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It is argued that an extended s-wave superconducting state having order parameter that changes its sign on
the Fermi surface is likely to occur in crystals of low symmetry such as organic conductors, if the pairing
interaction is of electronic origin. Impurity effects in those superconducting states are then studied. Special
attention is paid to the nuclear magnetic relaxation rate 1 /T1. It is found that impurities give rise to peculiar
behavior of 1 /T1 such as a coherence peak just below the transition temperature and T-linear variation, caused
by impurity-induced finite density of states at the chemical potential, at low temperatures, at moderate impurity
concentration.
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I. INTRODUCTION

Study of the impurity effect is an important part of the
study of superconductivity. One can distinguish an uncon-
ventional pairing state from an isotropic s-wave one by
studying the impurity effect in the superconducting state,
for example, because the effect of impurity scattering de-
pends on the symmetry of order parameter. While an iso-
tropic s-wave state is robust against nonmagnetic impurity
scattering,1,2 an unconventional pairing state is sensitive to
impurity scattering.

Precisely speaking, symmetry of the superconducting or-
der parameter is classified by the irreducible representation
of the space group of the crystal where the superconductivity
occurs.3–5 When the total momentum of Cooper pairs van-
ishes, the irreducible representation of a point group is suf-
ficient to classify symmetry. Usually, order parameter repre-
sented by an irreducible representation other than the identity
representation is called unconventional. It is often the case
that an unconventional superconducting state has a node
�nodes� in the excitation gap, which leads to various anoma-
lous behaviors.

A pairing state belonging to the identity representation is
called an extended s-wave state in this study. Extended
s-wave states include the isotropic s-wave state. An extended
s-wave state is nodeless in many cases. However, no sym-
metry requirement prohibits the occurrence of nodes in the
excitation gap. Therefore, it is possible that an extended
s-wave state has order parameter that changes sign on the
Fermi surface. Indeed, the impurity effect in an extended
s-wave state with nodes in the gap was studied by many
authors,6–13 in pursuit of determination of the order param-
eter symmetry in high-Tc superconductors, and some pecu-
liar behaviors such as the impurity-induced opening of the
gap �in the case of sign-changing order parameter� were
found.9–14 However, the order parameter in the high-Tc su-
perconductors turned out to be of d-wave symmetry.15 More-
over, it appears difficult for extended s-wave order parameter
with sign change to be realized in actual materials. Presum-
ably, that is why the peculiar impurity effect in an extended
s-wave state �with sign change of the order parameter� has
not been further studied.

However, as will be discussed later, extended s-wave or-
der parameter with sign-change is likely to occur in crystals
of low symmetry if the mechanism of superconductivity is of
electronic origin. The purpose of this paper is to discuss this
possibility and then to elucidate the impurity effects in those
superconducting states, i.e., extended s-wave superconduct-
ing states with order parameter changing its sign on the
Fermi surface.

One of the families of unconventional superconductors is
low-dimensional organic conductors.16 Now, the number of
organic superconductors exceeds 100. One of the features of
the low-dimensional organic conductors is its low symmetry
of crystals.17 A typical space group describing crystals of

organic conductors is P1̄. The crystal system is triclinic, and
has no symmetry other than the inversion symmetry. The
corresponding point group Ci has only two irreducible rep-
resentations. One is the identity representation corresponding
to an even-parity �extended s-wave� pairing state, and the
other representation corresponds to an odd-parity state. In
these systems, only the distinction between even- and odd-
parity pairing is relevant, and the further classification is ir-
relevant at least from a group-theoretical point of view.

Mechanism of superconductivity in low-dimensional or-
ganic conductors has been studied extensively.16,18,19 In some
of the materials, the superconducting phase is in close prox-
imity of the antiferromagnetic long-range ordered phase,
which implies that the superconductivity is induced by anti-
ferromagnetic spin fluctuations.20–22 It has also been argued
that enhanced charge fluctuations may cause superconductiv-
ity in some of organic conductors.23–27 At any rate, if the
mechanism of superconductivity is of electronic origin, the
resultant superconducting order parameter is likely to have
substantial wave-vector dependence. Then, it is highly pos-
sible that the order parameter is of the extended s-wave sym-
metry and has nodes in the excitation gap.

