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A generalized propagation matrix method is used to study how scattering from local Einstein phonons affects
resonant electron transmission through quantum wells. In particular, the parity and the number of the phonon
mediated satellite resonances are found to depend on the available scattering channels. For a large number of
phonon channels, the formation of low-energy impurity bands is observed. Furthermore, an effective theory is
developed which accurately describes the phonon-generated sidebands for sufficiently small electron-phonon
coupling. Finally, the current-voltage characteristics caused by phonon-assisted transmission satellites are
discussed for a specific double-barrier geometry.
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I. INTRODUCTION

Resonant tunneling through quantum wells has been ex-
tensively studied in semiconductor heterostructures, such as
GaAs /AlxGa1−xAs double barriers.1–5 More recently, analo-
gous electron transmission processes have also been investi-
gated in the context of molecular junctions6–10 and mesos-
copic rings.11,12 Resonant tunneling is a purely quantum
effect whereby electrons pass through structures made of po-
tential wells and barriers with unit or near-unit transmission
probabilities if they enter the quantum well at the particular
energies of the structure’s bound states. Following the initial
experimental observation of satellite peaks of these transmis-
sion resonances,1 a large volume of theoretical work13–26 has
focused on the effects of phonon scattering on the electronic
tunneling. Early on, it was recognized that perturbative treat-
ments tend to miss the essential feedback effects between
elastic and inelastic channels which lead to these satellite
features in the electronic transmission.13 In particular, it was
found that electron-phonon scattering processes can cause
the formation of polaronic bound states, leading to phonon-
assisted resonant tunneling.14–17 More recent works have
shown that within a tight-binding description these features
are further enhanced18 and phonon bands can form.22,23 Fur-
thermore, theoretical models have been generalized to in-
clude the effects of the three-dimensional environment,19,21

nonequilibrium dynamics,20 and finite temperatures.24

In this paper, we examine the hierarchy of polaronic reso-
nances in the electron transmission through quantum well
structures. In particular, we focus on even-odd effects with
respect to the number of available phonon channels and on
the emergence of impurity bands as this number becomes
large. We also apply an effective theory which reproduces
the dependence of the resonance peaks on the electron-
phonon coupling strength and the phonon energy in the limit
of sufficiently small coupling. The method we are using is a
generalization of the propagation matrix technique27 which
takes into account elastic electron scattering at potential
steps as well as scattering from local Einstein phonons. This
approach allows a numerically exact calculation of the elec-
tron transmission through quasi-one-dimensional hetero

structures without any perturbative constraints, such as limi-
tations to particular parameter regimes, or restrictions to spe-
cific energy ranges, such as low-energy resonant states. In
addition, our method accounts for the feedback between an
adjustable number of phonons and the elastic transmission
channel and is therefore suitable to accurately describe the
interplay between nonperturbative resonances of the many-
body system.

Before proceeding to the discussion of resonant tunneling
through specific semiconductor double wells, let us briefly
point out some similarities and differences of this system
with electronic transport through molecular junctions.6–10 In
the theory of both physical systems, many-body methods are
combined with scattering theory to obtain the tunneling den-
sity of states and the resulting current-voltage characteristics
for electronic transport through small objects with quantized
energy levels. In both cases one observes the formation of
phonon-assisted satellite features as the electrons scatter off
local vibrational modes. However, there are several signifi-
cant differences between these systems, as we will see below.
Electron transport through layered semiconductor structures
exhibits resonant tunneling features which coexist with con-
tinuum contributions. These are typically absent in molecular
transistors. Furthermore, since semiconductor hereostruc-
tures are manmade, the specific resonance levels can be con-
trolled by layer thickness and composition and are thus tun-
able. Moreover, the experimental current-voltage curves for
semiconductor heterostructures are quite different from mol-
ecules; i.e., they show peak features rather than the steps
characteristic for molecular systems.28

II. MODEL AND METHOD

We wish to determine the transmission probability of
electrons through potential structures of arbitrary profile,
with the possibility of exciting local Einstein phonon chan-
nels. The basic Hamiltonian for this problem,

