SOLUTION

For each fixed �q ,��, the T matrix Taa�
R is obtained by

solving Eq. �10�, in three-dimensional momentum space,

with the screened Coulomb potential Waa� and the two-
particle Green’s function gaa�

0R as input. Overall spherical
symmetry guarantees independence on the direction of q of
all functions involved. We choose a polar coordinate system
in momentum space with the z axis parallel to q, writing the
momentum vectors as p1= �p1 ,�1 ,!1�, etc. Since the excita-
tions have cylindrical symmetry around ẑ, gaa�

0R �p3 ,q ,�� does
not depend on the azimuthal angle ! and both Waa��p1−p2�
and Taa�

R �p1 ,p2 ,q ,�� depend on the difference !1−!2. This
cylindrical symmetry makes the azimuthal angular momen-
tum m a conserved quantum number. We expand each quan-
tity in Eq. �10� in angular momentum eigenstates �spherical
harmonics�:

Taa�
R �p1,p2,q,�� = �

l1l2m

Taa�l1l2m
R �p1,p2,q,��


4�Yl1m

� ��1,!1�Yl2m��2,!2�

��2l1 + 1��2l2 + 1�
, �C1�

Waa��p1,p2� = �
l

Waa�l�p1,p2�Pl�cos �12� , �C2�

gaa�
0R �p,q,�� = �

l

gaa�l
0R �p,q,��Pl�cos �� . �C3�

Being conserved, the same m appears in both spherical har-
monics in Eq. �C1�. In the expansion of the potential �Eq.
�C2��, �12 is the angle between p1 and p2: cos �12
=cos �1 cos �2+sin �1 sin �2 cos�!1−!2�. These expansions
are substituted into Eq. �10� and the integrals over interme-
diate angle variables are performed, leading to

Taa�l1l2m
R �p1,p2,q,�� = Waa�l1

�p1,p2��l1l2
+ �

l3"�m�
�

0


 dp3

2�2 p3
2Waa�l1

�p1,p3�Kaa�l1l3m�p3,q,��Taa�l3l2m
R �p3,p2,q,�� , �C4�

where

Kaa�l1l3m�p3,q,�� = �
l3�"0

�− 1�ml1 l3� l3

0 0 0
� l1 l3� l3

m 0 − m
�gaa�l3�

0R �p3,q,�� . �C5�

In Eq. �C5�, the 23 matrices denote Wigner 3j symbols �see, e.g., Ref. 40�. For each fixed �q ,� ,m�, with m
=0, �1, �2, . . ., Eq. �C4� can be solved numerically by discretizing the one-dimensional p space, reducing the equation to a
matrix equation with the basis being the direct product of the p grid and an l space truncated at the top �l= �m� , �m�
+1, . . . , lmax�. In terms of these angular momentum coefficients, the susceptibility in Eq. �23� is written as

�R�q,�� = − �
sj

djs
+ dsj

+� dp1

2�2 p1
2�gsj0

0R �p1,q,�� +� dp2

2�2 p2
2�

l1l2

1

�2l1 + 1��2l2 + 1�
gsjl1

0R �p1,q,��Tsjl1l20
R �p1,p2,q,��gsjl2

0R �p2,q,��� .

�C6�
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Equation �C4� is an exact equation for the T-matrix angu-

lar coefficients. We note that the sum in Eq. �C5� is usually

dominated by the l3�=0 term. If, as an approximation, only

this term is retained in the sum, a great simplification will

result, since Kaa�l1l3m and hence Taa�l1l2m
R will become l diag-

onal, and with the relation

�− 1�ml1 0 l1

0 0 0
� l1 0 l1

m 0 − m
� =

1

2l1 + 1
,

we see that Taa�
R l1l2m will be independent of m. In this case,

we define a quantity Taa�l1

R by Taa�l1l2m
R �p1 , p2 ,q ,��

=�l1l2
Taa�l1

R �p1 , p2 ,q ,��, and, substituting into Eq. �C4�, we
obtain

Taa�l
R �p1,p2,q,�� = Waa�l�p1,p2� +

1

2l + 1
� dp3

2�2 p3
2Waa�l�p1,p3�gaa�0

0R �p3,q,��Taa�l
R �p3,p2,q,�� . �C7�

Like for Waa�, the expansion of Taa�
R �p1 ,p2� in terms of Taa�l

R involves only the angle �12 between p1 and p2:

Taa�
R �p1,p2,q,�� = �

l

Taa�l
R �p1,p2,q,��Pl�cos �12� . �C8�

This approximation, which we call the angle-average approximation, is exact in the low-density limit where fe , fh→0 and
when phonon broadening can be ignored so that Aa�k ,���2�����− �2k2

2ma
�. It is also exact at q=0 at any density.

We have taken the angle-average approximation for gaa�
0R in our calculations to date. In terms of the single-particle spectral

function, the angle-averaged, or l=0 component of, g̃aa�
0R �Eq. �16�� is explicitly given by

Im g̃aa�0
0R �p,q,�� = −

1

4�
� d��

2�
�1 − fa�� − ��� − fa�������

−1

1

d cos �Aa�k,� − ���Aa��k�,��� , �C9�

with k�k��=��
ma

M �2q2+ p2�2
ma

M qp cos �, M =ma+ma�, together with the Kramers-Kronig dispersion relation. The T-matrix
self-energy in Eq. �21� reduces in this approximation to

Im �a
TR�k,�� =� d��

2� �
a�

�baa��� + ��� + fa�������
0




dk�k�2Aa��k�,����
−1

1

d cos ��
l

Im Taa�l
R �p,p,q,� + ��� , �C10�

where

q = �k2 + k�2 − 2kk� cos � , �C11�

p =
1

M
�ma�

2 k2 + ma
2k�2 − 2ma�makk� cos � , �C12�

and the susceptibility reduces to

�R�q,�� = − �
sj

djs
+ dsj

+� dp1

2�2 p1
2gsj0

0R �p1,q,���1 +� dp2

2�2 p2
2Tsj0

R �p1,p2,q,��gsj0
0R �p2,q,��� . �C13�
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