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Analyzing x-ray emission spectra �XES� of germanium under pressure Struzhkin et al. �Phys. Rev. Lett. 96,
137402 �2006�� found that the valence band width of diamond Ge does not vary with pressure. This contradicts
the usual experience and also what is predicted by density-functional calculations. In the present work we
report results of quasiparticle self-consistent GW �QSGW� band calculations for diamond- as well as �-tin-type
Ge under pressure. For both phases we find that the band width increases with pressure. For �-tin Ge this
agrees with experiment and density-functional theory, but for diamond Ge neither the local density approxi-
mation nor the QSGW calculations agree with the conclusions drawn from the XES data.
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I. INTRODUCTION

Band structure models based on a simple tight-binding
approximation relate the band widths to the orbital overlaps,
and a reduction in the interatomic distances, a compression
of the solid, increases the overlaps and leads to an increase in
the band width. This trend has until recently also been gen-
erally assumed to apply to the valence bands of covalently
bonded semiconductors, and it was therefore very surprising
that Struzhkin et al.1 found that x-ray emission spectroscopy
�XES� indicated that this is not the case for the valence band
in diamond-type germanium. For pressures up to �10 GPa,
where the structure changes to that of � tin, the band width
did not change with pressure. In the �-tin phase, however, a
“normal” broadening was observed.1

The most common theoretical methods for obtaining total
energies are based on the density-functional theory �DFT�.2
Also, although it is not “designed” for that purpose, the for-
mal one-electron energies give energy bands, even in the
local density approximation �LDA�,3 which agree well with
spectroscopic data �except for the band gap in semiconduc-
tors�. The method has been very successful for calculating
band widths and it also gives very reasonable band disper-
sions though there is no theoretical justification of this re-
markable property of LDA, and several examples of success-
ful applications to semiconductor valence bands are known,
including the LDA calculation in Ref. 1 of the band width of
diamond Ge at ambient pressure.

Maybe the experiment in Ref. 1, in fact, detects details in
the quasiparticle �QP� electronic structure which even for
the rather wide valence band of Ge cannot be properly de-
scribed by the LDA and that it is necessary to take the many-
body effects better into account. This could be done, for
example, by including many-body corrections via the elec-
tron self-energy as first carried out by Hybertsen and Louie4

as a perturbation to LDA. Starting from LDA eigenvalues
and eigenfunctions they calculated ab initio QP states within
Hedin’s GW approximation �G is the Green’s function and W
is the screened Coulomb interaction�.5 The perturbation ap-
proach in Ref. 4 is often referred to as “GW-LDA.” Since
then many groups published the results of GW-LDA calcu-

lations or its extensions but few works studied the many-
body effects on the valence band width. For prototype metals
such as Na, the GW calculations6–8 give a narrower occupied
band than DFT-LDA, whereas for the prototype insulator LiF
they give a larger valence band width.9,10 Also for semicon-
ductors, QP calculations give slightly larger valence band
widths than those of DFT-LDA.9 All these QP calculations
are “one-shot” GW calculations and results for the same
quantities are not consistent among different groups. This
may be because of further approximations involved in this
type of calculations, and further, the results are very much
dependent on the quality of the initial LDA calculation.
Hence some type of self-consistency is required to calculate
quasiparticle states which are consistent in the sense that
they do not depend on a particular one-electron scheme such
as an LDA calculation. Recently van Schilfgaarde et al.11,12

implemented a self-consistent GW method which they call
the quasiparticle self-consistent GW �QSGW� method. This
method is not a fully many-body self-consistent approach but
may be considered as iteration to self-consistency in the non-
local energy dependent self-energy ��r ,r� ,��. A mapping of
the noninteracting Green’s function, G0, onto the dressed
Green’s function, G, is obtained by calculating the polariza-
tion function from G0 and then calculating W and �. A new
Hamiltonian, including a new nonlocal effective potential de-
rived from �, is then used to derive a new G0, defining a
reverse approximate mapping, G→G0. Then the sequence
G0→G→G0→¯ can be iterated to self-consistency. At
self-consistency the quasiparticle energies in G0 correspond
to those in G. The final results are independent of the
very first Hamiltonian �or G0�, which in practice can be
obtained from an LDA calculation. van Schilfgaarde and
co-workers11,12 applied their method for a number of weakly
and moderately correlated materials and showed that this
method gives values of the fundamental gaps for semicon-
ductors which agree very well with experiments. They fur-
ther showed that for some stronger correlated systems their
method gives little larger error but the results are systematic.

II. CALCULATIONS AND RESULTS

We used the QSGW formalism11,12 implemented within
the linear muffin tin orbital �LMTO� method13 in a full-
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potential version.14The screened Coulomb interaction is rep-
resented in a mixed basis comprised of products of radial
waves inside muffin tin spheres and plane waves in the in-
terstitial region. In the present calculations we have applied
two sets of muffin tin orbitals with s, p, d, and f angular
shape, with two different decay energies. In addition, local
orbitals of 3d character were included to describe the semi-
core states.

