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We demonstrate that dislocations in the graphene lattice give rise to electron Berry phases equivalent to
quantized values �0, �

1
3 � in units of the flux quantum but with an opposite sign for the two valleys. An

elementary scale consideration of a graphene Aharonov-Bohm ring equipped with valley filters on both termi-
nals, encircling a dislocation, says that in the regime where the intervalley mean-free path is large compared to
the intravalley phase coherence length, such that the valley quantum numbers can be regarded as conserved on
the relevant scale, the coherent valley-polarized currents sensitive to the topological phases have to traverse the
device many times before both valleys contribute, and this is not possible at intermediate temperatures where
the latter length becomes of the order of the device size, thus leading to an apparent violation of the basic law
of linear transport that magnetoconductance is even in the applied flux. We discuss this discrepancy in the
Feynman path picture of dephasing when addressing the transition from quantum to classical dissipative
transport. We also investigate this device in the scattering matrix formalism, accounting for the effects of
decoherence by the Büttiker dephasing voltage probe type model which conserves the valleys, where the
magnetoconductance remains even in the flux, also when different decoherence times are allowed for the
individual, time-reversal connected, valleys.
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I. INTRODUCTION

Since electrical conductance is even under time reversal,
it has to be that magnetoconductance is an even function of
the applied magnetic field that breaks time-reversal invari-
ance. This elementary Casimir-Onsager relation requires
equilibrium conditions such that the transport is in the linear-
response regime.1–4

Here we will present an example suggesting that in the
case of finite-temperature quantum transport, linear response
might run into a singular limit; although the external condi-
tions are perfectly within linear response, the parts of the
current that are governed by quantum mechanics cannot
equilibrate in a true sense because some quantum numbers
are effectively conserved, with the net effect that these co-
herent currents feel an “arrow of time” negating the Onsager
relations associated with true equilibrium. This might be a
more general truth, but we will limit ourselves here to the
specific case of graphene where we have to employ a whole
array of properties specific to graphene to come up with a
design that might exhibit the aforementioned effect. We
stumbled on this story in trying to find out how to turn a
topological phase that is most natural to graphene Dirac elec-
trons into an observable quantity.

The effect of topology on electronic properties is tied to
the topological features of the underlying atomic lattice.
These are the dislocations and disclinations. Although discli-
nations are rather unnatural according to the standard theory
of elasticity �or plasticity�,5 the global influences they exert
on graphene’s Dirac electrons6–8 have been relatively thor-
oughly studied, with a special focus on the similarities with
the holonomy structure of fundamental Dirac electrons in a
curved space time.9–13

However, dislocations have been largely ignored,14,15 al-
though these are ubiquitous topological defects in any solid.
In contrast to disclinations they require only finite energies to

be created, so that it is virtually impossible to prepare a
crystal that contains no dislocations at all. These have not
been found in the graphene flakes produced by the Manches-
ter method16 likely because dislocated graphene does not sur-
vive this rather violent method of preparing a sample. With
more sophisticated manufacturing methods it is expected that
graphene dislocations will be abundant.17

A dislocation, due to its topological nature, exerts influ-
ence also far away from the core. The question arises as to
what happens to a quantum-coherent graphene Dirac electron
that is transported around it. We analyze this problem in Sec.
II; the outcome is a holonomy structure of pleasing simplic-
ity. The dislocation is the topological defect associated with
translations,5 and since translations are Abelian, the ho-
lonomy is akin to the holonomy associated with
electromagnetism—the Aharonov-Bohm �AB� phase. A cru-
cial difference is that the Dirac electrons feel a �pseudo�flux
of the same magnitude but opposite sign in the two valleys,
which is a consequence of dislocations leaving the system
time-reversal invariant. In addition, the topological charge of
the dislocation appears in quantized units corresponding to
fractions �0, �

1
3 � of the magnetic-flux quantum.

For detection purposes, one envisages a typical AB ex-
periment where the dislocation is placed in the middle of a
ring �Fig. 1�. The AB oscillations are influenced by the pres-
ence of the dislocation holonomy, and we will discuss this in
Sec. IV. It turns out that the dislocation topological phase
could in principle be measured after it is disentangled from
the elastic scattering of impurities by disorder averaging. Its
effect is connected to the AB oscillation amplitudes, which
are in practice less reliable due to the standard mesoscopic
clutter of the oscillations.

If the current was carried exclusively by electrons in one
valley18 the situation would be quite different, since these
sense the dislocation Berry phase as indistinguishable from a
real magnetic flux. Abstractly, it seems that the dislocation
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Berry phase could thus cause the offset of the magneto-
oscillations, which would violate the Onsager relation. We
therefore consider the concrete possibility of valley filters
installed at the input and output terminals of our dislocated
AB ring �Fig. 1�. The time-reversal invariance puts a con-
straint on the general workings of the valley filter; when it is
perfectly transparent for electrons in valley K+ coming from
the left �thus completely reflecting the K− valley�, a K+ elec-
tron impinging on it from the right will be unitarily backscat-
tered to the K− valley. Deep in the quantum regime where the
phase coherence length is large compared to the size of the
ring L, long Feynman paths encircle the ring many times,
having ample opportunity to explore the “backside” of the
valley filters, with the effect that the quantum current equili-
brates over the two valleys, restoring the evenness of the
magnetoconductance. When temperature rises, the phase co-
herence length shrinks and becomes of the order of L. The
coherent part of the current that is sensitive to the topological
phases can still be detected but now it is dominated by Feyn-
man paths that traverse the ring only once. These can no
longer explore the backside of the valley polarizers, and so it
can no longer sense that time reversal is unbroken, with the
consequence that the magnetoconductance becomes uneven.
We will address this more quantitatively in Sec. V A. The
simple essence of the argument is the observation that even
in a linear-response measurement, the quantum-coherent part
of the current cannot reach a true equilibrium. The underly-
ing assumption is that the electrical currents are conserved
separately for the two valleys everywhere in the device, ex-

cept at the valley polarizers. Since these are separated in
space by a length L, this current can be regarded as effec-
tively conserved when the phase coherence length becomes
of the order of L for the purposes of quantum-coherent phe-
nomena that depend on the conservation of valley current.
This quantum conserved current acts in analogy with the role
of conservation laws in conventional hydrodynamics to pro-
hibit the system from reaching equilibrium.

The argument as presented implicitly rests on the lan-
guage of Feynman paths, and there are precedents known
where qualitative arguments of that kind can be quite mis-
leading with regard to quantum transport.19 A superb theory
describing transport deep in the quantum regime is the
Landauer-Büttiker scattering matrix formalism, and we will
address the workings of our device in this language in Sec.
V B. It seems that the formalism is inherently static, revolv-
ing around elastic scattering which is sufficient at zero tem-
perature, but at finite temperature the role of imaginary time
becomes central in properly accounting for the effects of
inelastic scattering. Among the various attempts,20,21 the
voltage probe approach to incorporating dephasing22,23 sug-
gested by Büttiker is particularly prominent. It amounts to
attaching an extra terminal to the coherent quantum device,
with the effect of scrambling the phase of the waves entering
this phantom reservoir. This has a respectable track record
with regard to correctly modeling the effects of decoherence
on quantum transport �e.g., Refs. 19 and 23–26�. We straight-
forwardly extend this method to the present device by requir-
ing that the dephasing reservoirs do not affect the valley
quantum number, assuming the intervalley inelastic time to
be infinitely long. As long as time reversal and unitarity of
scattering are present, it follows generally from this formal-
ism that magnetoconductance is even,4 a fact in this context
referred to as Büttiker’s theorem. We prove that this holds
even when different dephasing times are allowed for the two
valleys, which are connected by time reversal. Furthermore,
we explicate how the dislocation phase signature in the AB
oscillations remains the same as in the zero-temperature cal-
culation.