In Sec. II, we explicitly introduce a model that gives an
extended s-wave superconducting state, and then study the
impurity effect in the superconducting state in Sec. III. In
addition to the transition temperature and the density of
states, we discuss the nuclear magnetic relaxation time. Sec-
tion IV is devoted to summary and discussion.
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II. MODEL

We consider an electron system on an anisotropic triangu-
lar lattice. The Hamiltonian is given by

H = �
k,�

���k� − ��ck�
† ck� = �

k,�
��k�ck�

† ck�, �1�

where

��k� = − 2 �
�=x,y

t� cos k�a� − 2t� cos�kxax + kyay� , �2�

a� is the lattice constant in the � direction, ck� �ck�
† � is the

annihilation �creation� operator of an electron with wave-
vector k and spin �. When tx= ty = t�, the problem becomes
equivalent to that defined on a triangular lattice, but here we
study the case with ty =0.8tx and t�=0.2tx unless otherwise
stated. The system is then has no symmetry other than the
inversion symmetry. The Fermi surface in the quarter-filled
case, n=0.5, which is considered in this paper, is shown in
Fig. 1. An anisotropic triangular lattice is often considered in
the study of organic conductors. Here, we study it as a typi-
cal system that has no symmetry other than the inversion
one, and do not consider a specific material.

We assume here that the effective attractive interaction
leading to superconductivity is of electronic origin. One of
the features of such effective interaction is its substantial
wave-vector dependence. This means that, in real space, the
effective interaction works mainly between electrons at dif-
ferent sites. In this paper, we do not further specify the
mechanism of the attractive interaction, but phenomenologi-
cally introduce attractive interaction working between elec-
trons at the nearest neighbor sites. Projecting out that part
relevant for the formation of Cooper pairs, the effective in-
teraction is given by

V =
1

N
�
k,k�

� �
�=x,y

v� cos�k��cos�k�� ��c−k↓�
† ck↑�

† ck↑
c−k↓

, �3�

where N is the total number of lattice points, and the inter-
action strength v� may depend on the direction. Here and in
the following, we put a�=1 for simplicity.

In the mean-field approximation, the gap �k is expressed
as

�k = �x�T�cos kx + �y�T�cos ky , �4�

and the gap equation is given by

� 1 −
vx

N
�k

cos2 kx��k� −
vx

N
�k

cos kx cos ky��k�

−
vy

N
�k

cos kx cos ky��k� 1 −
vy

N
�k

cos2 ky��k� �
= 0, �5�

where ��k�= �2E�k��−1 tanh �E�k� /2 and E�k�=	��k�2+�k
2.

In this study, we put Tc
�0�=0.05tx, where Tc

�0� is the transition
temperature in the clean limit. We determine the values of vx
and vy so that Tc

�0�=0.05tx is achieved.
In Fig. 1, we also show the zero in the gap �k at T

→Tc
�0�. At vy =vx, ry�Tc

�0��=�y�T� /�x�T� 
T→Tc
�0� =−0.92, and

the gap is close to the d-wave one and has nodes near the
diagonals of the Brillouin zone. If ry were equal to −1, the
gap would be of pure d-wave symmetry, but the s-wave com-
ponent is mixed, because there is no clear distinction be-
tween s- and d-wave symmetries in the present case. At vy
=0.4vx, ry decreases �ry�Tc

�0��=−0.12�, i.e., the s-wave com-
ponent mixes more, and nodes in �k are near the line kx
=� /2. However, nodes in the excitation gap still remain.
Angular dependence of the gap function �k on the Fermi
surface is shown in Fig. 2; here we put �x�T→Tc

�0��=1. It
can be seen that order parameter changes its sign in both
cases. An important parameter characterizing the anisotropy
of the gap is defined by

