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We suggest a new mean-field method for studying the thermodynamic competition between magnetic and
superconducting phases in a two-dimensional square lattice. A partition function is constructed by writing
microscopic interactions that describe the exchange of density and spin fluctuations. A block structure dictated
by spin, time-reversal, and bipartite symmetries is imposed on the single-particle Hamiltonian. The detailed
dynamics of the interactions are neglected and replaced by a normal distribution of random matrix elements.
The resulting partition function can be calculated exactly. The thermodynamic potential has a structure which
depends only on the spectrum of quasiparticles propagating in fixed condensation fields, with coupling con-
stants that can be related directly to the variances of the microscopic processes. The resulting phase diagram
reveals a fixed number of phase topologies whose realizations depend on a single coupling parameter ratio, �.
Most phase topologies are realized for a broad range of values of � and can thus be considered robust with
respect to moderate variations in the detailed description of the underlying interactions.
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I. INTRODUCTION

Studies of high-temperature superconductors have re-
vealed a rich phase diagram, with coexisting magnetic and
superconducting correlations. These phase structures can be
complex and include d-wave pairing, stripes, or the
pseudogap phenomenon.1–4 Theoretical models and numeri-
cal studies on a lattice indicate that the richness of the phase
structure results from a delicate energy balance between
competing states.2,5 It follows that model predictions can be
sensitive to small changes in the parameters of the theory or
to details of the numerical approach. The question then arises
of which properties of the phase diagram are constrained by
the basic underlying symmetries and which are sensitive to
the detailed dynamics of the interactions and to numerical
approximations.

The purpose of this paper is to address this question with
a new mean-field approach. The method is based on random
matrix theory and consists in constructing a Hamiltonian that
retains the basic spin, time-reversal, and bipartite symmetries
of the problem but simplifies the dynamics of the interactions
considerably. The theory is radically different from the famil-
iar Hubbard or t-J model. Here, we construct the model at a
deeper microscopic level and describe interactions that are
mediated by the exchange of density and spin fluctuations.
This construction is inspired by random matrix models of the
strong interaction, for which the QCD interactions are medi-
ated by single-gluon exchange. Although natural in QCD, a
microscopic description involving bosonic fields may be
more controversial in the context of high-Tc superconduct-
ors. Such an approach is similar to low-energy effective
theories of antiferromagnets and superconductors6–10 or to
the antiferromagnetic spin-fluctuation exchange theory.11–14

Here, in contrast to these models, no particular assumption is

made regarding the detailed dynamics of the exchange fields.
Instead, we adopt a coarse description in which the block
structure of the interaction matrix is dictated by the underly-
ing symmetries of the Hamiltonian while individual matrix
elements are drawn at random.

A random matrix approach offers three advantages. First,
since the theory is constructed at a more microscopic level, it
allows us to relate global properties of the phase diagram to
specific microscopic mechanisms. Second, the simplified dy-
namics produces a mean-field model that can be solved ex-
actly: the gap equations are polynomial. Their roots can
therefore be studied as a function of the coupling parameters
of the theory. Third, in the vicinity of critical points, the
thermodynamic potential has a Landau-Ginzburg form in
which the expansion coefficients satisfy specific symmetry
constraints inherited from the deeper microscopic level.
These constraints help us to identify those topologies that
can be realized in the system and rule out those that violate
the constraints.

