
Superradiance transition in one-dimensional nanostructures:
An effective non-Hermitian Hamiltonian formalism

G. L. Celardo and L. Kaplan
Department of Physics, Tulane University, New Orleans, Louisiana 70118, USA

�Received 30 December 2008; revised manuscript received 2 March 2009; published 14 April 2009�

Using an energy-independent non-Hermitian Hamiltonian approach to open systems, we fully describe
transport through a sequence of potential barriers as external barriers are varied. Analyzing the complex
eigenvalues of the non-Hermitian Hamiltonian model, a transition to a superradiant regime is shown to occur.
Transport properties undergo a strong change at the superradiance transition, where the transmission is maxi-
mized and a drastic change in the structure of resonances is demonstrated. Finally, we analyze the effect of the
superradiance transition in the Anderson localized regime.
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I. INTRODUCTION

Open quantum systems are at the center of many research
fields in physics today ranging from quantum computing to
transport in nanoscale and mesoscopic systems. In particular,
electronic transport in the quantum regime can be considered
one of the central subjects in modern solid-state physics.1,2

Transport properties depend strongly on the degree of open-
ness of the system. In important applications, the effect of
the opening is large and cannot be treated perturbatively.
Thus, a consistent way to take the effect of the opening into
account for arbitrary coupling strength between the system
and the outside world is highly desirable. The effective non-
Hermitian Hamiltonian approach to open quantum systems
has been shown to be a very effective tool in addressing this
issue.3–8

In a typical situation, we have a discrete quantum system
coupled to an external environment characterized by a con-
tinuum of states. Elimination of the continuum leads to an
effective non-Hermitian Hamiltonian.3–7 Analysis of the
complex eigenvalues of the effective Hamiltonian reveals a
general phenomenon, namely, the segregation of decay
widths �corresponding to the imaginary parts of the complex
eigenvalues�. Specifically, in a system weakly coupled to the
external world, all states tend to be similarly affected by the
opening, but once the coupling reaches a critical value, a
sharp reconstitution of the system occurs: almost the entire
decay width is shared by a few short-lived states, leaving all
other �long-lived� states effectively decoupled from the ex-
ternal world. The analogy between decay width segregation
and Dicke superradiance9 has been pointed out in Refs. 4 and
5, although Dicke superradiance is associated with many-
body systems, while width segregation occurs also in the
one-body case. We will refer to this phenomenon as the “su-
perradiance transition” in the following. Recently, great at-
tention has been given to translating typical quantum optics
effects, such as Dicke superradiance, into a solid state
context.10 In particular, the superradiance effect has been
shown to occur in several mesoscopic systems.11

The effective non-Hermitian Hamiltonian approach to
open systems has been used mainly under the assumptions of
random matrix theory.12,13 More realistic systems have also
been studied, such as nuclei,14 electron waveguides,15 and

billiards.16 In the last example, segregation of resonance
widths has already been demonstrated experimentally.17 The
effective non-Hermitian Hamiltonian technique has also been
applied to phenomenological open tight-binding models in
solid-state physics.5,18 In these papers, the existence of a su-
perradiance transition in such models was shown, but ex-
plicit connections to realistic systems were not considered.
For instance, one might ask whether in a realistic situation
the coupling to the external environment can be increased up
to the point where a superradiance transition occurs. Also,
the energy dependence of the effective Hamiltonian is not
easy to treat exactly, so one might ask in which realistic
applications this energy dependence can be neglected.