A0 = 1 − � ���k

2

���k
2


�

T→Tc
�0�

, �6�

where ��¯

 stands for the average on the Fermi surface. For
an isotropic gap, A0=0, and for a purely d-wave gap, e.g.,
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FIG. 1. �Color online� Fermi surface �solid curve� in the quarter-
filled case, n=0.5: tx : ty : t�=1.0:0.8:0.2. Zeros in the superconduct-
ing gap are also shown: dashed curves are for vy =vx, and dotted
curves are for vy =0.4vx.
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FIG. 2. �Color online� Angular dependence of the gap parameter
�k �at T→Tc

�0�� on the Fermi surface. For the definition of 	, see
Fig. 1. Dashed curve is the result for vy =vx, and dotted curve for
vy =0.4vx. Gap parameter is normalized so that �x=1.
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A0=1. For vy =vx, A0=0.96, and for vy =0.4vx, A0=0.58.

III. IMPURITY EFFECT

Nonmagnetic impurities are introduced as local potential
scatterers as usual. In organic conductors, the impurity po-
tential must be rather weak. It is therefore sufficient to con-
sider the Born limit, but we also briefly discuss the T-matrix
approximation in Appendix A for completeness. Using the
Nambu representation, the �2
2� Green’s function in the
clean limit is expressed as

G�0��k,i�n� = �i�n − ��k��z − �k�x�−1, �7�

where �n is Matsubara frequency for a Fermion and �� is a
Pauli matrix. Effect of impurity scattering is expressed as the
self-energy correction ��i�n�,

G�k,i�n� = �G�0��k,i�n�−1 − ��i�n��−1 = �i�̃�i�n� − ��k,i�n��z

− �̃k�i�n��−1. �8�

In the Born approximation, we obtain

i�̃�i�n� = i�n + niu
2g0�i�n� , �9�

and

�̃k�i�n� = �k + niu
2gx�i�n� , �10�

where

g0�z� =
1

N
�

k

i�̃�z�
D�k,z�

, �11�

gx�z� =
1

N
�

k

�̃k�z�
D�k,z�

, �12�

D�k , i�n�= �̃�i�n�2+��k�2+ �̃k�i�n�2, ni is the concentration of
impurities, and u is the strength of the impurity potential.
Strictly, there also occurs the renormalization of the kinetic
energy �k �in the absence of the particle-hole symmetry�, but
we neglect it here, because it is a small effect after all. In
addition to Eqs. �9� and �10�, we have the gap equation,

�k =
1

N
�
k�

T�
n
� �

�=x,y
v� cos k� cos k��� �̃k��i�n�

D�k�,i�n�
. �13�

Equations �9�, �10�, and �13� constitute the self-consistent
Born approximation.

A. Transition temperature

First, we study the impurity effect on the transition tem-
perature. In the normal phase, �̃�i�n���n+�B sgn��n�. Using
this, and after a straightforward calculation �see Appendix
B�, we obtain

�Tc = Tc − Tc
�0� = −

�

4
A0�B, �14�

where �B=�N0niu
2 with N0 being the density of states �per

spin� at the Fermi surface in the normal phase, in agreement

with the previous results.28–30 On the other hand, in the dirty
limit, �B
Tc �but �B�W with W being the band width�,

Tc � �B
−A0/�1−A0�, �15�

�0�A0�1�.12,28,30 In Fig. 3, we show the numerical results
for dependence of Tc on the impurity concentration. Also
shown is the effective gap anisotropy A defined by

A = 1 − � ���̃k�i�T�

2

���̃k�i�T�2


�

T→Tc

, �16�

which is experimentally relevant quantity. It can be seen that
as the gap becomes effectively isotropic, the dependence of
Tc on impurity concentration crossovers from Eq. �14� to Eq.
�15�.