We hope that this story will motivate experimentalists to
realize our device in the laboratory. It appears to us that the
matters at stake cannot be decided by theoretical means
alone, as we will substantiate in the rest of this paper.

II. ELECTRON BERRY PHASE AND THE BURGERS
VECTOR OF DISLOCATIONS

One of the two possible topological crystal defects, the
dislocation, is omnipresent in crystals in general. A disloca-
tion is in principle obtained by the Volterra construction as
follows: a semi-infinite strip of unit cells is removed from a
crystal and the open edges are glued back together along the
Volterra cut, leaving some imperfections at the original be-
ginning of the strip �the core�, see Fig. 2. Tracing a closed
loop around the defect core but drawing it in the perfect
lattice, one finds a nonclosure equal to some lattice vector—
the Burgers vector. This persists for loops of arbitrary size,
and so the effect of the defect on electron wave functions is
global and long ranged. This property enables one to model

bb

FIG. 1. �Color online� The modified graphene Aharonov-Bohm
device. This is the usual ring pierced by an external magnetic flux
� but now with a dislocation with Burgers vector b in the center
acting as a pseudoflux on the electrons with a definite valley num-
ber. Both leads are equipped with a valley polarizer; ideally these
transmit fully, say, electrons in the K+ mode �solid lines� moving
from left to right, while K− electrons �dashed lines� propagating in
the same direction are reflected to K+ mode moving in the opposite
direction, as required by time-reversal invariance. In Sec. V A it is
argued that at temperatures such that the device size is of the order
of the phase coherence length, only Feynman paths traversing the
device once contribute to the magneto-oscillations; K+ modes mov-
ing from left to right �solid lines� sense the direction of the Burgers
vector in a way that is opposite to the K− modes moving from right
to left �dashed lines�, and this implies that the dislocation pseudof-
lux offsets the magneto-oscillations. At low temperatures the long
Feynman paths explore the backside of the polarizers and Büttiker’s
law is restored.
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the defect as a nontrivial boundary condition on the wave
function at the Volterra cut, which can be imposed by a
gauge field in a reversal of the usual argumentation for ap-
pearance of the Aharonov-Bohm effect.27 The difference
with the case of disclinations,7,10,28 the other topological
crystal defect, in which one cuts out a pie segment of the
lattice, is that instead of rotating the electron spinor, under
the influence of the translational dislocation,5 the spinor is
translated by the Burgers vector to maintain single valued-
ness. It is known that disclinations cause a deficit angle in
loops circling the core, which in graphene can be any of the
five multiples of �

�
6 , producing a variety of physical

effects,28 and are interesting primarily because of their oc-
currence in nanocones and fullerenes.6,7

The theoretical study of dislocations, however, has so far
been scarce. Random distributions of dislocations have been
discussed from the perspective of their statistical influence
on coherence and electron propagation.14,15 We will here ad-
dress a different set of phenomena associated with their to-
pology. We will show that although the topological charge of
a dislocation could be any lattice vector, they act as a simple
Aharonov-Bohm flux located at the defect core, of opposite
signs in two valleys. They fall into three possible classes—a
trivial one �zero flux� and two of opposite sign �� 1

3 flux�.

Let us start by reviewing the standard low-energy con-
tinuum description of the graphene electron states coming
from the pz carbon orbitals.29–32 The two “valley” Dirac
points are labeled by K�= �K �Fig. 2�, and the unit cell
contains two atoms �labeled A and B�, yielding a total of four
massless states. In this basis the wave functions are described
by a slowly varying four component spinor. Operators acting
on the A and B states without mixing the K� valleys are
written as Pauli matrices �a, where a� �1,2 ,3�, while the
valley degeneracy is tracked by a second set of � Pauli ma-
trices. To lowest order this yields the usual Dirac Hamil-
tonian,

H = − i��K� · ���3 � �1 + ��� · ��1 � �2� , �1�

where the energy is measured in units of �vF, K� is the nor-
malized K vector, and �� is the normalized vector connecting
the A and B sites �see Fig. 2�.

We now consider the influence of dislocations on such
Dirac fermions, associated with the translation by a Burgers
vector b at the modified boundary arising from the Volterra
cut. The components of � are coefficients multiplying the
Fermi states, K�A /B, which are Bloch eigenstates of the
crystal lattice, and a translation by a lattice vector is there-
fore equivalent to a multiplication by the corresponding
phase factor exp�iK� ·b�. This yields the U�1� holonomy

U�b� = ei�K·b��3 = ei�2�/3��b1−b2��3, �2�

where b1 and b2 are the integer components of the Burgers
vector b in the lattice basis �see Fig. 2�. The dislocations thus
separate into three equivalence classes, labeled by
d� �0, 1

3 ,− 1
3 �, with 3d��b1−b2�mod 3, where the period of

3 follows from the periodicity of the Fermi states �see Fig.
2�. Different from the case of disclinations,6,7 this is indepen-
dent from the A /B sublattice pseudospin quantum number
since translations carry no information on the structure inside
the unit cell. Instead, this phase does depend on the valley
quantum number in a simple way; the absolute magnitude is
the same and the phases in the two valleys just differ by a
minus sign.

Avoiding the dislocation core �which shrinks to a point in
the continuum limit�, its influence can be encoded by adding
a U�1� gauge coupling to the Dirac Hamiltonian in Eq. �1�,

Hdisl = H − i
� · e	

2�r
�K · b��3, �3�

where r and 	 are the standard polar coordinates, taking the
dislocation core as origin. The induced gauge field is in pre-
cise correspondence with the one of an Aharonov-Bohm so-
lenoid with flux 
d in units of e /� for the �K valley elec-
trons. Numerical simulations have already hinted that
dislocations behave as pseudomagnetic fluxes, in that they
create vortex currents around their core.33

We close this section by discussing the role of time-
reversal invariance, which is an important issue in this paper.
Real magnetic fields break time reversal, expressed through
an antiunitary operator �T� which involves complex conjuga-
tion �operator C�. Time reversal applied to the graphene
Dirac electrons exchanges the Fermi points and the corre-

FIG. 2. The electronic structure and dislocations in graphene.
By removing rows of unit cells a dislocation with Burgers vector b
is created. The ellipses indicate which unit cells can be removed to
obtain a “trivial” dislocation not carrying a net topological charge,
as can be seen for instance by counting the phases of the Bloch
waves. An arbitrary Burgers vector starts from the central square
and reaches the center of some hexagon, and this labels the dislo-
cation class; bold hexagon sides represent trivial dislocations
�d=0�, gray shade represents the d= 1

3 class, and white fill the d=
− 1

3 class. Graphene’s Dirac electrons carry unit cell �A /B� and val-
ley K� indices. The phases of the Bloch waves of the K+ states on
the rows of the defect-free lattice are indicated at the right in terms
of z=exp�i2� /3�. By creating the Volterra cut associated with the
dislocations it follows that the Dirac electrons experience topologi-
cal phase jumps of 2�

3 and − 2�
3 for dislocation class 1/3 and −1 /3,

respectively. The K− states experience the opposite phase jump.
Note that the phase jumps are independent of the A /B quantum
numbers because the dislocation does not affect the intra-unit-cell
structure.
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sponding modes in the leads. The time-reversal operator can
be chosen as simply T��1C. One has �T ,U�b��=0, as well
as �T ,H�=0; time reversal amounts to flipping the external
magnetic field, reversing the direction of motion of electrons,
and switching them to the opposite valley while keeping b
unchanged. After all, the lattice defect is just a complicated
rearrangement in the lattice potential and cannot break time-
reversal symmetry. The time-reversal symmetry also dictates
that the dislocation pseudoflux has to be of opposite sign for
the two valleys.

