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We discuss the phonon-assisted scattering of electrons by defects, i.e., the so-called Koshino-Taylor effect,
in graphene. The two-dimensional character of graphene implies that the strength of the Koshino-Taylor effect
can be considerably larger than in ordinary metals. We show that at finite temperatures the defect-induced
resistivity formally diverges in the thermodynamic limit, having a nonanalytic T ln T component when finite-
size effects are taken into account.

DOI: 10.1103/PhysRevB.79.153410 PACS number�s�: 73.63.�b, 72.10.�d, 81.05.Uw

The possibility of fabricating free-standing graphene
sheets has recently been demonstrated experimentally.1,2 In
this form graphene combines its unusual electronic features
with additional mechanical peculiarities, giving rise to new
specific properties �see, e.g., Ref. 3�. The resistivity of sus-
pended graphene, for example, shows a clear dependence on
temperature4,5 in contrast to samples supported by a substrate
where it has an important T-independent contribution.6

The most distinctive feature of graphene is the Dirac
spectrum of its charge carriers.3 Suspended graphene, in its
own turn, is inevitably subjected to both in-plane and out-of-
plane distortions. As shown in Ref. 7, this gives rise to two
different contributions in its low-temperature resistivity.
Whereas the scattering of electrons with in-plane phonons
provides a T4 contribution �see also Ref. 8�, the scattering
with out-of-plane ones gives an unusual T5/2 ln T behavior.
On the other hand, the precise nature of the defects respon-
sible for the residual �temperature-independent� resistivity is
still unclear in graphene.3,9 If they could be described in
terms of Dirac-delta-function potentials, the resulting resis-
tivity would not depend on the carrier density n. In the ex-
periments, however, it turns out to be inversely proportional
to n.6 This nontrivial behavior can be explained in different
ways: due to unscreened Coulomb potentials,10,11 frozen cor-
rugations of the graphene sheet,12 the scattering involving
the midgap states that may be created by disorder,13 etc. The
renormalization of the impurity scattering due to, e.g.,
electron-electron interaction is another source of
temperature-dependent contributions to the resistivity. Spe-
cifically in graphene, Friedel oscillations in the exchange
field yield a linear-in-T behavior �which is absent in the case
of Coulomb scatterers�.14 In this Brief Report we consider
the phonon-assisted scattering of electrons by defects, i.e.,
the so-called Koshino-Taylor effect.15–19 This effect is opera-
tive for any kind of defect and, in the case of graphene, is
expected to be unusually large due to the two-dimensional
�2D� character of the system. As we show below, both in-
plane and out-of-plane phonons can yield a T ln T behavior
of the low-temperature resistivity in graphene through the
Koshino-Taylor effect.

The key point in Koshino-Taylor effect is the local fluc-
tuations of the system as experienced by defects. In fact, in
real systems, the position of the defects is not fixed but fluc-
tuates, what eventually translates into a temperature depen-
dence of the defect-induced resistivity.15–19 In ordinary met-
als this a rather small effect that, nevertheless, can be verified

experimentally after some effort.20 In the case of free-
standing graphene, conversely, an unusually large effect can
be anticipated because of the following. Within a first ap-
proximation, it can be assumed that the changes in the posi-
tions of the defects coincide with the lattice fluctuations at
the corresponding points. Thus, the residual resistivity ob-
tained under the assumption of static impurities is effectively
dressed by a Debye-Waller-type factor due to these fluctua-
tions. Local fluctuations in a 2D lattice formally diverge and,
in accordance with the Mermin-Wagner theorem, such a di-
vergence should destroy the crystalline order. In practice,
however, long-wavelength fluctuations are suppressed by
finite-size effects for example. This stabilizes the lattice, but
local fluctuations may remain quite large. The Koshino-
Taylor effect, benefiting from these large local fluctuations,
is thus expected to be amplified in free-standing graphene
sheets.