For the accurate determination of energies we further in-
cluded floating orbitals14 centered on interstitial sites. For the
mixed basis we have used l=4 as angular momentum cutoff
inside muffin tin spheres and Gmax=4 a.u. as cutoff in the
interstitial region. The calculations used the tetrahedron
method for Brillouin zone �BZ� integrations which were car-
ried out on a regular 8�8�8 k-point mesh.

First a brief description of our DFT calculations for ger-
manium is given. The calculated zero-pressure lattice con-
stant and bulk modulus �diamond structure� are given in
Table I, where they are compared to the calculation and ex-
periment in Ref. 1. Our equilibrium volume is underesti-
mated by �1.4%. As usual, LDA leads to some overbinding,
and we did not include the energy contribution from the ionic
zero-point motion.

The calculation in Ref. 1 was performed within the gen-
eralized gradient approximation �GGA�, and as often ob-
served, this leads to a somewhat larger equilibrium volume
in the present case larger than measured. This is not unusual,
and it does not affect the bands and has no consequences for
the discussion of the DFT bands and their variation with
volume in Ref. 1.

We carried out the LDA calculations for a series of vol-
umes, for diamond, as well as �-tin germanium. From the
total energies, the pressures as well as enthalpies were de-
rived. From the structural enthalpy difference vs the theoret-
ical pressure, we find that the diamond→�-tin transition in
Ge occurs at �9 GPa. This agrees well with experiments,
10.5�0.2 by Qadri et al.15 and from 8.1�0.3 to
10.6�0.5 GPa, depending on the choice of pressure trans-
mitting medium by Menoni et al.16

There are several other theoretical and experimental stud-
ies �see, for example, Refs. 17–22� of Ge, including pressure
effects, pressure-induced structural transformations, and
changes in the band structure. The theoretical works, in par-
ticular those where the effects of applying external pressure
are included, are mainly based on LDA methods. Therefore
we decided to study the bands vs pressure using a method
that goes beyond LDA, and below the results of our QSGW
calculations are summarized.

We have calculated quasiparticle states for four volumes
in diamond structure within the pressure range between 0
and 18 GPa and for four volumes for the �-tin structure in
the range of 9–20 GPa. In Table II we compare our calcu-
lated band gaps with earlier experimental and theoretical
results.23–27 In contrast to LDA calculations, the QSGW
gives the correct ordering of the conduction band minima at
the �, L, and X points when compared to experiments. The
values of the gaps obtained by the QSGW method are some-
what larger than those measured, and this agrees with the
general trend found in the study11 of many semiconductors.
However, the QSGW results include neither vertex correc-
tions, exciton states in the gap, nor the gap renormalization
caused by electron-phonon interaction. Further, zero-point
motion of the Ge atoms can reduce the gap by 0.1–0.2 eV.28

The lower part of Table II lists results of other GW calcula-
tions. The label “SCGW” in Ref. 24 refers to a many-body
self-consistent calculation, i.e., it uses a kind of self-
consistency which is quite different from that of QSGW. The
other GW calculations �GW-LDA� are perturbations to LDA
band structures. �The results in Ref. 27 were taken from the
thesis by Hott, not the PRB paper�.

Now, consider the pressure variation of quasiparticle
states at the L, �, and X points of the BZ. From Fig. 1 it is
clear that the bands broaden as the applied pressure is in-
creased. The valence band maximum is chosen as a refer-
ence, and on that scale the next upper valence states only
moved slightly, whereas the lowest valence state moves
down by �1 eV when the pressure grows from 0 to 10 GPa
�the diamond→�-tin structural transformation�. The direct
band gap at � and the indirect �-L gap increase with pressure
whereas the �-X gap remains constant, and around 4 GPa
this gap becomes lowest in magnitude. These findings are
consistent with earlier pseudopotential calculations.29

The response of the band structure of �cubic� Ge to appli-
cation of external pressure is further illustrated in Table III,

TABLE I. Calculated equilibrium properties of Ge within DFT
formalism.

Lattice constant
�Å�

Bulk modulus
�GPa�

Present LDA 5.630 71

GGAa 5.7627 76

Expt.a 5.6569 77

aReference 1.

TABLE II. Band gaps and valence band width �in eV� of Ge at
ambient pressure.