B. Density of states

It is well known that impurities give rise to significant
change in the quasiparticle density of states in unconven-
tional superconducting states. In an extended s-wave super-
conductor with nodes but with no sign change in the order
parameter, a finite gap is readily open in the density of states
once an infinitesimal amount of impurities is introduced.7–9

On the other hand, in a d-wave superconductor, which has
sign-changing order parameter, impurities cause a finite den-
sity of states at the chemical potential �gaplessness�.31–34

In an extended s-wave superconductor with sign-changing
order parameter, the density of states changes in a peculiar
way as a function of impurity concentration.9–14 For a fixed
temperature �below Tc�, an infinite amount of impurities re-
sults in a finite density of states at �=0 �at the chemical
potential�, as in a d-wave superconductor. On increasing the
impurity concentration, the density of states at �=0 first in-
creases, but then decreases, and a finite gap opens at �=0
above critical concentration. The critical concentration �B,c
is determined by9

0 2 4
0

0.5

1

0

0.5

1

ΓB / TC
(0)

T
C

/T
C

(0
) ,

1−
A

FIG. 3. �Color online� Dependence of the transition temperature
Tc on the scattering rate �B for different values of vy /vx :vy /vx

=1.0 �solid curve�, 0.4 �dashed curve�, and 0.0 �dotted curve�. Also
shown is the effective gap isotropy 1−A at T=Tc for vy /vx=1.0
�solid dots�, 0.4 �open dots�, and 0.0 �open squares�.
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�� �B,c


�k + �B,c

�� = 1, �17�

in the Born approximation. We have assumed that ���k


�0. If the left-hand side �lhs� of Eq. �17� exceeds unity, a
finite density of states at �=0 develops, but if it does not,
N�0�=0. When �k+�B vanishes on a two-dimensional �2D�
Fermi surface, the lhs of Eq. �17� logarithmically diverges,
and a finite N�0� inevitably results. When −�min��k
��max on the Fermi surface ��min,�max�0�, the critical
concentration is determined roughly by �B,c��min. When
�B��min, a finite gap opens. These facts were already dis-
cussed in previous works.9–14 It should be noted here that �k
is not a quantity directly measured in experiments, but

�̃k��+i�� is.
One of the interesting results of the above discussion is

that, in an extended s-wave superconductor, a finite gap in
the density of states necessarily develops near Tc unless im-
purities are completely absent. This is a straightforward re-
sult, but it appears that little attention has been paid to it.

In calculations in the superconducting state, we make fur-
ther approximations. First, we approximate integrals as

1

N
�

k

F�cos kx,cos ky�

�̃�z�2 + �k
2 + �̃k�z�2

� N0���F�cos kx,cos ky�
	�̃�z�2 + �̃k�z�2 �� ,

�18�

where F�cos kx , cos ky� is an arbitrary function. The angular
average on the Fermi surface is calculated as

��¯

 = �
0

2� d	

2�

N	

N0
¯ , �19�

where N	=kF�	� / �2�vF�	�� with kF�	� �vF�	�� being the
angular-dependent Fermi wave-vector �velocity�. Further, we
approximate the temperature dependence of the gap �x�T� as

�x�T� = �x�0�tanh� �

�x�0�
	Tc

T
− 1� . �20�

Actually, �x�0� slightly depends on impurity concentration,
but we neglect the dependence here. We use, for vy =vx,
�x�0��1.5Tc, and vy =0.4vx, �x�0��2.2Tc. For both cases,
� /�x�0��3.0 is used. We then put �y�T�=ry�x�T�. For ry,
we use the value at T=Tc. Actually, ry is found to depend on
temperature only weakly. These approximations do not alter
the conclusions given below.

Figures 4–6 show the calculated density of states N��� in
an extended s-wave superconductor with impurities. At vy
=vx, the order parameter is close to d-wave one �A0=0.96�,
and the impurity effect on the density of states is similar
to that in a d-wave state, in the clean case, as is shown
in Fig. 4�a�. At �B=0.076Tc

�0��0.04�min�0�, only in the very
close vicinity of Tc, T /Tc�0.999 93, does a full gap open. In
most of the region below Tc, the density of states is quite
close to the one in the clean limit �B=0, as N�0� is at most
around 0.001 / tx �at T�0.9995Tc� and exponentially small
at lower temperatures.31,32 In a dirtier case ��B=0.606Tc

�0�

�0.6�min�0�� �Fig. 4�, remarkable features specific to an ex-
tended s-wave superconductors with nodes emerge. In the

vicinity of Tc, a full gap opens in the density of states, and
then a large finite density of states N�0� at the chemical
potential remains at low temperatures.