In this paper, we consider the problem of transport
through a sequence of potential barriers, see Fig. 1, which
can be considered a paradigmatic model in solid-state phys-
ics. This potential profile appears in real applications, such as
semiconductor superlattices or one-dimensional arrays of
quantum dots, and has been widely discussed in the
literature.19–21

The case of equally spaced potential barriers has been
analyzed previously.19 Here a different and more general ap-
proach to the problem is considered. First, we show that for
weak tunneling coupling among the wells, an energy-
independent effective Hamiltonian approach produces excel-
lent agreement with an exact �numerical� treatment of the
problem. Moreover, it is shown that even in this simple sys-
tem a superradiance transition occurs as the coupling to the
external world is increased by decreasing the widths of the
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FIG. 1. Sequence of potential barriers of finite height and
width.
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external potential barriers. With the aid of the effective
Hamiltonian approach, we recover several previous results
and shed light on the essential features of this well-studied
model, allowing for a detailed understanding of the reso-
nance structure. We emphasize that the powerful effective
Hamiltonian formalism is not in any way limited to simple
models of this type, and can be applied to situations where
exact treatment is difficult or impossible. In order to show
this, we also analyze the case of random spacings among the
potential barriers, and observe the consequences of the su-
perradiance transition in the Anderson localization regime.

After briefly reviewing the effective Hamiltonian formal-
ism in Sec. II, we build the effective Hamiltonian model for
a sequence of potential barriers in Sec. III. In Sec. IV, the
critical coupling value at which the superradiance transition
occurs is derived, and in Sec. V we discuss the consequences
of this transition on the resonance structure. In Sec. VI, we
show that the maximum transmission is achieved at the su-
perradiance transition, and we estimate analytically the ex-
ponential gain in transmission due to the superradiance ef-
fect. Finally, in Sec. VII, we consider the superradiance
transition in the Anderson localization regime, as a function
of the disorder strength.

The effective Hamiltonian approach shows great promise
in experimental applications such as quantum dots,22 photo-
nic crystals,23 and electron transport in molecular wires.24

We also believe that the superradiance transition can play a
major role in explaining many of the results found in open
mesoscopic systems,22 even if this effect has often been ne-
glected in the literature.

II. EFFECTIVE HAMILTONIAN

We first sketch the essential features of the effective
Hamiltonian approach to open quantum systems. Details of
the derivation can be found in Refs. 3, 4, 7, and 25.

Consider a discrete quantum system described by N in-
trinsic basis states �i� coupled to a continuum of states �c ,E�,
where c=1. . .M is a discrete quantum number labeling M
channels and E is a continuum quantum number representing
the energy. Let Ai

c�E� be the transition amplitude between the
intrinsic states and the continuum. Then the effective Hamil-
tonian for the intrinsic system, which fully takes into account
its opening to the outside, can be written as

Heff�E� = H + P�E� −
i

2
W�E� , �1�

with

Wij�E� = 2� �
c�open�

Ai
c�E�Aj

c�E��, �2�

where the sum is limited to the open channels, and

Pij�E� = �
c

P.V.� dE�
Ai

c�E��Aj
c�E���

E − E�
. �3�

Assuming Wij�E� and Pij�E� are smooth functions of the en-
ergy, their energy dependence can be neglected if the region
of interest is concentrated in a small energy window. With

the aid of the effective Hamiltonian, the transmission Tab�E�
from channel a to channel b can be determined:

Tab�E� = �Zab�E��2, �4�

where

Zab�E� = �
i,j=1

N

Ai
a 1

E − �Heff�ij
�Aj

b�� �5�

is the transmission amplitude.
We can also write Tab�E� in a different way, diagonalizing

the effective non-Hermitian Hamiltonian Heff. Its eigenfunc-
tions �r� and �r̃� form a bi-orthogonal complete set,

Heff�r� = Er�r�, �r̃�Heff = �r̃�Er
�, �6�

and its eigenvalues are complex energies,

Er = Er −
i

2
�r, �7�

corresponding to resonances centered at Er with widths �r.
The decay amplitudes Ai

a are transformed according to

Ar
a = �

i

Ai
a�i�r�, Ãr

b = �
j

�r̃�j�Aj
b, �8�

and the transition amplitudes are given by

Zab�E� = �
r=1

N

Ar
a 1

E − Er
Ãr

b. �9�

The complex eigenvalues E of Heff coincide with the poles
of Z�E�. It is clear that the properties of the complex eigen-
values of the effective Hamiltonian are very important for
understanding the transport properties of the system.