The motivation for applying methods used in QCD to the
high-Tc problem follows from the strong analogies existing
between these systems. First, the restoration of chiral sym-
metry with increasing quark density can be understood from
the analogous behaviors of QCD and metamagnets. The chi-
ral condensate plays the role of a staggered magnetization
which vanishes abruptly as an external magnetic field is in-
creased, driving the system through a first-order phase
transition.15 Second, single-gluon exchange is attractive in
the antitriplet channel and leads to the Cooper pairing of
quarks. This form of pairing can lead to a long-range order
called color superconductivity.16–18 The degrees of freedom
that are involved in pairing are different from those involved
in the chiral broken phase of QCD, so that color supercon-
ductivity competes directly with the breaking of chiral sym-
metry.
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Random matrix methods have been extensively applied
for studying the phase diagram of QCD.15,19–22 In recent
works,23–26 we studied the phase diagram of QCD with three
colors and two flavors as a function of temperature and quark
chemical potential. The partition function was constructed as
an integral over random matrices that mimicked the basic
structure of quark-quark interactions but neglected their de-
tailed dynamics. These matrices were given a block structure
that reflected the spin, color, and flavor symmetries of one-
gluon exchange. Inside a given block matrix, no further cor-
relations were assumed among the matrix elements, which
were then drawn at random on a normal distribution. This
approach produced a mean-field model that could be solved
exactly. The resulting effective potential gave polynomial
gap equations whose roots could be determined analytically
or numerically. The effective potential contained a single free
parameter, defined as a coupling-constant ratio that measured
the relative strength of the interactions in the chiral and di-
quark channels. As this coupling ratio was varied, the phase
structure passed through a restricted number of distinct to-
pologies. Moreover, starting with coupling constants with the
values appropriate for single-gluon exchange, large varia-
tions were required to alter the topology of the phase dia-
gram. We thus concluded that the QCD phase diagram was
robust against moderate variations in the detailed dynamics
of the interactions.

In general, random matrix models are useful in providing
a global picture of the phase diagram. Being mean field in
nature, such a picture is only a starting point that requires the
proper inclusion of thermal, quantum, and spatial fluctua-
tions �which play an important role in the high-Tc problem as
a consequence of the Mermin-Wagner theorem27� if it is to
be quantitatively reliable. Nevertheless, the random matrix
approach can be useful in providing an overview of the
strength of the order parameters and their sensitivity to cou-
pling parameters and can thus serve as a means for identify-
ing those characteristics of the phase diagram that are pro-
tected by symmetry.

It is worth noting that the “random” part of the theory has
nothing to do with disorder. Instead, the philosophy here
consists in constructing a Hamiltonian with a block structure
dictated by the underlying symmetries of the problem and
replacing individual matrix elements by random variables,
conventionally drawn on a normal distribution. This con-
struction can be regarded as equivalent to integrating over
many Hamiltonians that meet fundamental symmetry re-
quirements but which differ from one another in the detailed
implementation of the dynamics of the interaction. The
theory can thus appear elaborate at first sight since it in-
volves a large number of statistical variances. However, the
number of free parameters decreases at each step of the cal-
culations so that the theory becomes simpler as one proceeds
toward the solution of the problem. In fact, the final form of
the thermodynamic potential depends only on a single pa-
rameter ratio, and its functional form has a well-defined
structure that can be interpreted in terms of quasiparticle en-
ergies. Hence, most of the effort involved in constructing the
model is “upfront” but worthwhile since it provides relation-
ships between the global phase diagram and the microscopic
parameters of the theory. Overall, the procedure is relatively

simple and could be implemented in many other problems.
We will consider a fermion system on a two-dimensional

square lattice and construct its partition function at finite
temperature and finite chemical potential. In Sec. II, we
show that extension of the methods used in QCD poses some
challenges. First, while the basic interactions of QCD are
naturally formulated in terms of quarks exchanging gluons,
no such natural description is available at an elementary
level for the cuprates. We will thus explicitly assume that the
interactions can be described as the exchange of density and
spin fluctuations. The structure of the interaction between the
fermions and the fluctuation fields is dictated by SU�2�-spin,
time-reversal, and bipartite symmetries. We will show that
this formulation leads to a four-fermion effective potential
whose terms can be compared to those of the Hubbard
model. A second challenge is the need to account for the
d-wave character of the superconducting order parameter,
which forces us to introduce an explicit momentum depen-
dence of the fermion states. As we are seeking to construct a
model that suppresses as many details of the interaction as
possible, we limit ourselves to a “coarse-grained” momen-
tum description in which the first Brillouin zone is divided
into four sectors in order to mimic the symmetry patterns of
the antiferromagnetic and superconducting order parameters.

Section III is devoted to the derivation of the effective
potential. We find that it is possible to construct a theory in
which antiferromagnetism and d-wave superconductivity are
favored and compete, while the s-wave channel is repulsive.
Such a theory gives greater statistical weight to spin-
fluctuation fields with a large momentum exchange. When
deriving the effective potential, we will see that the theory
simplifies considerably as one proceeds through the calcula-
tions. The initial model of Sec. II involves as many as eight
different variance parameters; the final thermodynamic po-
tential depends on a single parameter ratio. Its interpretation
in terms of quasiparticle energies is also given in Sec. III.