0

0.1

0.2

0 0.5 1
0

0.1

0.2

ω / ∆max(T)

N
(ω

)t
x

(a) ΓB/Tc
(0)=0.076

(b) ΓB/Tc
(0)=0.606

FIG. 4. Quasiparticle density of states N��� in an impure ex-
tended s-wave superconductor �vy =vx�A0=0.96�� for �a� �B /Tc

�0�

=0.076 �Tc /Tc
�0�=0.88� and �b� 0.606 �0.49� at different tempera-

tures: T=0.99Tc �dotted curves�, 0.9Tc �dashed curves�, and 0.2Tc

�solid curves�. The abscissa stands for frequency � normalized by
the maximum value �max of the gap parameter �k on the Fermi
surface.
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(1−T/Tc)
1/2

N
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)
t x

ω / ∆max(T)

N
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)t
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(a) ΓB/Tc
(0)=0.076

(b) ΓB/Tc
(0)=0.606

FIG. 5. Quasiparticle density of states N��� in an impure ex-
tended s-wave superconductor �vy =0.4vx�A0=0.58�� for �a�
�B /Tc

�0�=0.076 �Tc /Tc
�0�=0.96� and �b� 0.606 �0.68� at different

temperatures: T=0.99Tc �dotted curves�, 0.9Tc �dashed curves�, and
0.2Tc �solid curves�. The abscissa stands for frequency � normal-
ized by the maximum value �max of the gap parameter �k on the
Fermi surface. The inset in �a� shows N�0� as a function of
	1−T /Tc.
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At vy =0.4vx, the order parameter is less anisotropic �A0
=0.58�. In a fairly clean case ��B=0.076Tc

�0��0.2�min�0�
and Tc /Tc

�0�=0.96�, a finite gap opens, as shown in the inset
of Fig. 5�a�, at T�0.9955Tc, and the density of states is
gapless at lower temperatures �Fig. 5�a��. At T=0.9Tc and
0.2Tc, N�0� is finite, but it is exponentially small.31,32 In a
rather dirty case ��B=0.606Tc

�0��2�min�0� and Tc /Tc
�0�

=0.68�, a finite gap always develops �Fig. 5�b��. In particular,
at T=0.99Tc, a sharp peak in the density of states on the edge
of the finite gap is beginning to develop �Fig. 6�b��.

C. Nuclear magnetic relaxation time 1 ÕT1

The peculiar behavior of the density of states at low en-
ergies must cause interesting behavior of other quantities. In
particular, the nuclear magnetic relaxation time 1 /T1 must
exhibit peculiar temperature dependence as a function of im-
purity concentration. The relaxation time 1 /T1 is given by35

1

T1
�

T

N
�

q

A�q�
2 lim

�→0

1

�
Im ��q,� + i�� , �21�

where ��q,�+ i�� is dynamical �transverse� spin susceptibil-
ity, and A�q� is the hyperfine coupling between a nuclear spin
and a conduction electron. Impurity potential causes not only
self-energy correction, but also vertex correction for the spin
susceptibility, but the latter can be safely neglected in calcu-
lating 1 /T1,36,37 �although there is also a report that the im-
purity vertex correction causes enhancement of the coher-
ence peak38�. Then, the relaxation rate R�T���1 / �T1T�� is
given by

R�T� =
1

N
�

q
lim
�→0

1

�
Im ��q,� + i��

=
4

�
�

0

�

d��−
df

d�
��g0��� + i��2 + gx��� + i��2� , �22�

where f is the Fermi distribution function. In Fig. 7, we show
R�T�T ��1 /T1� for vy =vx and different impurity concentra-
tions. In this case, the gap parameter is quite close to the
d-wave one. In the clean limit, there occurs a weak coher-
ence peak just below Tc. Adding a small amount of impuri-
ties almost diminishes the coherence peak �see the inset�.
This is similar to the behavior in a d-wave superconductor.6