As the coupling between the intrinsic states and the exter-
nal continuum is increased, a rearrangement of the widths �r
occurs. This rearrangement is usually referred to as the “su-
perradiance” transition.

In order to understand the origin of this transition, we can
consider a simplified version of Eq. �1�: Heff=H0− i

2�W,
where � is a parameter that controls the coupling strength
with the external world �which now we assume to be of the
same order of magnitude for all the intrinsic states�, and the
basis states �i� are chosen to be the eigenstates of H0, with
eigenvalues E0

i . For small �, the first-order complex eigen-
values of Heff are Ei=E0

i − i
2�Wii. If we consider the opposite

limit of large �, H0 can be viewed as a perturbation acting on
W. Due to the factorized structure evident in Eq. �2�, W has
only M nonzero eigenvalues for M �N. Thus, only M states
will have a decay width in the limit of large coupling, while
all others will have zero width to first order. Therefore, as the
coupling increases, all widths initially increase linearly with
�, but at large couplings only M of the widths continue to
increase, while the remaining N−M widths approach zero.
This simple example suggests that a transition between these
two regimes may take place at a critical value of �. Roughly,
the transition occurs when � /D�1,5,13,26,27 where D is the
mean level spacing of H0. Note that the qualitative criterion
� /D�1 for the transition to superradiance is valid in the
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case of uniform density of states and negligible energy shift;
when the density of states is not uniform, the transition to
superradiance occurs as a hierarchical process.26 In the case
of a non-negligible energy shift, see the analysis in Sec. IV.
From the above discussion it should be clear that the super-
radiance transition emerges in the non-Hermitian effective
Hamiltonian approach as a general phenomenon, depending
not on the details of the system, but only on the factorized
structure of W.

III. EFFECTIVE HAMILTONIAN FOR A SEQUENCE
OF POTENTIAL BARRIERS

Let us consider quantum transport through a sequence of
N+1 potential barriers, see Fig. 1, of width �, height V0, and
interbarrier separation L. The transport properties will be
analyzed as we change the external barrier width �ext while
keeping all the other barriers fixed.

We computed the transmission through this system in a
standard way, by matching the wave function and its deriva-
tive in every region, see Fig. 1. Writing the wave function in
region I as �I=Beikx, with k=	E, and in region VII as �VII
=Aeikx+A�e−ikx, we obtain the transmission coefficient T�E�
= �B /A�2 and the reflection coefficient R�E�= �A� /A�2=1
−T�E�. For comparing our numerical simulations with ex-
perimental results, we note that we work in �2 /2me=1 units
throughout. Thus, when distances �, �ext, and L in Fig. 1 are
measured in nanometers �the typical scale in semiconductor
superlattices�, all energies are calculated in units of 0.038 eV.
In the following we set L=2 and V0=1000.

We will now proceed to build an effective non-Hermitian
Hamiltonian to describe the quantum transport through a se-
quence of potential barriers. A sequence of N potential wells
can be thought of as a closed system coupled to the con-
tinuum of scattering states through the external barriers.
Changing the external barrier widths or heights will change
the coupling to the continuum. In the limit of low tunneling
coupling among the wells, the usual tight-binding approxi-
mation can be used to model the closed system: we define
the intrinsic basis states �i� as the bound states in each po-
tential well, corresponding to a certain energy level E0. Each
basis state is coupled to its nearest neighbor by the tunneling
coupling 	. For small coupling we have28,29

	 = 2
���x0��2 =
2
2E0

V0�1 + 
L/2�
exp�− 
�� , �10�

where 
=	V0−E0, k=	E0, � is a basis wave function local-
ized in a single potential well, and x0 is a point in the middle
of a potential barrier immediately adjacent to that well. Due
to the tunneling coupling among the N wells, the eigenener-
gies of the closed system form a miniband around E0; see Eq.
�15� in Sec. IV.