The simplest way to confirm this expectation is by means
of the Boltzmann transport theory. This theory is applicable
in the case of gated and/or doped graphene with a finite �and
tunable� carrier density �i.e., the so-called extrinsic
graphene�.3,21 Despite interference contributions are not cap-
tured within this approach, it suffices to reproduce correctly
the qualitative behavior in our case.18 The resistivity then can
be written as

� =
2

e2vF
2�

1

�
, �1�

where vF is the Fermi velocity, � is the density of states at
the Fermi level, and � is the transport relaxation time at the
Fermi energy averaged over the angles �see, e.g., Ref. 22�. In
graphene �=2kF / ���vF�, where the Fermi wave vector kF
can be expressed in terms of the carrier concentration as kF
= ��n�1/2.

The relaxation time � is obtained from the so-called col-
lision integral.22 So let us reconsider, first of all, the scatter-
ing of an electron due to a single defect originally situated at
r=0. The scattering potential associated with the defect is
V�r−u�, where u represents its displacement. Let k and k�
be the initial and final wave vectors of the electron, and �N�
and �N�� the initial and final phonon states, respectively. The
scattering rate then can be written as
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2�

�
�Vk�,k�2��N��eiK·u�N��2��Ef − Ei� . �2�

Here Vk�,k is the matrix element one would obtain by ne-
glecting the displacement of the defect �i.e., taking u=0�,
K=k�−k is the change in the wave vector of the electron,
and Ei �Ef� represents the total energy of the initial �final�
state. It is worth noticing that the vector K lies on the
graphene plane, so only the scattering with the in-plane
modes turns out effective here.

In the case of small displacements, it suffices to retain the
lowest-order terms of expansion of the exponential in powers
of u :eiK·u�1+ iK ·u− 1

2 �K ·u�2. Furthermore, by assuming
that the displacement of the defect coincides with the dis-
placement of the lattice, i.e., the defect is pinned to the lat-
tice, the vector u can be written as a sum of creation aq,s

+ and
annihilation operators aq,s for the phonon modes. Thus the
main contribution to the scattering rate �2� is given by two
types of processes. On one hand we have one-phonon pro-
cesses, for which we have to consider the matrix elements
�N−1�a�N�= �N�a+�N−1�=N1/2, where N is the phonon distri-
bution function. On the other hand we have processes in-
volving no change in the phonon state, which are associated
to the matrix elements �N �N�=1 and �N�aa+�N�= �N�a+a�N�
−1=N. Within our approximations the graphene sheet can be
considered as a continuum elastic medium with the two in-
plane modes having the same velocity. Thus, after summa-
tion over the phonon states, the scattering rate for the elec-
tron is given by

2�

�
�Vk�,k�2��1 − 	

q

�K2

2�	q
�1 + 2Nq�
��
k� − 
k�

+ 	
q

�K2

2�	q
��1 + Nq���
k� − 
k − �	q�

+ Nq��
k� − 
k + �	q�� , �3�

where � is the mass density and 	q=cq is the phonon fre-
quency �here and hereafter the area of the system is taken as
unity�.

In the case of a system of electrons, this scattering rate
has to be multiplied by the electron distribution function fk
for the initial state and by 1− fk� for the final state. The
collision integral then takes the form I= I0+ Iel+ Iin, where

I0 =
2�

�
ni	

k�

�Vk�,k�2�fk� − fk���
k� − 
k� , �4a�

Iel = −
2�

�
ni 	

k�,q

�Vk�,k�2
�K2

2�	q
�fk� − fk��1 + 2Nq���
k� − 
k� ,

�4b�

Iin =
2�

�
ni 	

k�,q

�Vk�,k�2
�K2

2�	q
��fk��1 − fk��1 + Nq�

+ fk�1 − fk��Nq���
k� − 
k − �	q�

+ �fk��1 − fk�Nq + fk�1 − fk���1 + Nq��

���
k� − 
k + �	q�� , �4c�

with ni being the density of defects. For the sake of concrete-
ness, we assume in the following that the deviation from
equilibrium is due to the presence of a static and spatially
homogeneous electric field. If such a deviation is small, Eqs.
�4a�–�4c� can be linearized with respect to g= f − f0=−

�f0

�
 �

=
f0�1−f0�

T �, where f0�
�= �e�
−�/T+1�−1, assuming that the
phonon distribution function takes its value of equilibrium:
N= �e�	q/T−1�−1.