H = �
k

��k�ck
†ck + �

x

V�x�cx
†cx + �

xi

��bxi

† bxi

+ g �
xi,k,k�

��x − xi��bxi

† + bxi
�ck

†ck�, �1�
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describes electrons with creation and annihilation operators
denoted by c† and c, and a dispersion ��k�=�2k2 /2m, propa-
gating through a potential structure whose real-space profile
is given by V�x�. In addition, local Einstein phonon scatterers
with creation and annihilation operators b† and b and energy
�� are placed at impurity sites xi. The electron-phonon in-
teraction is controlled by the coupling constant g, which has
units of energy times length. The particular systems we have
in mind are layered semiconductor heterostructures, such as
GaAs /AlxGa1−xAs. For these systems, the use of a
momentum-independent electron-phonon coupling constant
is standard and can be viewed as a reliable lowest order
approach.26

To find the electronic transmission probability we use the
propagation matrix method, which is applied in the following
way: for each step at position j in the potential profile, we
construct a propagation matrix �̂step

j ; and in between neigh-
boring steps at a distance Lj apart, we construct a propaga-
tion matrix �̂free

Lj . The elements of �̂step
j depend on the bound-

ary conditions of the electronic wave function at the potential
step at position j. The matrix �̂free

Lj is diagonal, and its ele-
ments depend on the phase picked up by the electron as it
propagates through a length Lj between potential steps. The
total propagation matrix is given by the product of the indi-
vidual matrices,

�̂ = �̂step
1 �̂free

L1 . . . �̂free
LN �̂step

N . �2�

An example of the propagation matrix method is given in the
Appendix. For a system without phonon excitations, the
propagation matrix is simply a 2�2 matrix. When the elec-
tron excites phonons as it penetrates the structure, the propa-
gation matrix grows as �2n+2�� �2n+2�, where n is the
number of phonon channels. When several phonons are ex-
cited it becomes necessary to find the transmission probabil-
ity of an electron as a function of energy numerically. The
idea is to solve a system of linear equations of the form �̂x
=a, where x is the vector whose terms correspond to the
transmission and reflection coefficients x= �t0 ,r0 , . . . , tn ,rn�
and a= �a0 ,b0 , . . . ,an ,bn�, where the coefficients al and bl
depend on the initial conditions of the problem. In our prob-
lem there is no reflection as the electron exits the potential
profile, so we can set the reflection coefficients rl=0 for all l,
therefore reducing the number of equations in the system by
half;

�
�11 �13 . . . �1n−1

�31 �33 . . . �3n−1

] ] � ]

�n−11 �n−12 . . . �n−1n−1

��
t0

t1

]

tn

� =�
a0

a1

]

an

� . �3�

Initially all phonons are in the ground state, and therefore
aj =� j0. All that is left is to determine tj, and we can do so by
solving the system above using a Gauss-Jordan elimination.
Once these terms are found, we can calculate the transmis-
sion probability as follows:

T�E� = �
l=0

n
kl�E�
k0�E�

�tl�E��2, �4�

where kl is the momentum of the electronic wave function in
a channel with l phonons. With this approach it is possible to
plot transmission probability versus energy.

III. NUMERICAL RESULTS

As a test of the validity of the propagation matrix method,
we first examine two cases which have previously been stud-
ied in the literature. In Fig. 1�a�, we show the transmission
through repulsive �black solid line� and attractive �red
dashed line� delta potentials, which allow the excitation of
two local vibrational modes at ��=1.0 and 2.0 eV. For com-
parison, we also show the case �blue� without coupling to
these local Einstein modes. In their absence, the transmission
increases monotonically with the energy of the incoming
electrons. However, in the presence of inelastic scattering
channels resonance features in the form of spikes and dips in
T�E� occur at energies slightly below the local oscillator lev-
els. They indicate the formation of bound states,15,19,26 mani-
fested by Fano features which for attractive potentials can
completely suppress electron transmission right below the
resonance energy �red line in Fig. 1�a��. These features arise
from the strong feedback between inelastic and elastic scat-
tering processes and are easily missed in perturbative