The outside world is characterized by the scattering states
to the left, �L ,E�, and to the right, �R ,E�, of the sequence of
potential barriers. Due to the coupling to the scattering states,
the states �1� and �N� acquire a finite width � and an energy
shift �, which can be computed following Refs. 29 and 30. In
the case of a varying external barrier width �ext, one obtains

� =
8
3E0k

V0
2�1 + 
L/2�

exp�− 2
�ext� ,

� =
k2 − 
2

4
k
� . �11�

Note that the shift � vanishes for E0=V0 /2; otherwise the
sign of � is given by the sign of E0−V0 /2.

Analogous expressions when the external potential height
Vext is varied can be computed by extending the methods of
Ref. 29 but are more complicated and will not be reported
here. We can now write the full effective Hamiltonian for the
miniband centered at energy E0 as

Heff =

E0 + � −

i

2
� 	 0 . . . 0

	 E0 	 . . . 0

0 	 E0 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . E0 + � −
i

2
�
� .

�12�

Using Eqs. �4� and �5�, the transmission through the se-
quence of potential barriers becomes

T�E� = � ��/	�



k=1

N

�E − Ek�/	�
2

. �13�

From Eq. �13� we see that the spectrum of complex ei-
genvalues Ek=Ek− i

2�k of Heff determines the transmission
through the system. In order to show the range of validity of
the effective Hamiltonian model, we compute the normalized
integrated transmission:

S =
1

4	
�

Emin

Emax

T�E�dE , �14�

where the interval �Emin,Emax� includes the entire miniband
centered at E0.

The predictions of Eq. �13� are now compared with the
exact numerical results. The effective Hamiltonian approach
is expected to break down for small values of 
�. In Fig. 2,
we plot S vs 
� for a system of N=10 wells, with E0�20
fixed, so that 
 remains constant. From the figure we can see
that the effective Hamiltonian approximation gives excellent
results for 
��1. Note also that S is independent of � for
� /�ext=2 in the weak coupling limit, 
��1, as indicated
by a dashed line in Fig. 2. This follows from the fact that
� /	 is independent of � when � /�ext=2, see Eqs. �10� and
�11�. Note that we also compared the results obtained with
the effective Hamiltonian approach with available analytical
results found in the literature,19 and found excellent agree-
ment in the regime 
��1.
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IV. SUPERRADIANCE TRANSITION

We will now analyze the superradiance transition that oc-
curs in the effective Hamiltonian model built in Sec. III.
Diagonalization of the intrinsic Hamiltonian leads to the en-
ergy levels5

wq = E0 − 2	 cos��q/�N + 1�� , �15�

with q=1. . .N. Due to coupling with the external world, the
energy levels wq will acquire decay widths �q. These decay
widths are the imaginary parts of the eigenvalues of the ef-
fective Hamiltonian, Eq. �12�, and, for �
1, they can be
written as

�q =
4�

N + 1
sin2��q/�N + 1�� . �16�

We see that all widths increase proportionally to � for small
coupling. In the opposite limit of large �, only M states
�where M is the number of channels� will have a width pro-
portional to �, while the widths of the remaining states fall
off as 1 /�, as explained above in Sec. II. In our case we have
M =2, corresponding to one scattering channel each on the
left and right. The two superradiant states correspond to the
two nonzero eigenvalues of the matrix W �Eq. �1��.

In order to find the critical value of the parameter � at
which the superradiance transition occurs, we may analyze
the average width ��� of the N−M narrowest widths as a
function of the coupling �, Fig. 3. At the critical value of �,
the average width ��� peaks and begins to decrease. This is
the signature of the superradiance transition.