Indirect gap:
�-L

Direct gap:
�-�

Indirect gap:
�-X

Valence
band width

Present
�LDA� 0.06 −0.19 0.67 12.81

Present
�QSGW� 1.02 1.32 1.25 13.02

Expt.a 0.78 1.0 1.3 12.6

SCGWb 0.79 1.51 0.71 14.77

GW-LDAb 0.51 1.11 0.49 13.12

GW-LDAc 0.75 0.7 1.2 12.9

GW-LDAd 0.75 0.71 1.23 12.86

GW-LDAe 0.77 1.11 1.23 13.06

GW-LDAf 0.61 0.39 1.33 13.07

aReference 23.
bReference 24.
cReference 25.
dReference 4.
eReference 26.
fReference 27.
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where the deformation potentials of level differences are
listed. LDA as well as QSGW results are given, and also
some experimental results are included. These were obtained
from measured pressure coefficients, Refs. 30 and 31 plus
data listed in Table II of Ref. 32 �the results without a refer-
ence in Table III�. Both sets of calculations agree equally
well �or equally poorly� with the measured values.

Figure 2 shows the calculated valence band width for both
the diamond and �-tin phases of Ge together with the experi-
mental data of Struzhkin et al.1 We find that in both phases
the band width increases with pressure according to the
QSGW as well as the LDA calculations. The QSGW band
widths are slightly larger than those from the LDA. Also for
the �-tin phase the QSGW valence bands are wider. This is
consistent with earlier findings.9 The present calculations do
not include spin-orbit splitting. But since the pressure coef-
ficient of the splitting, �0, at the valence band maximum in
Ge is extremely small, �1 meV /GPa,32,33 this does not af-
fect our conclusions. Also, it should be noted that we calcu-
late the valence band width, in the diamond structure, as the
difference between the valence band maximum ��25�� and
the lowest level ��1�. The former is p-like, but the latter has
s character, and transitions from the �1 state to the 1s core
state with photon emission is not allowed. But the experi-

ment will also sample states somewhat above �1 where some
p character has been mixed in. As follows from Fig. 1, also
these states move down relative to the valence band top
when pressure is applied. Although the downshifts of these
states are smaller, it is clear from Fig. 2 that the experimental
resolution is so good that such smaller shifts would have
been observed. Hence our QSGW calculations do not repro-
duce the experimental pressure variation of the valence band
width in Ge.

III. CONCLUSIONS

We have carried out QSGW calculations for Ge both in
cubic diamond and high pressure �-tin phases in order to
examine whether ab initio calculations, which go beyond
LDA and GW-LDA, can explain the experimentally ob-

TABLE III. Deformation potentials, 	=d
 /d�nV, in eV. �Ex-
periments: converted, using a bulk modulus B=77 GPa �Ref. 1�,
from measured pressure coefficients �Refs. 30 and 31� and cited in
Ref. 32.

QSGW LDA Experiment

�1v-�25�v 9.4 8.3

�2�c-�25�v −11.6 −9.8 −11.8�0.4,a −9.3 b

L2�v-�25�v 6.6 5.6

L1v-�25�v 6.0 5.1

L3�v-�25�v 1.8 1.7

L1c-�25�v −4.6 −3.3 −3.9

X1v-�25�v 5.0 4.1

X4v-�25�v 4.0 3.8

X1c-�25�v 1.0 1.4 1.3

X1c-X4v −3.0 −2.4 −4.2

L1c-L3�v −6.4 −5.0 −5.8

aReference 30.
bReference 31.
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FIG. 1. Pressure variation of the valence states and the three
lowest conduction states in Ge as calculated by the QSGW method
at the �, L, and X symmetries points in the Brillouin zone. �Zero
energy is at the valence band maximum, �25� , i.e., −
��1� gives the
valence band width.�
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FIG. 2. �Color online� Pressure variation of the valence band
width in Ge. The valence band width in �-tin Ge is defined as the
difference between the Fermi level and the lowest valence state
level at �.
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served anomalous pressure variation of the valence band
width in the semiconducting phase. The QSGW method used
here is fundamentally different from a one-shot GW pertur-
bation on top of an LDA calculation �GW-LDA� �the kind of
calculation referred to in Ref. 1�. Using the QSGW, we avoid
that the pressure-induced band broadening can be “inherited”
from an initial LDA �or GGA� calculation. But also our cal-
culations were unable to reproduce the lack of pressure sen-
sitivity of the valence band width deduced from the
experiment.1 It is unknown whether self-consistent QSGW
calculations taking into account vertex corrections can lead
to results which agree better with the experiments. As men-
tioned in Ref. 1, the final-state rule34 should exclude that
core-hole effects influence the XES spectra, and even if
final-state relaxation effects were important, it is difficult to
imagine that they could exactly cancel the band broadening
in the insulating phase. Nevertheless, a new investigation of
the theoretical basis of x-ray emission spectroscopy may be

useful. We shall not pretend to know how to avoid compli-
cations of nonuniform pressure distribution35 and nonhydro-
static pressure components in the diamond cell better than
the experimentalists in Ref. 1. On the other hand, it would be
interesting if further experimental data, also on other semi-
conductors, could be stimulated by this discussion.
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