FIG. 1. �Color online� �a� Electron transmission probability
through a delta potential. The solid black line represents a repulsive
potential with an electron-phonon coupling constant g
=0.117 eV nm. The dashed red line corresponds to transmission
through an attractive delta potential with g=0.078 eV nm. In both
cases, the electron is allowed to excite two local oscillator levels
with energies of ��=1.0 and 2.0 eV. The blue line is for g=0. �b�
Electron transmission probability through a finite-width potential
barrier/well of width L=0.1 nm. The solid black line represents a
repulsive rectangular potential of strength V0=2.0 eV with g
=0.117 eV nm. The dashed red line corresponds to transmission
through an attractive rectangular potential V0=−1.0 eV with g
=0.078 eV nm. The local oscillator levels are chosen to be at ��
=0.03 and 0.06 eV, positioned at the centers of the rectangular
potentials.
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treatments.13 The parameters in Fig. 1 have been chosen
identical to previously published data19,26 to demonstrate full
agreement of methods.

As shown in Fig. 1�b�, the phenomenon of polaron-type
bound state formation persists for finite-width wells and
barriers.15 Here, the location of the Einstein scatterers is cho-
sen at the center of the rectangular potential profiles. Bearing
in mind experimentally relevant scales, we consider vibra-
tional energies 2 orders of magnitude lower than in the Fig.
1�a�, i.e., at ��=0.05 and 0.10 eV. In analogy to the case of
delta potentials, resonances are observed at both energy lev-
els. However, electron transmission is suppressed with re-
spect to the case of delta potentials because of the finite
spatial extent of the wells and barriers.

Next, we turn to the case of electron transmission through
more complex quantum well structures. Focusing on sym-
metric potential profiles, let us consider rectangular double
barriers of length 0.4 nm, separation 0.6 nm, and height V0
=1 eV. A local Einstein scatterer is placed at the center of
the well, as illustrated in Fig. 2�a�. The vibrational energies
are ��n=n�� with ��=0.01 eV and n=1,2 ,3 , . . .. In the
absence of phonon scattering, shown in Fig. 2�b�, one ob-
serves a bound state at E=0.358 eV which allows resonant
tunneling with unit transmission. In the following, we exam-
ine the effects of inelastic scattering on this resonant feature.
In the presence of a phonon scatterer with a single available
inelastic channel at ��1=0.01 eV �Fig. 2�c��, the bound
state is split into two satellites, separated by approximately
equal energy gaps with respect to the energy of the original
bound state. Such “side bands” have been the focus of nu-
merous earlier studies.5,14–19,21,22 Note that for the semicon-
ductor double-barrier structures studied here the magnitudes

of the energy splits between these phonon-assisted satellite
peaks are considerably larger than the weak coupling result,
E0���1, where E0 is the energy of the resonance in the
absence of inelastic scattering. This is due to strong renor-
malization of the bare electron-phonon coupling constant by
the confinement of the electron wave function to the small
well region, which will be discussed in more detail later on.

Here, we wish to examine how such phonon-assisted sat-
ellite features merge into an impurity band with increasing
number of available inelastic channels. The generalized
propagation matrix method is particularly suited for this task,
as the propagation matrix for the system only increases lin-
early with the number of added vibrational modes. The pat-
tern which emerges from Fig. 2 is that the bound state splits
into n+1 peaks, where n is the number of phonon channels
which are excited. For instance, in the case of one excited
phonon with energy 0.01 eV and electron-phonon coupling
g=0.04 eV·nm, we find the peaks to be at positions E1

=0.2833 eV and E2=0.4340 eV �Fig. 2�c��, which differ
from the zero-phonon case �Fig. 2�b�� by �1=−0.0747 eV
and �2=0.076 eV. For two phonons �Fig. 2�d��, one finds
three peaks at E1=0.2255 eV, E2=0.3645 eV, and E3

=0.4875 eV, giving shifts of �1=−0.1325 eV, �2

=0.0065 eV, and �3=0.1295 eV. This observation points to
an interesting even-odd effect, whereby for odd numbers of
phonon channels, there exists a central, nonbonding peak,
whereas for even numbers of phonon channels it is absent. It
also implies that the satellites at En	E0���n are bonding/
antibonding pairs. Before investigating this aspect of
multiphonon-assisted resonant tunneling more closely, let us
point out that in the limit of many phonon channels �Fig.
2�e�� a low-energy band emerges. Note that the asymmetry in
this impurity band is already anticipated in the asymmetry of
the satellites for the few-phonon cases.18,19