We can evaluate this critical value of � using the criterion
discussed earlier in Sec. II, ��� /D�1. Consider first the sim-
pler case of vanishing energy shift �. The average width ���
is then given by the perturbative expression, Eq. �16�, taking
into account that �sin2��q / �N+1���→1 /2 for large N. More-
over, from Eq. �15� we find that for large N the mean level
spacing becomes D=4	 /N, so we obtain

���
D

=
1

2

�

	
. �17�

Thus, for �=0, the criticality criterion ��� /D�1 implies �
�2	. Note that this happens when �ext=� /2 �see Eqs. �10�
and �11��, so that the superradiance transition occurs when
the external barriers are precisely half as wide as the internal
ones.

Typical examples for large and small N are presented in
Fig. 3, where E0=V0 /2 to ensure that the energy shift �=0.
The N=100 example in the upper panel illustrates that the
estimate ��2	 for the critical value works very well at
large N.

We now turn to the ��0 case. Both the density of states
and the resonance widths are modified, as we can see using
second-order perturbation theory in small �:

Eq = wq + �� − i�/2�
4 sin2 �q

N + 1
+ ��2 − �2/4 − i��� �

p�q

Aqp
2

wq − wp
,

�18�

where Aqp= �2 /N�2�1+ �−1�q+p�2sin2 �q sin2 �p and �q
=�q / �N+1�.

Clearly, the local level spacings �q���=Re�Eq−Eq−1� and
the local resonance widths �q���=−Im�Eq+Eq−1� depend on
the index q as well as the coupling �. A reasonable hypoth-
esis is that the superradiance transition occurs when the reso-
nances begin to overlap locally, i.e., �q����Dq��� for some
q. We have confirmed numerically that this local overlap
criterion gives an excellent approximation for the critical
value of � at which the superradiance transition occurs, for
any �. Unfortunately, second-order perturbation theory does
not provide an accurate analytical estimate for �, confirming
that the physics is highly nonperturbative near the superradi-
ance transition.
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FIG. 2. �Color online� The integrated transmission S is plotted
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� for a system with N=10 wells. Different values of 
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obtained by varying � while keeping E0�20 fixed. The symbols
indicate exact numerical results for the sequence of potential barri-
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V. RESONANCE STRUCTURE

To show the consequences of the superradiance transition
on the transport properties, here we analyze the resonance
structure, by considering the transmission T�E�. Note that the
resonance structure can be directly resolved experimentally;
see Ref. 21.

In this section, we focus on the case of N=5 potential
wells. As discussed above in Sec. IV, a signature of the su-
perradiance transition is the segregation of resonance widths
above the critical coupling. The system under study has two
open channels, thus we expect two resonance widths �asso-
ciated with superradiant states� to continue increasing above
the transition, while the remaining widths approach zero. In
Fig. 4, we show the trajectories of the eigenvalues Ei=Ei
− i�i /2 of the effective Hamiltonian in the complex plane as
� /�ext is increased. For �=�ext the positions of the complex
eigenvalues are indicated with circles connected by a line
near the bottom of the figure. As the external barrier is de-
creased, the imaginary parts of all eigenvalues initially grow.
Above a critical value of �ext, the imaginary parts of three
complex eigenvalues start to decrease, as indicated by the
arrows in Fig. 4, while the imaginary parts of the remaining
two eigenvalues continue to increase, as seen in the upper
left hand corner of Fig. 4. These are the superradiant states.
Note that the real parts of all eigenvalues experience a left-
ward shift with increasing coupling, since in this case
E0�V0 /2, so that ��0.

In Fig. 5, the transmission is shown as a function of the
energy for several values of � /�ext. For relatively weak cou-
pling, � /�ext=1.5, we have N=5 narrow resonances as ex-
pected. As we decrease the external barrier widths, the trans-
mission increases and near � /�ext=2 two of the resonances