III. GENERAL PROPERTIES OF A DISLOCATED
AB RING

In Sec. II we have shown that dislocations correspond to
quantized magnetic fluxes, carrying however opposite signs
with respect to the two valleys. The standard way to measure
such fluxes is by measuring the conductance of an Aharonov-
Bohm ring device, as indicated in Fig. 6. Besides the usual
magnetic flux that can be pierced through the ring, we con-
sider one or more dislocations located inside the ring. The
electrons do not explore the dislocation cores and only com-
municate with the “lines of missing atoms” attached to the
dislocation cores that cross the ring “somewhere” �the choice
of this missing line is actually a gauge freedom on its own5�.

With regard to the feasibility of realizing this device in the
laboratory, we already argued in Sec. I that dislocations
should be plentiful in graphene that is produced with nonvio-
lent methods. Graphene structures with a size of �1 �m
have been manufactured and show quantum transport phe-
nomena, including AB oscillations.34 Concerning the final
important ingredient, the valley polarizers, it has been sug-
gested that the valley-polarized currents could be generated
using valley filters constructed from thin strips of graphene
with zigzag edges.18

At this point one may ask how realistic it is to assume that
valley currents are conserved at the mentioned length scales.
The first issue is that the intravalley inelastic-scattering time
should be, at a given temperature, much smaller than the
intervalley inelastic-scattering time to satisfy the requirement
that the intravalley phase coherence length becomes quite
small while the valley polarization is not destroyed at this
temperature. The origin of these inelastic times is of course
not mysterious; it is rooted in Fermi-liquid electron-electron
and electron-phonon scatterings. Although we are not aware
of unambiguous experimental information,35–40 it is widely
believed that the intervalley inelastic time is indeed much
longer because of the kinematical bottleneck that is active
both for electron-electron and electron-phonon scatterings in
the form of the large momentum that has to be absorbed
when the on-shell electrons are scattered between valleys. In
fact, the elastic intervalley scattering is more worrisome
since valley quantum number is quite fragile, being rooted
eventually in lattice potentials, and one expects it to be very
sensitive to the imperfections of real life devices.

There are indications from theoretical studies that the
problems are manageable as long as one does not make the
structures too narrow. The boundaries do not seem to play a
critical role,41,42 and there is numerical evidence for valley

conservation in the ring geometry.43 Eventually, one can con-
template even smooth terminations using mass confinement
due to potentials,44 which automatically preserve the valley.

IV. DISLOCATED AHARONOV-BOHM RING AT ZERO
TEMPERATURE

The focus of this section will be on the fully coherent
quantum transport at zero temperature, and in this regime the
valley filters do not have a decisive influence on the conduc-
tance. As announced in Sec. I this might be different at finite
temperatures. The conclusion of this section will be that
when the valley currents are conserved, the dislocation Berry
phase is observable in principle but harder in practice; after
inserting a dislocation in the ring, keeping it the same other-
wise, especially with regard to point disorder, its presence
can be deduced in principle from changes in the amplitude of
magnetoconductance oscillations. When the intervalley scat-
tering length becomes smaller than L �ring arm length�, the
electron transport carries no information any longer, pertain-
ing to the presence or absence of the dislocation�s�.

Let us focus on an ideal device which has ballistic trans-
port in the arms, the magnetic field, and the dislocation. The
total topological phase contribution to the wave function on
traversing the ring is just the sum of the electromagnetic ��,
in units of h /e� and defect, Eq. �2�, pseudofluxes, since both
electromagnetism and dislocations are governed by Abelian
symmetries �U�1� and translations, respectively�. Starting
with the case when intervalley scattering is assumed to be
absent, while the valley filters of Fig. 1 are switched off, the
current is due equally to carriers from both valleys. We learn
from Eq. �2� that for the nontrivial dislocations the magne-
toconductance curve G��� is shifted by 2�

3 for carriers at one
Dirac point and by − 2�

3 at the other, while the signs reverse
on switching the dislocation class. Adding the two currents,
each with the associated phase shift, results in the magneto-
conductance G��+ 2�

3 �+G��− 2�
3 �. Fourier expanding this

as G���=G�0�+G�1� cos���+¯ shows that the harmonics of
order 3n, for n�Z, do not change, and all others are multi-
plied by a factor of − 1

2 . In particular, the fundamental fre-
quency oscillation �with period h

e � is halved in amplitude.
This means that the influence of the dislocation Berry phase
is quantitative, affecting only the amplitudes of the Fourier
components of the AB oscillations. But these are also af-
fected by point disorder, which gives rise to the standard
sample-to-sample mesoscopic fluctuation.

Let us address these matters quantitatively using the
Landauer-Büttiker scattering matrix formalism.4 We employ
a model where the polarizers and two arms of the ring are
described by a single scatterer each, completely analogously
to the normal-metal ring case in Refs. 45 and 46. The modes
are labeled by transversal momentum and valley, while the
electrons can propagate in both directions inside both the left
and right lead.47 The amplitudes of outgoing modes,
O��

OL

OR
�, and incoming modes, I��

IL

IR
�, are connected by a

scattering matrix S� , with O=S�I. The important submatrices
of S� are t� and t�, given by OR= t�IL and OL= t�IR, where IL /IR
are columns of amplitudes of incoming �into a scatterer�
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modes from the left/right and OL /OR are columns of ampli-
tudes of outgoing modes from the left/right, see Fig. 6�b�;
thus t� and t� are M M matrices, where M is the number of
modes in one lead. We employ the usual simplification of
using only a single transversal mode �M =2� for simplicity,

with IL= �
IL

+

IL
− �, etc., with the expectation that the salient fea-

tures of this model survive in the realistic case of graphene
with more modes. In the remainder the �K modes are la-
beled by �� �+,−�, and we follow the convention that the
scattering matrices are defined by organizing the amplitudes
in columns as described above. Notice that since K−=−K+,
time reversal exchanges the two valleys, connecting, e.g.,
incoming �left moving� electron amplitude in one valley to
the outgoing �right moving� amplitude in the opposite valley,
on the same side of the scatterer.