The integral �4a� is nothing but the integral that one ob-
tains neglecting the fluctuations in the positions of the de-
fects. This further gives a residual resistivity �0, as can be
seen in standard textbooks �e.g., Ref. 22�. As regards Eq.
�4b�, it can be written as Iel=−g /�el after some standard ma-
nipulations �see e.g., Ref. 22�. Here

1

�el
= − 	

k�,q

W���
�kF

2

�	q
�1 + 2N��	q����
k� − 
k� , �5�

where W���= 2�
� ni�Vk�,k�2�1−cos ��2 �� being the angle be-

tween k� and k�. At T=0 this gives a correction to the re-
sidual resistivity obtained from the previous integral �4a�.
This correction can be estimated as

��0 � −
�2kF

2

M�
�0, �6�

where M is the mass of the unit cell and � is the Debye
temperature. In the usual case 
F=�2kF

2 / �2m�, where m is the
mass of the electron. In the above expression we then have
�2kF

2

M� = m
M


F

� . This factor is typically �10−2 for ordinary metals.
In the case of graphene 
F=�vFkF, so the above factor can
be written as


F

MvF
2


F

� . This factor can reach the same value
than in ordinary metals for large enough concentrations of
charge carriers �i.e., large values of the Fermi energy 
F�.
Actually at such a concentration deviations from the Dirac
spectrum might be important. However, as we can see, the
precise form of the spectrum is not the crucial point for hav-
ing the above correction to the residual resistivity due to the
Koshino-Taylor effect.

Let us now turn to the dependence on the temperature of
the defect-induced resistivity. This dependence is due to
both, the elastic processes giving rise to Eq. �5�, and the
inelastic processes taken into account in

Iin �
2�

�
ni 	

k�,q

�Vk�,k�2
�K2

2�	qT
�f0�
k�� − f0�
k��N��	q�

��1 + N��	q����k� − �k����
k� − 
k − �	q�

− ��
k� − 
k + �	q�� . �7�

In fact, the remaining contribution at low temperatures is due
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to this later integral �see Ref. 17�. This is basically because
here we have the factors N�1+N� whereas in Eq. �4b� we
have N only. As a result of these factors the differences in the
electron energies 
k�−
k= ��	q are small, so we can put

f0�
k�� − f0�
k� � � �	q� � f0�
�
�


�

=
k

. �8�

The integral �7� then takes the form Iin�−g /�in, where

1

�in
= 	

k�,q

W���
2�2kF

2

�T
N��	q��1 + N��	q����
k� − 
k� . �9�

The corresponding contribution to the resistivity can be esti-
mated as

�� �
�2kF

2

M�

T

�
ln� T

T0
��0, �10�

where T0 is temperature associated with the infrared cutoff of
the integral over the phonon wave vectors. In the expression
obtained for an ordinary �three-dimensional �3D�� metal one
has an additional factor T /� instead of ln�T /T0�.15,16 This
latter logarithmic factor is the fingerprint of the local fluc-
tuations of the 2D lattice, whose largeness is ultimately de-
termined by the quantity T0 �see below�.

Let us now discuss the possibility of a similar T ln T con-
tribution due to the out-of-plane distortions of the graphene
sheet. The virtual changes in the form of the defect potentials
owing to the �local� deformations of the lattice bring about
this possibility. That is, changes described as �1+�ull�V�r�,
where ull is the trace of the strain tensor and � is a constant.
This effect was first discussed in Ref. 23 for ordinary metals.
In the case of graphene the strain tensor takes the from uij

= 1
2 ��iuj +� jui+ ��ih��� jh��, where h characterizes the out-of-

plane distortions.7 Here we see that local in-plane deforma-
tions �ull� are possible as a result of out-of-plane fluctuations
of the lattice. The resistivity then can be written as ���1
+��ull���0. In the absence of tension in the graphene sheet
the dispersion law of the out-of-plane phonons is 	q