start to overlap. The separation between these two reso-
nances and the three remaining ones is due to the nonzero
energy shift �. At � /�ext=2.15, the two overlapping reso-
nances merge, forming one broad resonance. This shows that
the superradiance transition has a clear signature in the reso-
nance structure. As the external barrier widths continue to
shrink, the height and area of the superradiant resonance
peak decrease �see the case � /�ext=2.4 in Fig. 5�, until this
peak disappears entirely for large � /�ext, due to destructive
interference between the two superradiant states. In this
limit, N−2 narrow resonances remain. The disappearance of
the two resonances at very large coupling is not surprising;
indeed in the complete absence of the two external barriers,
we simply have a system of N−2 wells. The interference
between the two superradiant states remains destructive if
asymmetric couplings to the left and right leads are consid-
ered. �Of course, the interference need not be destructive in
other geometries; for example in the case of parallel rather
than serial coupling to the two leads, the superradiant reso-
nances do not disappear in the limit of strong coupling.�

What is interesting is that the two individual resonances
disappear long before the external barriers vanish; indeed
they do so immediately after the superradiance transition.
Note also in Fig. 5 that results obtained from the effective
Hamiltonian model are indistinguishable from numerical re-
sults obtained by matching the wave functions.

The behavior we have demonstrated for the case of N
=5 potential wells generalizes easily to a larger number of
wells, with important quantitative differences. Indeed, for a
longer chain, the superradiant states disappear much faster as
we increase � /�ext above the critical value, i.e., the superra-
diance transition becomes increasingly sharp. Interestingly,
the critical value of � /�ext becomes both N independent and
E0 independent in the large-N limit, with the transition oc-
curring at � /�ext=2, in agreement with previous results.19,21

VI. INTEGRATED TRANSMISSION

Another interesting quantity to analyze is the integrated
transmission S, Eq. �14�, as a function of � /�ext. The quan-
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titative enhancement in S when external barrier parameters
are adjusted is important in applications, for instance in the
design of electron band-pass filters for semiconductor
superlattices.19 From Fig. 6, we see that S reaches a maxi-
mum as a function of the external barrier width. Figure 6
also shows that the value of S for �ext
� is the same as for
�ext=�. This is due to the fact that S becomes N independent
for large N, as shown in Fig. 6: as the external barriers dis-
appear we are eventually left with a sequence of N−2 poten-
tial wells, which has the same value of the integrated trans-
mission S as the original sequence of N wells.

The maximum of the integrated transmission can be re-
lated to the superradiance transition. In Fig. 7, we show the
critical value of � /	 at which the average width ��� has a
maximum �signaling the superradiance transition, see Fig. 3�,
compared with the value of � /	 at which the transmission S
has a maximum. For large N, the transmission maximum is
reached precisely at the superradiance transition, while for
finite N, the specific structure of the resonances influences
the exact position of the maximum. The relationship between
the superradiance transition and the transmission maximum
can be explained as follows: for small �, the resonance

widths increase with �, and so does the integrated transmis-
sion S. Once the superradiant states start to form, they inter-
fere destructively and the associated resonances disappear,
while the widths of the other resonances decrease with �,
leading to an overall falloff in S.

In order to estimate the transmission “gain,” we compute
the ratio of the maximum transmission to the transmission at
� /�ext=1: Smax /S1. The transmission is given by the area
under the resonances, and for isolated resonances we can
estimate S�2N��� /4	. Since for small �, see Eq. �16�, we
have ���=2� / �N+1�, we can write

S =
�

	

N

N + 1
�

�

	
, �19�

which is N independent for large N as noted above. Taking
into account that the superradiance transition occurs at �
=2	 for E0=V0 /2, the gain can be estimated as

Smax

S1
�

	

�1
=

V0

4
	E0

e
�. �20�

In Fig. 8, we show that our estimate works very well. Equa-
tion �20� is in agreement with the results obtained in Ref. 19
using a different approach. Note also that the gain is expo-
nential in the internal barrier width �.