The scattering matrices used to calculate the total S� are as
follows: the splitter �circle in Fig. 6�a�� has a perfect trans-
mission and divides the amplitude equally between the two
ring arms, corresponding to the leads strongly coupled to the
ring, i.e., �= 1

2 in Ref. 46; the scattering in ring arms �squares
in Fig. 6�a�� provides the necessary total flux phase upon
encircling the ring, i.e., traversing both arms. We present the
ballistic case for the upper arm,

S�� = ei��
0 0 tei���+d� aei��

0 0 aei�� tei���−d�

te−i���+d� ae−i�� 0 0

ae−i�� te−i���−d� 0 0
	 ,

�4�

with t�
1−�2, a� i� with �� �0,1�, and � is an effective
phase encoding for the point disorder. The probability of
transmission in the same valley, �t�2, and the probability of
transmission with scattering to the opposite valley, �a�2=�2,
are parametrized by �, whose value 0 corresponds to infinite
intervalley scattering time for propagating through the arms.
For the lower arm we then take S��=S����→−� ,d→−d�, as
traveling from left to right must give opposite phase contri-
butions in the two arms. The magnetoconductance curve is
then calculated by the Landauer-Büttiker formula4 G���
=Tr�t����t�†����, where t� belongs to the total scattering ma-
trix of the device, obtained by combining the ingredients we
listed above. The matrix elements of the t���� matrix that
determine the magnetoconductance are obtained by explic-
itly solving for the outgoing amplitudes in the right terminal
of the device after fixing the incoming amplitudes in the left
terminal to 1. Let us finally explicate some symmetry con-
straints on the scattering matrices. The unitarity of scattering
implies S�†S� =1, expressing that particle current is conserved.
Time reversal plays an important role in what follows, and it
implies that for any matrix S� �for a certain choice of phase
relation between incoming and outgoing modes�,

S� ��� = XS�T�− ��X, X =�
0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0
	 , �5�

where the matrix X exchanges the valleys. Valleys act in a
similar way as spins, with the spin-up and spin-down modes

behaving similarly under time reversal. We will come back
to this issue in Sec. VI.

Let us now discuss the characteristic features of the ex-
perimentally observable conductance G���. The intervalley
scattering � is an important parameter, and we first analyze
the case when it vanishes. This corresponds to the case of
Eq. �4� after setting �=0. It is obvious that the dislocation
pseudoflux just adds to the magnetic flux. Furthermore, the
two valleys are decoupled in the whole device, implying that
the two currents can just be added. We can then repeat the
simple argument from the beginning of this section to obtain
the “halving of amplitudes” rule. This is independent of the
particular point scatterer distribution, parametrized by the
phase � in Eq. �4�. In Fig. 3�a� we show the magnetocon-
ductance without �thick solid line� and with �red dashed line�
a nontrivial dislocation present in the ring, with one fixed
disorder phase �=2.3, where one immediately discerns the
main effect of the dislocation; the fundamental harmonic is
multiplied by a factor of − 1

2 .
This example however hides a problem. Namely, a ring in

the absence of dislocations, with a fixed disorder realization
����1� and a dislocated ring with a different disorder real-
ization ����2� �black solid and blue dotted-dashed lines,

FIG. 3. �Color online� Intervalley and disorder scattering depen-
dent magnetoconductance at zero temperature. �a� Consider a fixed
disorder configuration ��=2.3�; at infinite intervalley scattering
time �a=0 in Eq. �4��, we obtain the thick black line in the absence
of a dislocation and the thick dashed red line in the presence of a
d=1 /3 dislocation. Notice the amplitude relation described in Sec.
IV. The thin gray lines show the evolution of the dislocated case
with shortening intervalley scattering time. In the limit of maximal
scattering �a→1�, the thick black line is reached, as if no disloca-
tion is present. �b� Illustration of the influence of point disorder with
no intervalley scattering. The solid black line �absence of disloca-
tion� and the dashed red line �in the presence of dislocation�, at a
fixed disorder configuration �=2.3, are identical to the ones in part
�a�. The dotted-dashed blue line is obtained in the presence of a
dislocation but with the disorder configuration changed to �=0.1.
In contrast to the case of the red line, the blue line has no “halving
the first-harmonic amplitude” relationship �see text� to the black
line, as different disorder configurations can produce dramatically
different AB oscillations.
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respectively, in Fig. 3�b�� produce different outcomes, and it
becomes impossible to recognize a relationship between the
two. The problem is that point disorder by itself can change
the harmonic content of the AB oscillations in arbitrary
ways. This has the effect that the specific information asso-
ciated with the presence of the dislocation becomes com-
pletely hidden for the experimentalist, who has to produce a
new sample to compare a dislocated with a nondislocated AB
ring, thereby changing the disorder configuration.

However, the simple rule of halving the amplitude, de-
scribed above, is rooted in topology, and it does survive
when the point disorder is averaged over, which is a proce-
dure that can be implemented in practice. This fact is dem-
onstrated in Fig. 4, where we show the results for the ampli-
tudes of conductance harmonics, obtained after an averaging
over the disorder phase �; the first- and second-harmonic
amplitudes of the dislocated ring �red star� have half the
value �and opposite sign� compared to the ones of the ideal
ring �black square�.

The effect of intervalley scattering can be studied by
switching on the a parameter in Eq. �4�. As an illustration we
show by thin gray lines in Fig. 3�a� the change in magneto-
conductance as we gradually decrease the intervalley scatter-
ing length; it interpolates between the outcomes of the ring
with and without the dislocation. In Fig. 4 we show the evo-
lution of the disorder phase averaged Fourier components,
and these examples make it immediately clear that as the
intervalley scattering length becomes smaller than the ring
size, information regarding the presence of the dislocation is
wiped out completely. The physical reason is simple. Con-
sider again the Feynman paths; the quantum conductance is
governed by paths that encircle the ring many times, and
such a long path will cross the dislocation “Dirac string”
many times. But when the intervalley scattering length is
short it will randomly carry a K+ or K− valley identity when

it crosses the Dirac string, thereby picking up randomly the
plus and minus dislocation Berry phases, with the obvious
outcome that the net phase will average away, and this means
in turn that the current will lose all information regarding the
presence of the dislocation.

Finally, what is the specific effect of adding valley filters
at the leads in the quantum regime? The scattering matrix
describing the filter �half black rectangle in Fig. 6�a�� per-
fectly transmits �=+ modes from left to right, and so time-
reversal symmetry fixes the form

S�pol =�
0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0
	 .

We already emphasized in Sec. I that time-reversal symmetry
implies that the backside of a perfect valley polarizer acts
similar to a perfect intervalley scatterer, as further illustrated
in the inset of Fig. 1. Even in the absence of any other source
of intervalley scattering, this implies that valley currents are
no longer conserved, since the long Feynman paths will nec-
essarily explore the backsides of the valley filters. This
means that the dislocation Berry phase gets scrambled, as in
the case of random intervalley scattering, and there is no
simple rule for disentangling the dislocation from the nonto-
pological random disorder. At the same time, G��� will be
even under all circumstances, since there is an infinity of
long paths in both valleys, and Büttiker’s theorem is obvi-
ously applicable to this case.

V. MODELING THE DECOHERENCE AT FINITE
TEMPERATURE

We can now turn to the puzzle announced in Sec. I; what
happens in our device at finite temperatures? It appears that
our device might represent a particular challenge to the in-
complete understanding of the relation between the coherent
quantum transport at short scales and classical transport at
macroscopic scales that is characteristic for any system at a
finite temperature. The sharpest way to express these matters
is by realizing that at sufficiently large length and time
scales, any electron system will be governed by the same
hydrodynamical principles as the classical electron plasma of
the high-temperature limit. In contrast to the zero-
temperature quantum case, this classical transport is dissipa-
tive and for a Fermi liquid the dissipation mechanisms seem
well understood; they are the usual electron-electron and
electron-phonon scattering lores. One can just take the Kubo
formalism from the textbooks48 and compute the diagrams.
The problem is that such a computation becomes unmanage-
able for a device problem such as ours.