There occurs no coherence peak in a clean d-wave supercon-
ductor, and impurities further suppress 1 /T1 below Tc.
Strictly speaking, a finite gap in the density of states is
present just below Tc �as was shown in Sec. III B�, but its
effect is limited and invisible in the present case. On further
increasing impurity concentration, a clear coherence peak de-
velops below Tc, in contrast to a d-wave case. Impurity-
induced development of a coherence peak is a common phe-
nomenon in anisotropic s-wave superconductor.39 However,
the coherence peak does not yet fully develop in the present
case.

At low temperatures, 1 /T1 varies in proportion to T3 in
the clean cases as a result of nodes of the gap �see also Fig.
10�. At finite impurity concentration, N�0� is finite, but its
effect is negligible because it is exponentially small. On the
other hand, in the dirty case ��B /Tc=0.606,Tc /Tc

�0��0.5�,
1 /T1 is roughly proportional to T, reflecting a finite N�0�. In
this case, �B is large, but not yet large enough for inequality
�B��min�0� to hold. That is why a finite N�0� is obtained.
For a larger �B, a full gap is realized at any temperatures
below Tc, and exponential dependence of 1 /T1 on T would
be observed. However, Tc itself has already been very much
reduced then.

At vy =0.4vx, the gap parameter is more isotropic �A0
=0.58�. In this case, introduction of impurities readily en-
hances the coherence peak below Tc as shown in Fig. 8. In
the clean case, 1 /T1 varies proportionally to T3 at low tem-
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0.2

0 0.1
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0.1

0.2

ω / t x

N
(ω

)t
x

(a) ΓB/Tc
(0)=0.076

(b) ΓB/Tc
(0)=0.606

FIG. 6. Quasiparticle density of states N��� in an impure ex-
tended s-wave superconductor �vy =0.4vx�A0=0.58�� for �a�
�B /Tc

�0�=0.076 and �b� 0.606 at different temperatures: T=0.99Tc

�dotted curves�, 0.9Tc �dashed curves�, and 0.2Tc �solid curves�.
The abscissa stands for frequency � normalized by the transfer tx.
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0.9 1

1

1.1

T / Tc

R
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)T
/R

(T
c)

T
c

FIG. 7. �Color online� Nuclear magnetic relaxation rate R�T�T
��1 /T1� in the superconducting state at vy =vx �A0=0.96� for dif-
ferent impurity concentrations: �B /Tc

�0�=0 �solid dots�, 0.152 �open
dots�, and 0.606 �open squares�. The inset shows the blowup near
Tc.
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peratures. In the dirty case ��B /Tc
�0�=1.213�, 1 /T1 decreases

more rapidly because the full gap is opened by impurities at
low temperatures �see the inset�. At �B /Tc

�0�=0.606, as tem-
perature decreases, 1 /T1 decreases rather slowly. It is quite
close to the T-linear variation. In this case, a full gap opens,
but its magnitude is so small �see Fig. 5� that the exponential
behavior is not yet clearly seen. At lower temperatures, it
must decrease exponentially.

The results for 1 /T1 is summarized schematically in Fig.
9.

IV. SUMMARY

We have shown that, in a crystal of low symmetry, an
extended s-wave superconducting state with order parameter
changing its sign on the Fermi surface is likely to occur if the
pairing interaction is of the electronic origin. Since, in some
of organic conductors, these conditions are likely to be sat-

isfied, it is expected that an extended s-wave pairing is real-
ized in those organic superconductors.