In Fig. 3 we examine the effects of the electron-phonon
coupling and the vibrational energies on resonant transmis-
sion through the same double-barrier potential shown in Fig.
2�a�; i.e., we focus on the low-energy transmission peaks.
The case of one available phonon channel is studied in Figs.
3�a� and 3�b�, and the case of two phonon channels is illus-
trated in Figs. 3�c� and 3�d�. Let us first keep the electron-
phonon coupling constant at g=0.04 eV·nm and vary the
energy of the vibrational levels. As observed in Figs. 3�a�
and 3�c�, increasing values of �� cause the entire spectrum
of transmission resonances to shift to higher energies,
whereas the gaps between the peaks remain constant. If in-
stead we keep the vibrational energies fixed, i.e., at ��
=0.01 eV, and vary g, the gaps between peaks are found to
increase as g increases �see Table I�. Note that for the case of
even numbers of phonon channels the central nonbonding
peak does not shift with increasing g, whereas the bonding/
antibonding peaks move to higher and lower energies, re-
spectively.

The observation of bound state energy splitting when
there are Einstein phonon channels in the system is analo-
gous to degeneracy breaking in the linear Stark effect. For
sufficiently small electron-phonon coupling, we can compute
the first-order energy shift quantitatively by treating the

FIG. 2. �Color online� �a� Symmetric double rectangular poten-
tial with barrier width 0.4 nm, well width 0.6 nm, and barrier en-
ergy V0=1.0 eV. A local phonon scatterer is located at the center of
the double barrier. �b�–�e� Electron transmission probabilities for
various numbers of accessible phonon channels. �b� corresponds to
the case without electron-phonon interaction �g=0� and �c� repre-
sents the transmission coefficient for one phonon channel, �d� for 2
phonon channels, and �e� for 40 phonon channels. In �c�–�e� the
electron-phonon coupling is set to g=0.04 eV nm, and the phonon
frequency is ��=0.01 eV. With increasing number of phonon
channels one observes the formation of a band.
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phonon energy and electron-phonon interaction terms in
Hamiltonian �1� as perturbations and by using time-
independent degenerate perturbation theory to calculate the
resulting energy shifts. The unperturbed eigenstates are de-
noted by �x ,n
, where n is the phonon quantum number and
x denotes the electron position in the well region of the po-
tential profile x� �0,L�. In order to make analytical progress,
the electron wave function is approximated by the infinite
well wave function 	�x�	sin�
x /L� /�L, where L is the
length of the well. The resulting perturbation matrix has el-
ements �x ,n��xi

��bxi

† bxi
+g�xi,k,k���x−xi��bxi

† +bxi
�ck

†ck��x ,n
,
which for the case of one phonon channel yields the 2�2
perturbation matrix,

P̂ =  0 g/L
g/L ��

� . �5�

Assuming that the impurity site is located at x0=L /2, we
have sin�
x0 /L�=1. The energy shifts are calculated by di-
agonalization of the perturbation matrix and are given by

� =
��

2
����

2
�2

+  g

L
�2

. �6�

In practice, the well width L can be made rather small, even
compared to the scale of molecular junctions. This can lead
to a significant renormalization of the electron-phonon cou-
pling constant, g→g /L, which in turn explains the relatively
large energy gaps between the phonon-assisted satellites, ob-
served in the propagation matrix results.