The argument presented in Sec. I for the unevenness of
the magnetoconductance at finite temperature rests implicitly
on the Feynman path47 intuition. In Sec. V A we will analyze
this in more detail, discovering that the argument actually
rests on an uncontrolled assumption; to find out what hap-
pens with the quantum interferences at finite temperature,
one just sums over world lines up to a maximal length equal

FIG. 4. �Color online� The distributions of the disorder averaged
amplitude of the harmonics of the magneto-oscillations for the ring
device of Fig. 1 at zero temperature with the valley polarizers
switched off. The black squares indicate the response in the absence
of a dislocation, and the red stars show what occurs in the presence
of a d= 1

3 dislocation and no intervalley scattering; the amplitudes of
the fundamental and first harmonic are halved and their signs are
reversed �see main text�. The triangles indicate the evolution when
the amount of intervalley scattering �parametrized by the value of
���2=a2, the probability of scattering between valleys on a ring arm
traversal, expressed in percents� in the arms is increased.
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to the phase coherence length, assuming that the remainder
merely contributes to the incoherent current. In this way,
when world lines become “too long,” they are assumed to
just disappear. In reality these of course do not disappear but
they turn into the self-energy graphs coming from the quasi-
particle interactions—the “Kubo brick wall.” With this as-
sumption, we obtain the finite-temperature uneven magneto-
conductance �Fig. 5�, which becomes even at zero
temperature as it should �Sec. V A�.

Although it is far from obvious why the cutting of world
lines approach to dephasing can lead to faulty conclusions
regarding the “quantum arrow of time,” precedents exist
where the intuition based on Feynman paths turned out to be
misleading.19 It is a standard practice in mesoscopic physics
to use the scattering matrix approach also at finite tempera-
tures and to account for the effects of dephasing using the
voltage probe method invented by Büttiker22 �Sec. V B�. De-
spite its simplicity and track record �e.g., Refs. 19 and 23–
26� and the fact that by construction it respects the basic
symmetries of quantum scattering, it is surely not a divine
solution. A problem of principle is of course that this lan-
guage, describing interfering quantum-mechanical waves, is
not quite the preferred way to describe finite-temperature dis-
sipative flows of classical hydrodynamics, where the quan-
tum unitarity condition is replaced by the weaker current
conservation demand. In fact, the Büttiker dephasing reser-
voirs model the effects of inelastic scattering by an effective
elastic scattering.49

For relaxational classical hydrodynamics, time is at the
heart of matter. Dealing with a problem similar to ours,
where there are subtle complications associated with time,
can the standard approach be trustworthy in the cross-over
regime? We favor experimental advances in this regime. As
we will show in Sec V B, the Büttiker construction insists

that the magnetoconductance should stay even in all circum-
stances even when imposing different decoherence rates for
the two valleys, as is generally expected of this formalism.
On the other hand, in the high-temperature regime the trans-
port turns classical, and the expectation of evenness, ob-
served in the large body of existing experiments, is theoreti-
cally supported if given that microscopic reversibility can be
viewed as certain assumptions on the classical fluctuation
correlations.1–3

A. Feynman path approach

We describe here the Feynman path approach explicitly.47

We ignore intervalley scattering of any kind ���0 after Eq.
�4��, except at the polarizers, and focus on the regime where
the phase coherence length L	 is of the order of the device
dimension L. The conductance is proportional to the electron
transmission probability �, expressed in terms of Feynman
amplitudes Aa as

� = �A1 + A2 + ¯ + AN�L	��2 + B , �6�

where we assume that in the coherent part only paths with a
length not exceeding L	 are to be included. The longer paths
contribute incoherently to the current through the term B,
i.e., they do not produce interference terms responsible for
the Aharonov-Bohm oscillations. This is the core of the
dephasing model of this section. Let us first discuss the
qualitative picture. As already explained, the perfect valley
polarizer acts by being fully transparent to, say, a K+ mode
propagating from left to right and a K− mode propagating in
the opposite direction. But microscopic time-reversal invari-
ance in combination with charge conservation implies that an
incoming K− mode moving to the right is fully reflected into
a K+ mode moving to the left, and vice versa �inset of Fig. 1�.
Let us now consider the shortest possible paths that can give
rise to interference in the presence of a dislocation. For a
current flowing from left to right, the valley polarizers ensure
that it is entirely carried by K+ modes. The current in the
“lower” arm has to traverse the Volterra cut acquiring the
phase jump while in the “upper” arm it is unaffected �see
Fig. 1�, with the net result that the transmission amplitude
picks up the dislocation pseudoflux of 1

3 , which can in turn
be compensated by an external field. Repeating the argument
for a current from right to left �dashed lines in Fig. 1�, one
ends up with a shift of − 1

3 of a flux quantum. The conclusion
is that the extremum of the magneto-oscillations shifts away
from its position at zero external flux, thus violating Büttik-
er’s theorem. The effect is due to the finite temperature and
the implicitly dissipative measurement setup, and it is
present even though we consider the system very close to
equilibrium.

In the present context based on formula �6�, the micro-
scopic time-reversal symmetry, which recovers Büttiker’s
law, is associated with the requirement that the perfect valley
polarizer is a unitary intervalley scatterer for the electrons
coming in with the wrong polarization. At “high” tempera-
tures discussed in the previous paragraph, the phase-coherent
electron encounters the polarizers at most once; it is trans-
mitted with no opportunity to explore the backside of the

FIG. 5. �Color online� The magnetoconductance oscillations
G��� as a function of applied flux �, calculated using the “trun-
cated Feynman path method” discussed in Sec. V A, for the device
of Fig. 1 with a dislocation of class d= 1

3 . We show the results for
phase coherence lengths L	=3,7 ,� in units of the ring arm length,
finding that the extremum shifts from � 1

3 the flux quantum value at
high temperatures to the origin at zero temperature. The thin dotted-
dashed line shows the result without a dislocation. The inset shows
the range of “disorder” �phase � of Sec. IV� dependent phase shifts
of the fundamental �h

e period� harmonic of G��� as a function of
L	. Symbols show the average over the disorder phase.
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polarizers. However, as the temperature is decreased one has
to take into account longer and longer paths. A typical path
in this ideal device is of the kind that, say, a K+ particle
having traveled from left to right in the upper and lower
arms, travels further via the upper arm after getting scattered
to the K− valley at the backside of the left polarizer. Such
long paths destroy the valley quantization and the phase as-
sociated with the dislocation pseudoflux gets averaged away.
At zero temperature paths of arbitrarily long length dominate
and the extremum of the magneto-oscillation obeys Büttik-
er’s theorem.

To find out what exactly happens in this model as a func-
tion of decreasing temperature �and in nonideal devices�, we
computed the magnetoconductance by summing all Feynman
paths with a length bounded by L	, i.e., the part of � without
B in Eq. �6�. The results are shown in Fig. 5, as a function of
the two parameters, the dephasing length L	, and the disorder
phase � of Eq. �4�. Unsurprisingly, we find a smooth evolu-
tion where the extremum shifts from a flux � 1

3 at high tem-
perature back to the origin as the phase coherence length
increases. Only at precisely zero temperature is Büttiker’s
law recovered, since at any finite temperature the sum is
always “dominated” by the short paths, and for this reason
the effect seems quite robust.