The change in the sign of the order parameter means that
the gap parameter �k takes values in the region of
−�min�T���kF

��max�T� with �min�T� , �max�T��0 on the
Fermi surface. The transition temperature Tc and the tem-
perature dependence of �min�T� are determined, once the
scattering rate �B is given, and we can show the temperature
dependence of �min�T� as a function of T /Tc as in Fig. 9. As
the gap parameter approaches to an isotropic one, �min�T�
decreases. Negative �min�T� implies a fully gapped order pa-
rameter. If �B��min�T� �see Eq. �17� for the precise condi-
tion�, a full gap opens in the density of states, N�0�=0. Oth-
erwise, the density of states is gapless, N�0��0, although
N�0� is exponentially small at �B��min�T�, in the weak scat-
tering case.31,32

Behavior of 1 /T1 in an extended s-wave superconductor
with sign-changing order parameter �on the Fermi surface� in
the presence of weak scatterers is summarized as follows
�see Fig. 9�: �1� in the absence of impurities, 1 /T1 has a weak
coherence peak, and follows T3-power law at low tempera-
tures. �2� In the clean case, �B��min�0�, the coherence peak
below Tc is weakly suppressed. �However, it is enhanced as
�B further increases.� 1 /T1 varies roughly proportionally to
T3 at low temperatures. �3� At �B��min�0�, a coherence
peak develops below Tc, and 1 /T1 is proportional to T at low
temperatures. �4� At �B
�min�0�, a prominent coherence
peak is observed, and 1 /T decreases exponentially at low
temperatures.

Width of observability window depends on the anisotropy
A0 of the gap. If 1−A0�1, i.e., if it is very anisotropic, the
system stays mostly in the regions �1�–�3�. Ultimately, region
�4� is reached. However, then, Tc has already been very much
reduced from Tc

�0�, and the observability of region �4� is
rather limited. On the other hand, if A0�1, region �4� is
readily reached, and observability of regions �2� and �3� is
limited.

Region �2� is specific to the case with weak scattering
potential. If scattering potential is strong enough, 1 /T1 be-
comes proportional to T in the presence of small amount of
impurities �See Appendix A�.

In triclinic systems such as many of �- or �-�BEDT-TTF�
salts �where BEDT-TTF stands for bis�ethylene-
dithio�tetrathiafulvalence� and �TMTSF�2X �where TMTSF
stands for tetramethyltetraselenafulvalene�, there is only one
irreducible representation corresponding to the singlet pair-
ing. Therefore, if the gap has nodes, the order parameter
must be an extended s-wave one with sign change, and the
present theory must be always applicable. It is highly desir-
able that the transition temperature and 1 /T1 as a function of
impurities will be systematically measured in those systems.

In cases with crystals of higher symmetry, the present
theory can also be helpful in identifying the symmetry of
order parameter. For example, �-�BEDT-TTF�2Cu�NCS�2 is
an organic superconductor of monoclinic symmetry. The
point group describing its symmetry is C2h. It has two irre-
ducible representations of even parity: A1g and B1g. In fact,
there has been controversy over the symmetry of order pa-
rameter in this material.19 The two possibilities of order pa-
rameter symmetry are often referred to as dx2−y2 and dxy. The
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FIG. 8. �Color online� Nuclear magnetic relaxation rate R�T�T
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different impurity concentrations: �B /Tc

�0�=0 �solid dots�, 0.076
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dx2−y2 state belongs to the B1g representation, and dxy to the
A1g, i.e., dxy state is actually an extended s-wave state.40 The
experimental results of the dependence of the transition tem-
perature on the interlayer residual resistivity are qualitatively
similar to Fig. 3,41 implying the order parameter is an ex-
tended s-wave one �with small A0�. Nuclear magnetic relax-
ation time was also measured in this material.42 No coher-
ence peak was observed below Tc, but anomalous large peak
at far below Tc, probably caused by vortex motion,43 made it
difficult to observe the temperature dependence of 1 /T1
�without contributions from vortex motion�. A systematic
study of 1 /T1 would be helpful in identifying the order pa-
rameter symmetry if the contribution from vortex motion is
suppressed.