To further illustrate how the bound state energies depend
on the phonon energy and the electron-phonon coupling, we
plot the lower and higher bound state energies as a function
of �� �Figs. 4�a� and 4�c�� and as a function of g �Figs. 4�b�
and 4�d��. The accuracy of the effective theory compared to
the numerical results of the full propagation matrix calcula-
tion is striking, in particular for predicting the higher bound
state energy �Figs. 4�a� and 4�b��. For the lower bound state,
the accuracy increases for smaller g �Fig. 4�d��, although for
a fixed value of g=0.04 eV·nm and variable �� the effec-
tive theory predicts a lower bound state off set by about 0.02
eV with respect to the full propagation matrix calculation
�Fig. 4�c��. This difference is on the order of the phonon
energy and 1 order of magnitude lower than the bound state
energy. However we notice that although the curves for the
effective theory and numerical results are off, they present

FIG. 3. �Color online� Electron transmission resonances for a
double rectangular potential barrier with a phonon scatterer located
at the center. The parameters are chosen identical to Fig. 2, unless
otherwise specified. �a� and �b� correspond to a system with one
phonon channel, and �c� and �d� correspond to a system with two
phonon channels. In �a� and �c� the electron-phonon scattering
strength is kept constant at g=0.04 eV nm, and the phonon energy
�� is varied. One observes that the entire spectrum shifts to larger
values of energy as �� increases. In �b� and �d� ��=0.01 eV and g
is varied. In this case the gaps between the transmission resonance
peaks widen with increasing g. For two phonon channels, the cen-
tral peak does not shift as g is varied.

TABLE I. Gap between bonding and antibonding peaks for dif-
ferent values of electron-phonon coupling g.

g
�eV·nm�

0.02
�eV�

0.04
�eV�

0.06
�eV�

� �1 phonon� 0.074 0.147 0.221

� �2 phonons� 0.104 0.209 0.314

FIG. 4. �Color online� Bound state energies in a double rectan-
gular potential barrier with one phonon scatterer at the center �as
depicted in Fig. 2�a��. For the case of one phonon channel, the
energies of the two resulting transmission resonance peaks are plot-
ted as functions of the electron-phonon coupling constant g and of
the phonon energy ��. Exact numerical results �solid black lines�
are compared with the effective theory �dashed red lines� described
in the text. In �a� and �c� the electron-phonon coupling is kept
constant at g=0.04 eV nm, and in �b� and �d� the phonon energy is
kept constant at ��=0.01 eV. In �a� and �b�, for the higher bound
state energies, the effective theory reproduces remarkably well the
numerical results. In �c�, the effective theory and numerical results
are off set by approximately 0.02 eV. In �d�, the effective theory
matches the numerical results for small values of g. For instance,
when g=0.04 eV nm, the effective theory overestimates the lower
bound state energy by 0.01 eV.
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the same qualitative behavior. Therefore, one can affirm that
the effective theory reproduces the numerical results with
striking accuracy for small values of g. The same procedure
can be repeated for any number of phonon channels with
similar results.

Finally, let us turn to the current-voltage characteristics
caused by phonon-assisted transmission features. As shown
in Fig. 5�a�, application of an external electric field yields a
spatial gradient in the potential energy profile. The resulting
current flow is determined from the transmission functions
T�E ,V� at given voltage biases V via an integral,

I�V� = �
0

V0

T�E,V�dE , �7�

where the energy window �0,V0� for currents through semi-
conductor heterostructures is small compared to molecular
junctions. As a result of this, the I�V� dependence shown in
Fig. 5�c� inherits the peak structure of the individual trans-
mission curves, some of which are shown in Fig. 5�b�. This
is an important difference from the steplike I�V� curves re-
ported in measurements of molecular junctions.8,9

IV. CONCLUSION

In summary, we have investigated how quantum well
electron-phonon resonances are affected by the presence of
several inelastic channels in the phonon spectrum. Using a
generalized propagation matrix method for multiple elastic
and inelastic transmission channels, we determined the

highly nonperturbative effects of scattering by Einstein
phonons on the electron transmission through potential struc-
tures. In particular, we observed a characteristic splitting of
the bound state resonances into satellite peaks. The presence
or absence of a nonbonding resonance reflects the parity as-
sociated with even vs odd numbers of accessible inelastic
channels. Furthermore, in the limit of many available chan-
nels, the formation of low-energy impurity bands was ob-
served. The dependence of the resonance satellites on the
electron-phonon coupling strength and on the phonon ener-
gies could be reproduced using an effective model, which
works well within the limits of perturbation theory. One
promise of the multichannel propagation matrix method
which is developed here lies in the ability to study highly
asymmetric quantum systems with strongly interacting itin-
erant and local features. A further direction to pursue is to
depart from strictly local oscillators, which are nevertheless
important for nanoelectronics, and to consider spatially ex-
tended phonon scattering regions.
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APPENDIX