The details of the computation go as follows: given the
finite coherence length L	 measured in ring arm lengths, the
sum over Feynman paths limited by L	 is performed el-
egantly by a simple trick. We weigh the scattering matrices
of the �single transversal mode� ring arms with an auxiliary
variable �, essentially scaling t→�t in Eq. �4�. Then the
total coherent transmission amplitude A�� ,�� is calculated
exactly in the way described in Sec. IV by considering the
scattering matrices of ring arms and polarizers that connect
the various in and outgoing amplitudes in both valleys and
solving for the outgoing amplitudes.45 The advantage of do-
ing things this way comes from the fact that every Feynman
path amplitude is exactly a product of scattering matrix ele-
ments of ring arms, polarizers, and the terminals, which are
accumulated as the path is followed from start to end.47 Cru-
cially, this implies that the amplitudes of the paths having
length of n ring arms �traversing an arm n times� will pick up
the factor �n, since a single factor � is associated with every
pass through an arm. The sum of Feynman amplitudes
A�n����, corresponding to paths of length up to n ring arms,
represents the part of the total amplitude A�� ,��, where �
appears multiplied by itself not more than n times. This can
be obtained by using a truncated Taylor expansion in the
variable �, because it is an expansion in terms of the powers
of �, exactly what is needed. It follows that A�n����
�A0���+�A1���+ ¯ +�nAn��� ��=1, where we used the
definition Am���= 1

m!
�m

��mA�� ,��. This transmission ampli-
tude then gives the conductance associated with paths tra-
versing the arms not more than n times through the standard
relationship Gcoh

�n� ����A�n�����2.

B. Valley-dependent Büttiker dephasing probe

Let us now turn to the scattering matrix theory at finite
temperature for our device by employing the “Büttiker phan-

toms” to model the effects of dephasing �see Fig. 6�. We

define Tpq
�����S� pq

����2, the modulus squared of the device scat-
tering matrix elements, where p and q refer to the leads
�terminals� and � ,��� �+,−� refer to the propagating modes
in the leads, such that they represent the probability of scat-
tering from mode �� in lead q to mode � in p. It follows that
the total current in lead p carried by � electrons is

Ip
� =

e

h
�
q,��

Tpq
�����p

� − �q
��� , �7�

where we use the most general option of having a different
chemical potential �p

� for each type � of electrons in the
reservoir connected to the p lead. Such a possibility is clearly
applicable when we interpret the mathematical model as de-
scribing a spin system50 �with two valleys being the spin up
and down�, while for graphene it could be less clear what
different chemical potentials �+ and �− actually signify. In
particular, one could argue that although the voltage probe is
in a sense a mathematical construction that enables us to
incorporate decoherence in the elastic model, it is also an
actual component regularly used in the laboratory, therefore
having a physical meaning. In the case of graphene, the spe-
cial voltage probe would amount to having different chemi-
cal potentials at the two points in the Brillouin zone, which is
conceptually conceivable. As will be elaborated below, the
physical demand for equal dephasing lengths for the two
valleys leads to �+=�− and removes the problem for that
situation. In any case, we regard that, conceptually, the literal
interpretation of the dephasing reservoir as a physical entity
is not necessary.49

The Büttiker voltage probe method22 is based on the idea
that electrons lose their phase in reservoirs; thus one extends
the system by introducing N−2 additional auxiliary �“phan-

tom”� reservoirs �labeled by f̃ � �3̃ , Ñ��, where every one of
them is coupled to the device through two familiar leads

(a)

(b)

FIG. 6. �a� The network of scatterers modeling the Aharonov-
Bohm device with dephasing included. Wavy lines represent reser-
voirs and smooth lines represent wires carrying the ��� modes. The
triangle element and its reservoir belong to the Büttiker dephasing
probe construction and are used only in Sec. V B; the currents I3

and I3� of Eq. �10� are flowing in the two leads connecting the
triangle to its reservoir. Note that we use different chemical poten-
tials ��3

�’s� for the two valleys in this reservoir. �b� Labeling of
incoming/outgoing modes for a generic scatterer, with IL represent-
ing the column �IL

+ ,IL
−�, etc.; the full/dashed lines depict the + /−

modes.
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�labeled as f and f� at reservoir f̃�, each carrying the two
�“�”� modes but with the constraint that the total current
toward a reservoir If̃ �0, i.e., the reservoirs will not drain
current but will provide dephasing. The choice of two leads
�instead of, e.g., one� is just to make possible total
decoherence.51 Effectively, one solves these N−2 current
constraints �linear equations� for the a priori unknown N
−2 auxiliary phantom chemical potentials � f̃ and then elimi-
nates these � f̃ in the expressions for the currents in the
physical leads. Performing this elimination in the physical
current equations leads to new effective transmission coeffi-
cients between the physical leads which figure in these equa-
tions. These effective transmission coefficients are then func-
tions of the extended system transmission coefficients
between the physical leads, as well as the transmission coef-
ficients to the phantom leads. To recall the familiar results of
Ref. 22, let us briefly specialize to the simplest, single mode,
two-terminal case, dropping thereby the � index, as well as
having the simple expression for the conductance G=T12 im-
plied by Eq. �7�. Then for example in the case of one phan-

tom lead � f̃ =3�, the above elimination procedure yields,

T12,eff = T12 +
T13̃T3̃2

1 − T3̃3̃
, �8�

where T3̃p is to be understood as the total transmission coef-

ficient from lead p to the dephasing reservoir 3̃, e.g., T3̃1
=T31+T3�1, etc. The form of the conductance Geff=T12,eff ob-
tained in this way tells us that the current divides into a
coherent �T12� and an incoherent piece, where the second
term is quite suggestive; electrons starting from lead 2 leave

the device to 3̃ and come back to lead 1, while we have to
multiply the probabilities to obtain the answer—the classical
incoherent way of propagation. The amount of decoherence
is determined by the probability of scattering into the
dephasing leads. For instance, when electrons leave into the
dephaser with unit probability, the coherent contribution to
the net conductance vanishes completely, since unitarity of
scattering requires that Tp3̃=1, p� �1,2� implies T12=0 in
Eq. �8�. The bottom line is that the effects of inelastic scat-
tering are mimicked by a model system of elastic scatterers
with extra leads added, while the current constraints become
nonlinear in the amplitudes �linear in their moduli squared�,
thereby scrambling the phase information.

An appealing feature of this method is that the effective
system including the decoherence automatically respects the
symmetries of the original scattering problem,52 in so far as
it is encoded in the T matrices. One can explicitly check by
using formulas of variety �8� �see Ref. 52�, that unitarity
�sum of elements of any row or column of T equals 1� and
time-reversal symmetry �Tpq���=Tqp�−��� of the starting
extended T matrix imply precisely the same symmetries for
the Teff matrix. These two symmetries are sufficient to derive
Büttiker’s theorem on the evenness of the magnetoconduc-
tance for a two-terminal device.4

We are now ready to address our graphene device. The
essential ingredient is the demand that valley currents be
conserved, such that the Berry phase of the dislocation be-

comes active. The implication is that the phantom reservoirs
have to respect valley conservation. This is at odds with the
notion of an equilibrium reservoir that would back inject
valley currents with equal probability, regardless of the na-
ture of the current it swallows. The standard dephasing res-
ervoirs of the Büttiker theory are obviously of this equilib-
rium kind, and we have to modify the construction to do
justice to the conservation law associated with the “internal”
valley quantum number. We first emphasize again that in the
standard treatment of the single mode case22 with one

dephasing probe �labeled as 3̃�, one imposes the hydrody-
namical conservation of the total current by setting If̃=3=0,
which then leads to Eq. �8� after elimination of the chemical
potential �3̃. In order to allow a maximal current flow in and
out of the dephasing reservoir, one equips it with two leads
labeled by f =3 and 3� as we already discussed. Thereby the
hydrodynamical current conservation turns into the con-
straint

I3 + I3� = 0, �9�

requiring that the dephasing reservoir drains no net current.
The scattering matrix connecting the two physical leads and
the two phantom leads can be symbolically represented by a
triangle as in Fig. 6.