VII. ANDERSON LOCALIZATION REGIME

In the previous sections we considered an effective
Hamiltonian �12� with equal diagonal energies E0. Here we
want to apply the effective Hamiltonian technique to the case
of random variations in the diagonal energies: E0��E0,
where �E0 is a random variable uniformly distributed in
�−W /2, +W /2�, and W is a disorder parameter. A first analy-
sis of this model can be found in Ref. 31.
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FIG. 6. �Color online� The integrated transmission S is shown as
a function of � /�ext, for different numbers of wells. The symbols
refer to an exact numerical calculation, while the effective Hamil-
tonian result for N=3 and N=10 is indicated by the curves. The
horizontal dashed line represents the value of S for �=�ext. In this
example, we use E0�20 and �=0.15.
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which the integrated transmission has a maximum �circles�. For N
=100 �upper panel�, the two coincide, while they differ for N=5
�lower panel�; see the discussion in the text. Here �=0.2.
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FIG. 8. �Color online� The transmission gain Smax /S1 is shown
as a function of the internal barrier width � �upper panel� and as a
function of the internal barrier height V0 �lower panel�. In each
panel, numerical results obtained for energy E0�500 �circles� and
E0�2 �squares� are compared with the analytical formula �20� in-
dicated by the curves. In the upper panel, we fix V0=1000, while in
the lower panel we fix �=0.2. All data points are for a system of
N=10 wells. The numerical prefactor in the analytical result, Eq.
�20�, is chosen to fit the numerical data.
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Random variation in the diagonal energies can be thought
of as a consequence of small random fluctuations �L of the
well widths L. For E0
V0, the eigenenergies of a finite po-
tential well may be approximated by the eigenenergies of an
infinite potential well, E0=n2�2 /L2, where n=1,2 , . . .. For
small fluctuations �L /L
1, we have

�E0 =
2n2�2

L3 �L = − C�L , �21�

where C=2n2�2 /L3. Thus, a random variation of �E0 in
�−W /2, +W /2� corresponds to a random variation of �L in
�−W /2C , +W /2C�.

The effective non-Hermitian Hamiltonian with diagonal
disorder is equivalent to an open Anderson tight-binding
model.2,32 The eigenstates of the Anderson model are expo-
nentially localized on the system sites, with exponential tails
given by exp�−x /Lloc�, where for weak disorder, the localiza-
tion length Lloc at the center of the energy band can be writ-
ten as33

Lloc � 105.2�W

	
�−2

. �22�

For Lloc
N, the transmission decays exponentially with
N; this is the localized regime. Note that for zero disorder,
the transmission is N independent, as we showed in the pre-
vious section. The condition Lloc=N defines a critical value
of �W /	�cr for the localized regime, at any given N. In the
localized regime, the transmission is log-normally distrib-
uted, and we have1

�− ln T� = 2
N

Lloc
+ const. �23�

In Fig. 9, we show the average transmission as a function
of the disorder strength for two different degrees of opening
of the system. The results obtained using an effective Hamil-
tonian with diagonal disorder are compared with numerical
simulations for the disordered sequence of potential wells.

The agreement is excellent up to a large value of the disor-
der, where of course our approximations break down. �In-
deed 	, Eq. �10�, has been computed assuming that the en-
ergy levels are aligned, which is no longer true in the
presence of disorder.� We stress that Eq. �13� for the trans-
mission remains valid even in the disordered case, making
the use of the effective Hamiltonian formalism very efficient,
since only the eigenvalues of the effective Hamiltonian are
needed to obtain the transmission.

The phenomenon of Anderson localization was studied in
a closed disordered chain or for fixed opening, while in our
case we can vary the degree of openness of the system. The
effect of the opening on Anderson localization is not obvi-
ous. Will a maximum of the transmission still exist as we
vary the coupling of the system with the external world? Will
the localization length change as we open up the system? To
answer these questions, we have analyzed the effective
Hamiltonian, neglecting the role of the energy shift, i.e., we
set �=0 in the following. In Fig. 10, we compute the average
of �ln T� over 105 realizations as a function of � /	. The
energy is fixed at E=E0. As we vary � /	, the average trans-
mission reaches a maximum, just as in the disorder-free case.