As an illustration of how to construct the generalized
propagation matrix in practice, let us consider the example of
a rectangular potential barrier given by

V�x� = � 0, x � a

V0, a  x  b

0, x � b
� �A1�

The wave functions are written as superpositions of plane
waves,

�n�x � a� = aneiknx + bne−iknx, kn = �E − n� , �A2�

�n�x � b� = tneiknx, kn = �E − n� , �A3�

�n�a  x  b� = cne−�nx + dne�nx, �n = �V0 − E − n� ,

�A4�

where n represents the available phonon channels. It is as-
sumed as an initial condition that the incident electrons enter
the potential structure from the left; i.e., a0=1 , an�0=0.

To determine the transmission coefficients for the elastic
�tn=0� and inelastic �tn�0� channels we use the propagation
matrix method, matching the conditions �n,j =�n,j+1 and
d�n,j /dx=d�n,j+1 /dx at each boundary. In the absence of
phonon scattering �n=0�, the propagation matrix � of the
system is obtained by multiplication of the step matrices �at

FIG. 5. �Color online� �a� Potential double barrier with thickness
of 1.0 nm and separation of 5.0 nm. The height of the barrier is 1.0
eV, and the electronic effective mass is 0.07me. �b� Transmission vs
energy curves for one excited phonon at the center of the potential
well. In the presence of a voltage bias across the heterostructure,
this curve is shifted toward lower energies. �c� Current-voltage
curve for the double barrier in �a�. The two small peaks at low
voltage bias �Vb� correspond to the two low-energy peaks in �b�.
The calculation of current is done by integrating the transmission
over an energy window from 0 eV to 50 meV.
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x=a and x=b� and the free propagation matrix for ax
b,

�̂ = �̂step
a �̂free

L �̂step
b , �A5�

which are given by

�̂step
a =

1

2�1 +
�0

k0
1 −

�0

k0

1 −
�0

k0
1 +

�0

k0

� , �A6�

�̂step
b =

1

2�1 +
k0

�0
1 −

k0

�0

1 −
k0

�0
1 +

k0

�0

� , �A7�

and in the interval axb,

�̂free
L = e�0L 0

0 e−�0L � , �A8�

with L=b−a.
In order to find the transmission probability, we need to

solve the matrix equation �̂t=a where the coefficients of the
wave functions �7� and �A1� are the elements of a and t,
respectively,

�11 �12

�21 �22
�t0

0
� = a0

b0
� . �A9�

For this system without phonon channels, the transmission
probability T�E� is simply

�t0�2 = � a0

�11
�2

. �A10�

If instead phonon scatterer centers are present, we do not
have the above condition on the derivative but rather inte-
grate Schrödinger’s equation around x=0 �from −� to +��. If
for instance, we add a phonon scatterer at x=a in the same

potential barrier, we have for the step and free matrices

�̂step
a =

1

2�
1 +

i�0

k0
1 −

i�0

k0

igm

k0�2

igm

k0�2

1 −
i�0

k0
1 +

i�0

k0

− igm

k0�2

− igm

k0�2

igm

k1�2

igm

k1�2 1 +
i�1

k1
1 −

i�1

k1

− igm

k1�2

− igm

k1�2 1 −
i�1

k1
1 +

i�1

k1

� ,

�A11�

�̂step
b =

1

2�
1 +

k0

�0
1 −

k0

�0
0 0

1 −
k0

�0
1 +

k0

�0
0 0

0 0 1 +
k1

�1
1 −

k1

�1

0 0 1 −
k1

�1
1 +

k1

�1

� ,

�A12�

�̂free
L =�

e�0L 0 0 0

0 e−�0L 0 0

0 0 e�1L 0

0 0 0 e−�1L
� . �A13�

Once again we determine T�E� by solving �̂t=a. However,
now we have two transmission coefficients t0 and t1, one for
each phonon channel, and the transmission probability is
given by

T�E� = �t0�2 +
k1�E�
k0�E�

�t1�2. �A14�
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