In order to impose the crucial valley current conservation
as well, we now generalize this construction by setting

I3
+ + I3�

+ = 0,

I3
− + I3�

− = 0. �10�

In this way we enforce that the decoherence happens inde-
pendently for the two valley currents.

It is obvious that we have to introduce two chemical po-
tentials, �3

+ and �3
−, and use them to enforce the two con-

straints in Eq. �10�. Since �3
+ and �3

− can be used as indepen-
dent parameters, one may conclude that the intrinsic
nonequilibration of the conserved valley currents is ex-
pressed as a nonequilibrium state of the phantom reservoir,
keeping in mind that in principle this reservoir has no physi-
cal existence—it is just a trick to encode that electrons mov-
ing through the ring at finite temperature will dissipate their
energy by exciting phonons and electron-hole pairs. In sum-
mary, the constraints in Eq. �10� are coding for the nonstand-
ard ingredient that an internal �valley� quantum number is
conserved. Finally, we emphasize that there is an additional
freedom in the choice of the scattering matrix �S�d� associated
with the way the dephaser is connected to the ring—the scat-
tering indicated by the triangle element of Fig. 6. This con-
tains the transmission coefficients into the dephaser, and
thereby controls the degree of decoherence caused by the
dephaser. The S�d does not mix the valleys so it determines
the intravalley dephasing time. Obviously in the physical
system the decoherence in the two valleys should be the
same, leading to constraints on the matrix elements discussed
in detail below. Given these ingredients, the calculations are
straightforward and are summarized in the Appendix.

The outcome for magnetoconductance computed from the
results in the Appendix is as follows. According to expecta-
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tions, we analytically prove that the magnetoconductance
G��� is even in the flux �, assuming that the symmetries
�time reversal and unitarity� of the T matrix are present. The
evenness is thus independent of the values of all physical
parameters and persists even when different dephasing
lengths are assigned to the two valleys by tuning the S�d ma-
trix. Such a situation corresponds to a nonequilibrated reser-
voir, with �3

+��3
−. Invariably, these chemical potentials

scale with the physical voltage �1−�2 �no � dependence in
physical reservoirs�, consistent with the linear-response re-
gime.

Let us now analyze the oscillations themselves. At zero
temperature, when the scattering into the phantom reservoirs
vanishes, the model reduces to the matters discussed in Sec.
IV. The corresponding results for the disorder phase averaged
amplitude of the fundamental, h

e harmonic, seen as the first
entry of Fig. 4, are shown as the infinite dephasing length
�L	=�� entry in Fig. 7 �black square—in the absence of
dislocation; red star—in the presence of dislocation;
triangles—with dislocation and varying intervalley scattering
length�. The effect of finite temperature is modeled by
switching on the scattering into the dephasing reservoir and
amounts to a gradual decrease in the magnetoconductance
oscillations that eventually vanish when the dephasing length
becomes small compared to the device dimensions; the green
dashed line and green circles of Fig. 7 show the overall os-
cillation amplitude dependence on the dephasing length L	.
The next issue is how the ratio between the disorder phase
averaged Fourier amplitudes of the dislocated and ideal ring
evolves with temperature. Figure 7 shows that this ratio is

virtually independent of the temperature and retains the
value of − 1

2 identified at zero temperature �Sec. IV�.

VI. CONCLUSIONS

Can Casimir-Onsager relations be invalidated because
leftovers of quantum-coherent currents at intermediate tem-
peratures cannot equilibrate in a true sense due to a conser-
vation law applied to an internal symmetry? The special fea-
tures of the device introduced in this paper make this
provocative question remain. We do not claim to have a de-
finitive answer. Within the realm of finite-temperature quan-
tum transport the issue appears to be unresolved and we chal-
lenge the readership to devise a more complete theoretical
treatment that has the capacity to settle these matters. We
hope that the considerations in this paper will motivate the
experimentalists to focus in on the physics of dislocations in
graphene. It seems that there are no fundamental obstructions
to the realization of our proposed device, with the possible
exception that it might appear challenging to keep valley
currents conserved on reasonable length scales. On the other
hand, such an experiment still represents a considerable tech-
nical challenge, but the reward is potentiality of probing the
reach of validity of a familiar law in a novel context.

We do invoke specialties of graphene but the theme is
more general. Are there other conserved internal quantum
numbers that can be utilized for similar purposes? The trans-
port of spin comes immediately to mind, with spin polariza-
tion taking the role of valley polarization, spin currents53,54

as valley currents, and spin-orbit coupling as intervalley scat-
tering. One needs more equipment. It appears that in prin-
ciple the Aharonov-Casher Berry phase55 associated with an
electrical monopole in the middle of the ring has the poten-
tial to take the role of the dislocation �see, e.g., Ref. 56�, but
a literal analog of valley polarizers is less obvious.

This brings us back to an important by-product of this
pursuit—the graphene dislocation with its Berry phase that
communicates with valley currents in a unique way. More
speculatively, if “valleytronics” ever gets off the ground, and
the Casimir-Onsager relations are shown to fail in the inter-
mediate regime �however unlikely the prospect�, the disloca-
tions would have their use as unique valleytronic circuit el-
ements measuring in topologically robust ways the valley-
polarized currents. The equipment based on valley filters,
which were the focus of this paper, might not be the best way
to go, and the same objection holds for other possible micro-
scopic mechanisms of producing valley-polarized states.57

An analogy with the quantum spin Hall effect58–61 suggests
another alley to explore. Topological band insulation rooted
in spin-orbit coupling goes hand in hand with chiral spin
currents at the surface, and it is imaginable62 that these can
be exploited to construct a spin battery. It was recently ar-
gued that similar topologically protected currents exist at the
interface between graphene bilayers, where the gap associ-
ated with AB sublattice breaking changes sign.63 These chiral
interface states are associated with valley currents and one
can contemplate to exploit these for the purpose of construct-
ing a valley battery.

FIG. 7. �Color online� The temperature, parametrized through
the dephasing length L	, dependence of the disorder phase averaged
h
e harmonic amplitude within the Büttiker dephasing model. The
symbols are taken from Fig. 4, black square denoting the ideal ring,
red star denoting the dislocated ring with no intervalley scattering,
and triangles denoting the dislocated ring with varying intervalley
scattering lengths. The first L	=� entry reproduces the zero-
temperature result of Fig. 4. At each separate finite dephasing length
value, amplitudes are normalized by the ideal ring amplitude �black
square�. The figure then shows how the ratio of the dislocated ring
harmonic �red star� to the ideal ring harmonic varies negligibly
from the zero-temperature value of −1 /2. The green dots represent
the values of the ideal ring unnormalized amplitudes at each
dephasing length and show how the oscillations disappear with ris-
ing temperature.
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APPENDIX

We discuss here the details of the scattering matrix calcu-
lations which include the valley preserving dephasing reser-
voirs, as discussed in Sec. V B. We follow in detail the
method and interpretation introduced in Refs. 4 and 52. We
eliminate the dephaser, keeping everything else in the system
arbitrary. At this point we need only the information that
there are two time reversed modes in the system, while the
dephaser takes the form of Eq. �10� and the full T matrix
respects the basic symmetry requirements, i.e., unitarity and

time reversal. We label the eliminated dephaser by f̃ =3̃,
keeping the label p for all the other leads of the device, some
of which might refer to other dephasers. By applying the
expression for the current in an arbitrary lead �Eq. �7�� to the
dephaser �i.e., setting p=3 and 3��, we determine the phan-
tom potentials �3