Interestingly, as the disorder strength increases, the trans-
mission maximum �associated with the superradiance transi-
tion� shifts to ever higher values of the coupling strength �.
Indeed, the mean level spacing D increases with growing
disorder, so that the condition ��� /D�1 for the superradi-
ance transition to occur will be satisfied at increasingly larger
values of � /	. For weak disorder, the disorder-induced cor-
rection to D is second order in the disorder strength, so
�� /	�cr=2+O�W2 /	2�. In the opposite regime of large
W /	 we find D�2	�1+W /2	� /N, and the critical cou-
pling is predicted to be �� /	�cr�1+W /2	. This estimate
works quite well, as shown by the vertical lines in Fig. 10.
Note that the curves shown in Fig. 10 are for N=100, but the
results have been found to be independent of N.

Finally in Fig. 11, we show �ln T� versus N for W /	=2,
and for two different values of the external barrier width:
� /�ext=1 and � /�ext=2, where the maximum of the trans-
mission occurs. Figure 11 shows that Eq. �23� works very
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FIG. 9. �Color online� The average of the logarithm of the trans-
mission is plotted as a function of W /	 for � /�ext=1 and � /�ext

=2. Results obtained from the effective Hamiltonian �curves� are
compared with results obtained numerically for the sequence of
potential barriers �symbols�. Here we take N=50, E0�20, and �
=0.2. The dotted vertical line indicates the critical value of W /	,
obtained from the condition Lloc=N, where Lloc is given by Eq.
�22�.
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FIG. 10. �Color online� The mean logarithm of the transmission
is plotted as a function of � /	, for different values of the disorder
parameter W /	. Here we take N=100, E0�V0 /2, and �=0.6. The
dashed vertical lines indicate the predicted value of � /	 at which
the transmission maximum is expected for W /	=2, 10, and 20, see
the discussion in the text. Note that �ln T�0 stands for the value of
�ln T� at �=�ext.
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well in both situations, even though the transmission is en-
hanced when � /�ext=2, for all values of N. Thus, the local-
ization length in a disordered 1D model is not affected by the
opening, but the transmission is.

VIII. CONCLUSION

We have analyzed quantum transport through a finite se-
quence of potential barriers, a paradigmatic model for trans-
port in solid-state physics. In this paper, the effective non-
Hermitian Hamiltonian approach has been used to analyze
the transmission through this class of systems. The main re-
sults of our work are the following: �i� we show that for
weak or moderate tunneling coupling among the potential
wells, the system is well described by an energy-independent
effective Hamiltonian. Knowledge of the complex eigenval-
ues of the effective Hamiltonian is sufficient to study trans-

port through the system. Thus the effective Hamiltonian for-
malism is a simple and powerful tool to analyze quantum
transport. �ii� As the coupling to the continuum is increased
by adjusting the width of the external barriers, a superradi-
ance transition �or Dicke effect� occurs. Analysis of the com-
plex eigenvalues of the effective Hamiltonian allows us to
determine the critical coupling associated with this transi-
tion. �iii� The superradiance transition has strong effects on
the transport properties: specifically, the transmission
through the system is maximized at the superradiance tran-
sition. An expression for the transmission gain due to the
superradiance transition is derived. Moreover the resonance
structure is drastically affected: at the superradiance transi-
tion, we have the formation of a broad resonance correspond-
ing to the superradiant states. Beyond the transition, this
broad resonance disappears, and the number of resonances
decreases by two. �iv� The case of a disordered sequence of
potential barriers has been also analyzed. In the presence of
disorder, Anderson localization occurs. We have shown the
localization length remains constant as the opening changes,
but the transmission has a maximum as a function of the
coupling to the external world. The critical value of the cou-
pling increases with the degree of disorder, and we obtain an
estimate of the critical value for strong and weak disorder,
based on the superradiance mechanism. In the future it will
be interesting to study the consequences of the superradiance
transition beyond the single particle approximation, where
electron-electron interactions play an important role.
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