�h�=�q2.
At low temperatures we then have

�ull� �
�

2�M�
�1

2
+

T

��h� ln� T

T0
�h��
 . �11�

Here ��h� is the Debye temperature for the out-of-plane
phonons and T0

�h� is associated with the infrared cutoff for
these phonons �see below�. It is worth mentioning that if the
graphene sheet is under tension, the dispersion law of the
out-of-plane phonons becomes linear-in-q.3 In this case the
temperature dependence of �ull� changes from T ln T to T3,
and the corresponding contribution to the resistivity is then
similar to that obtained from the mean value of the square of
the local deformations �ull

2� �which is due to in-plane distor-
tions�. This sensitivity to applied tension is absent in the
contribution �10� due to in-plane fluctuations. It is worth no-
ticing also that these two contributions differ in their depen-
dence on the Fermi wave vector kF, i.e., on the carrier den-
sity. In the out-of-plane contribution this dependence comes
from the matrix elements of the �unchanged� scattering po-
tential V only. Consequently, its dependence on the carrier

density turns out to be the same than the one of bare resis-
tivity �0. This is not the case of contribution due to in-plane
phonons, where there is an additional dependence coming
from the fluctuations �see Eq. �10��.

The dependence on the temperature of the resistivity is
quite apparent in suspended graphene.4,5 Far from the
charge-neutrality point, this can be explained as due to
electron-phonon scattering for temperatures above 50 K.5,24

At lower temperatures this scattering is expected to give T4

and T5/2 ln T contributions due to in-plane and out-of-plane
phonons, respectively.7 So, if the temperature is low enough,
the Koshino-Taylor effect can overwhelm the electron-
phonon scattering giving rise to a T ln T behavior in the re-
sistivity. The range of temperatures at which the Koshino-
Taylor effect can be dominant is difficult to estimate
realistically given its strong dependence on the nature of the
defects, their concentration, wave vector cutoffs, etc. As re-
gards these latter quantities, for example, a crude estimate
can be obtained from the smallest possible wave vector in a
system with a finite size L :qmin�2� /L.3 In the case of out-
of-plane phonons, however, the combined effect of fluctua-
tions and anharmonicity yields a strong renormalization of
the bending rigidity �.7,25,26 This eventually suppresses out-
of-plane fluctuations, making it possible the low-temperature
flat phase of the sheet. This result can be seen as due to an
anharmonicity-induced infrared cutoff,7 which is the relevant
one for large enough samples26 �i.e., in the thermodynamic
limit�. But in the case of in-plane phonons the tendency is
just the contrary. In this case, nonlinear effects make the
divergence of local in-plane fluctuations even stronger.25 In
consequence, by employing Eq. �10� with T0��cqmin, one is
actually underestimating the Koshino-Taylor effect if the size
of the sample is large enough.

At this point, it is worth mentioning that a similar depen-
dence on the temperature is obtained from the renormaliza-
tion of the impurity scattering due to the Friedel oscillations
of the corresponding exchange field.14 But in contrast to the
Koshino-Taylor effect, such a renormalization is not opera-
tive in the case of Coulomb scatterers and does not scale
with the size of the system. In any case, it is worth noticing
there is a correlation between the temperature-dependent part
of these contributions and the residual T=0 resistivity which
might be useful in their experimental identification.20

In summary, we have discussed the peculiarities of the
Koshino-Taylor effect in graphene. Both in-plane displace-
ments of the defects and deformations of the scattering po-
tentials due to out-of-plane distortions of the graphene sheet
yield a T ln T dependence of the defect-induced resistivity.
These two contributions, however, differ in their dependence
on external parameters such as the carrier concentration and
the tension of the graphene sheet. The key ingredient in the
Koshino-Taylor effect is the local fluctuations of the lattice
which, in graphene, can be quite large due to the two-
dimensional character of the system. Graphene thus repre-
sents a model system to study the Koshino-Taylor effect, an
effect somewhat elusive in ordinary metals.
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