+ and �3
−, which are present in the constraint

Eq. �10�, in terms of the other potentials. Once these phan-
tom potentials are determined, we eliminate them in the ex-
pressions for the currents in all the other terminals of the
device �i.e., p�3 and 3� in Eq. �7��. These expressions then
describe the currents in all the remaining terminals as a func-
tion of their associated chemical potentials in the form of an

effective matrix Teff with elements Teff,pq
��� . The general ex-

pressions for the elements of Teff and the chemical potentials
of the eliminated dephasing reservoir are

Teff,pq
��� = Tpq

��� + T
p3̃

�+
Mq

+�� + T
p3̃

�−
Mq

−��,

�3
� = �

q�3̃

�
�

Mq
���q

�,

Mq
�� �

1

�
��2 − T

3̃3̃

�̄�̄�T
3̃q

��
+ T

3̃3̃

��̄
T

3̃q

�̄�� ,

� � �2 − T
3̃3̃

++��2 − T
3̃3̃

−−� − T
3̃3̃

+−
T

3̃3̃

−+
, �A1�

where �̄ denotes the valley opposite to � ��̄=
 for �=��,
and we used the obvious abbreviations for summing over the

leads �3,3�� 3̃�, e.g., T
p3̃

����Tp3
���+Tp3�

���, T
3̃3̃

����T33
���+T33�

���

+T3�3
���+T3�3�

��� , etc.
One can in principle now proceed to eliminate the next

dephasing circuit element using the same procedure outlined
above, of course, now applied to the effective matrix Teff
defined in Eq. �A1�, which describes the system at this stage.
If this is repeated iteratively for all phantoms, the final effec-
tive Tphys, which describes scattering between the physical
leads, is obtained. The general implication of this dephasing
model, proven in the following, is that the two basic symme-

tries �unitarity and time reversal� hold for Teff in Eq. �A1�,
which in turn implies that they will hold also for each T
matrix obtained by successive eliminations of dephasing res-
ervoirs, including the sought Tphys at the final stage. If Tphys
describes a two-terminal device, we conclude that the as-
sumptions of Büttiker’s theorem hold and the magnetocon-
ductance is even. The unitarity of scattering described by

Teff, expressed as �q,��Teff,pq
��� =1, can be translated into the

equality �q�3̃,�Mq
��=1, and this equality is proved correct

directly by using the unitarity of the starting T matrix, i.e.,

�q,��Tpq
���=1. Time-reversal symmetry of the original matrix

is expressed through Tpq
������=Tqp

�̄��̄�−��, as implied by the
time-reversal property of the matrix S� , Eq. �5�. It is straight-
forward to show that this property also holds for Teff of Eq.
�A1� by checking it for explicit values of � and �� with the
use of the property for T; a simplification comes from noting
that ����=��−��. This finishes our analysis of the general
case. For the particular case of our two-terminal device
model with one dephasing element in the ring arm, Fig. 6,

we also evaluated the conductance Gphys=����Tphys,12
��� nu-

merically, and the results are discussed in Sec. V B. We
crudely estimate the dephasing length L	, used qualitatively
in Fig. 7, by the simple formula exp�−1 /L	��1− ���2, where
� is the element of the S�d matrix which describes the scatter-
ing from the ring arm into the dephasing reservoir. The value
of 1− ���2 is then the probability for the electron not to
dephase while traversing the arm. By considering each ring
arm traversal �path of length 1� as an independent statistical
measurement of this probability, the characteristic dephasing
length L	 follows. This is analogous to writing the formula
for the half life of an unstable particle having the probability
���2 to decay.

To clarify the structure of the quantities calculated above,
Eq. �A1�, and compare them to the one mode case of Ref. 4,
we now specialize to the relevant two-terminal �labeled in-
terchangeably by L and R for “left” and “right,” and 1 and 2,
respectively� device with one additional dephasing reservoir

3̃. It will then be useful to introduce quantities which group T
matrix elements according to their meaning, so we define the
total probability of scattering the electron from the physical
lead p into a � electron exiting into the dephasing reservoir
by Si

p��T3p
−++T3p

−−+T3�p
−+ +T3�p

−− , the probability of scattering
an incoming � electron from the dephasing reservoir into the
p physical lead by So

p��Tp3
+�+Tp3

−�+Tp3�
+� +Tp3�

−� , as well as the
obvious quantities Si/o

p =Si/o
p++Si/o

p−, Si/o
� =Si/o

1�+Si/o
2�, and Si/o

=Si/o
1 +Si/o

2 . A physical quantity of relevance is the amount of
energy dissipated by the dephaser, which acts as an inelastic
scatterer,4 by the � current. This describes the amount of
dephasing of the � current, and we express it through a di-
mensionless function �� as W�= 1

h����L−�R�2. It reflects
the fact that the electrons exchanged between the physical
and dephasing reservoir are injected at different chemical
potentials. If one also defines dimensionless functions �� to
describe the phantom chemical potentials by �3

�=�R
+����L−�R� and introduce one more auxiliary combination
of matrix elements by Cp��So

�̄Si
p�+T

3̃3̃

��̄
Si

p, then for the two-
terminal device it can be written that
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�� =
C1�

�
,

� = C1+ + C2+ = C1− + C2−,

�� = Si
1�̄ + T

3̃3̃

��̄���̄�2 − �2 − T
3̃3̃

�������2,

Teff,21 = T21 + So
2−�− + So

2+�+ = Teff,12. �A2�

Physically, one expects the degree of decoherence to be the
same for the two valleys, but we emphasize again that this is
not needed for the evenness of magnetoconductance since no
such assumption was made in its proof at the beginning of
the Appendix. This demand reads W+=W− and in general
puts constraints on the matrix elements. Although it is not
trivial to extract the simplest condition equivalent to this
demand, we note that in the case when Si

1+=Si
1−= 1

2Si
1�S� i

1

and Si
2+=Si

2−= 1
2Si

2�S� i
2 �the use of underline S symbols here

should of course not be confused with the same symbol for
scattering matrices�, which corresponds to saying that the
probability of the electron coming from the first lead to scat-
ter into the dephasing reservoir as + or − electron is the

same, and this statement holds also for the second lead, sig-
nificant simplifications occur. Namely, if we set Si/o

+ =Si/o
−

= 1
2Si/o�S� i/o, the quantities in Eq. �A2� become

�+ = �− =
S� i

1

S� i
,

�+ = �− =
S� i

1S� i
2

S� i
=

S� i
1S� i

2

S� i
1 + S� i

2 ,

Teff,12 = T21 + 2
S�o

2S� i
1

S� i
. �A3�

The two valleys contribute equally to the incoherent part of
the transmission in the last equality. Finally, we note that if
additionally to the above assumption, which leads to W+

=W−, we assume a vanishing magnetic field, the time-
reversal condition Si

2���=So
2�−�� becomes Si

2=So
2, and we

see from Eq. �A3� that the dimensionless dissipated energy
becomes equal to the incoherent transmission, i.e., 2�
=Teff,21−T21. The factor 2 accounts for two modes; this re-
covers the result of Ref. 22, which considered a single mode
and zero magnetic field situation.
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