APPENDIX A: SELF-CONSISTENT T-MATRIX
APPROXIMATION

In the self-consistent t-matrix approximation, Eq. �9� is
replaced by

i�̃�i�n� = i�n +
nig0�i�n�

u−2 − g0�i�n�2 + gx�i�n�2 , �A1�

and Eq. �10� by

�̃k�i�n� = �k +
nigx�i�n�

u−2 − g0�i�n�2 + gx�i�n�2 . �A2�

In the unitarity limit, u→�,

i�̃�i�n� = i�n −
nig0�i�n�

g0�i�n�2 − gx�i�n�2 , �A3�

and

�̃k�i�n� = �k −
nigx�i�n�

g0�i�n�2 − gx�i�n�2 . �A4�

In the unitarity limit, the same result as that in the Born
limit is obtained for the dependence of the transition tem-
perature on the impurity concentration except for the replace-
ment of �B with �=ni / ��N0�. However, the density of states
at low energy is quite different from those in the Born limit,
because strong potential scattering causes a resonance at a
low energy �at the chemical potential in the particle-hole
symmetric case� and it gives rise to a finite density of states
at the chemical potential proportional to 	ni.

33,34 This has a
significant effect on the nuclear relaxation rate 1 /T1. Even in
the case with ���min�0�, 1 /T1�T because of non-
negligible density of states at �=0 �see Fig. 10�.

APPENDIX B: DEPENDENCE OF TRANSITION
TEMPERATURE ON THE IMPURITY CONCENTRATION

In analytic calculations, we use the approximation �Eq.
�18��. Then, defining C� and C�� as C�= ��cos k�

 and

C��= ��cos k� cos k�

, we find that the equation determining
Tc is given by

�1 − ṽx�Cxx�� + Gcx
2� − ṽx�Cxy�� + Gcxcy�

− ṽy�Cxy�� + Gcxcy� 1 − ṽy�Cyy�� + Gcy
2�
� = 0,

�B1�

where ṽ�=N0v�, ��=��Nc+ 1
2 +

�B

2�Tc
�−�� 1

2 +
�B

2�Tc
�, G

=�� 1
2 +

�B

2�Tc
�−�� 1

2 �, ��z� is the digamma function, and Nc

=W / �2�Tc� with W being a high-frequency cut-off of the
order of the band width.

First, we calculate the gap anisotropy A0 in the limit of
T→Tc

�0�, i.e., in the clean limit. We can easily show that

�y

�x
=

v/vx − Cxx

Cxy
=

Cxy

v/vy − Cyy
, �B2�

where 1 / �N0v�=���0�=��Nc
�0�+ 1

2 �−�� 1
2 � with Nc

�0�

=W / �2�Tc
�0��. Using Eq. �B2�, we can show that

A0 =
�v/vy − Cyy��xx + �v/vx − Cxx��yy + 2Cxy�xy

v�Cxx/vy + Cyy/vx� − �CxxCyy − Cxy
2 �

, �B3�

where ���=C��−C�C�.
Now, we calculate the transition temperature Tc. We note

that the cutoff energy W is much �exponentially� larger than
Tc

�0� and Tc, and that �B�Tc
�0� �We cannot apply the present

theory to the case with �B�W�. Therefore, we can use the
inequality ��−���0� , G����0� , ��. We can thus put
��+���0��2���0�=2 / �N0v�, for example. Using Eqs. �B1�
and �B2�, then, we obtain

�� − ���0� = ln
Tc

�0�

Tc
= A0G = A0���1

2
+

�B

2�Tc
� − ��1

2
�� .

�B4�

Equations �14� and �15� are derived from Eq. �B4�.
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FIG. 10. �Color online� Nuclear magnetic relaxation rate R�T�T
��1 /T1� in the superconducting state at vy =vx �A0=0.96� for dif-
ferent impurity concentrations: � /Tc

�0�=0 �solid dots�, 0.152 �solid
squares�, and 0.606 �solid diamonds�, where �=ni / ��N0�. For com-
parison, the results in the Born approximation are shown by open
symbols: �B /Tc

�0�=0.152 �open squares� and 0.606 �open
diamonds�.
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