We study the resulting phase diagrams in Sec. IV, where
we show that, as was the case for QCD, there are only a
finite number of possible topologies. As in the QCD prob-
lem, the topology of the phase structure changes gradually as
the ratio of coupling constants is varied. Section V contains a
summary of our main findings and our conclusions.

II. CONSTRUCTION OF THE RANDOM MATRIX MODEL

We consider a system of electrons on a two-dimensional
square lattice and model the competition between magnetic
and superconducting orders as a function of the chemical
potential, �, and the temperature, T. We construct interac-
tions that satisfy spin, time-reversal, and bipartite symme-
tries with simplified but integrable dynamics. This approach
ensures that the properties of the model arise solely as a
consequence of the symmetries.

A. Order parameters and the parametrization of momenta
and frequencies

We wish to define random matrix correlators that mimic
the basic structure of antiferromagnetism and superconduct-

BENOÎT VANDERHEYDEN AND A. D. JACKSON PHYSICAL REVIEW B 79, 144502 �2009�

144502-2



ing order parameters. Working at finite temperature T in an
imaginary time formalism, the antiferromagnetic order pa-
rameter assumes the form

mAF = � �
p�n��

��
†�p + Q,�n�������p,�n�� , �1�

where p are momenta in the first Brillouin zone, Q
= ��� /a ,�� /a� is the AF ordering vector �a is the lattice
spacing�, �n= �2n+1��T are fermion Matsubara frequencies,
� and � are spin indices, � are the spin Pauli matrices, and
�. . .�=Tr�. . .e−�H� denotes a thermal average. Similarly, the
d-wave order parameter is given as

mSC-d = ��
p,�n

g�p��↑�p,�n��↓�− p,− �n�� , �2�

where

g�p� = cos� pxa

�
	 − cos� pya

�
	 �3�

is the d-wave form factor.
Our aim is to construct correlators that mimic the momen-

tum couplings in Eqs. �1� and �2� on a coarse level. First, we
divide the Brillouin zone into four regions related to one
another by either a momentum shift in Q,


p� � Q
p� = 
p + Q� , �4�

or by momentum reversal,


p� � P
p� = − 
p� . �5�

Next, we replace the exact form factor g in Eq. �2� by the
simplified form factor

	d�p� = sgn�g�p� , �6�

where 	d is a crude approximation of g. It neglects its varia-
tion with momentum, which is related to the detailed shape
of the wave function, but exhibits the same d-wave symme-
try as g, changing sign for every 90° rotation in the Brillouin
zone. We believe that such an approximation captures the
essential symmetry of the problem and is sufficient to de-
scribe d-wave pairing.

The particular form for 	d guides our parametrization of
momentum states. Four momentum regions are chosen as the
sectors in which 	d has a given sign. One possible division
of the Brillouin zone is shown in Fig. 1. The approximate
form factor 	d is −1 in regions 1 and 3 and +1 in regions 2
and 4. States in regions 1 and 3 are related to those in regions
2 and 4 by a shift of 
Q. Regions 1 and 2 are related to
regions 3 and 4 by momentum reversal. Inside each region,
states are labeled by an index i=1, . . . ,M, where M scales
with the total number of lattice sites and M→� in the ther-
modynamical limit. These states also count the different Mat-
subara frequencies. From one region to another, the states are
parametrized as follows. If a given index i refers to a state
�p ,�n� in region 1, then the states labeled with the index i in
2, 3, and 4, respectively, correspond to �p+Q ,�n�, �−p ,
−�n�, and �−p−Q ,−�n�. �Note the change of sign in the
frequencies of the last two terms.�

With this parametrization, the AF order parameter is writ-
ten as

mAF =� �
r,s=1

4

�
i,j=1

M

�
�,�=↑,↓

�r,i,�
† �����AF�r,sij�s,j,�� , �7�

where r and s are region indices and the four-by-four matrix
�AF couples momenta separated by Q,

�AF = ��1�Q � �1�P =�
0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0
� . �8�

Similarly, the superconducting �SC� order parameter has the
form

mSC-d =� �
r,s=1

4

�
i,j=1

M

�r,i,↑��SC-d�r,sij�s,j,↓� , �9�

where �SC-d is now blind to shifts by Q and couples states
with opposite momenta with a sign dictated by the d-wave
form factor of Eq. �6�

�SC-d = �	d�p�Q � ��1�P = �− �3�Q � ��1�P

=�
0 0 − 1 0

0 0 0 1

− 1 0 0 0

0 1 0 0
� . �10�

Note that with our parametrization, the Kronecker symbol ij
in Eqs. �7� and �9� automatically selects equal Matsubara
frequencies for the AF order parameter and opposite frequen-
cies for the SC order parameter.

py

h̄π
a

h̄π
a

px− h̄π
a

− h̄π
a

1

2

2

3

4

4

FIG. 1. Parametrization of the first Brillouin zone. Regions 1
and 2 are related by a momentum shift by 
Q= 
 ��� /a ,�� /a�,
as are regions 3 and 4. Regions 1 and 3 and regions 2 and 4 are
related by momentum reversal.
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Similar arguments can be followed for an s-wave order
parameter. With an isotropic form factor 	s�p�=1, the corre-
sponding momentum projector is given as

�SC-s = �1�Q � ��1�P =�
0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0
� , �11�

and the s-wave order parameter has the form given by Eq.
�9� with �SC-d replaced by �SC-s.

B. Constraints imposed by symmetries

We now turn to the construction of the random matrix
interactions. Inspired by random matrix models for QCD,23,24

we write the partition function of the system as a path inte-
gral

Z��,T� =� D�†D�dHintP�Hint�e−�†�H0+Hint��, �12�

where �† and � are independent fermion fields, Hint is a
matrix describing the random interaction with elements dis-
tributed according to the distribution P�Hint� to be defined
below, and H0 is the noninteracting part of the single-particle
Hamiltonian which contains temperature and chemical-
potential terms.

This formulation is radically different from the more fa-
miliar Hubbard or t-J models, where the interaction terms
are described by effective four-fermion potentials. Here, in-
stead, the interactions are described at a deeper microscopic
level so that fermions interact with fluctuation fields via cur-
rent terms, �†Hint�. This formulation is directly inspired by
the Yang-Mills Lagrangian for the strong interaction medi-
ated by gluon exchange. In the context of the high-Tc prob-
lem, these fluctuation fields can describe either interactions
carried by phonons, antiferromagnetic fluctuations, or more
complex effective interactions. Here, we will not attempt to
identify the nature of these fields nor to specify their dynam-
ics. We will assume only that interactions can be described in
terms of such fields and consider how their description is
constrained by the symmetries of the system.

1. Interaction terms

According to the parametrization introduced in Sec. II A,
the fermion fields are described by spinors with eight com-
ponents �four momentum regions and two spins�. Similarly,
the random matrices Hint are composed of 8�8 block matri-
ces of size M �M. Due to the symmetries of the system,
these blocks are not completely independent.

Consider first the constraints imposed by SU�2�. For a
fixed pair of momentum region indices, e.g., �r ,s�, we can
write

�Hint,r,s,↑,↑ Hint,r,s,↑,↓

Hint,r,s,↓,↑ Hint,r,s,↓,↓
	 = �

�=0

3

��H�;r,s, �13�

where ��= �1 ,��, H�;r,s with �=0 represents density-
fluctuation fields, and H�;r,s with �=1,2 ,3 describes spin-

fluctuation fields. The interaction Hamiltonian can be made
invariant under a spin unitary transformation, U, by requiring
that the vector �H1;r,s ,H2;r,s ,H3;r,s� simultaneously undergoes
a space rotation R, with R satisfying U†�iU=Rij� j. The par-
tition function itself, Eq. �12�, is then made invariant under
SU�2� transformations by requiring that the probability dis-
tribution, P�Hint�, is invariant under the corresponding spatial
rotations R.

Consider next constraints related to time-reversal invari-
ance. Following the work of Monthoux on spin-fluctuation
exchanges,13 the fields H� are taken to be real in coordinate
representation—they do not carry an electric charge. As will
be seen below, the integration over these fields produces a
four-fermion interaction that contains squares of density
terms, ���†��2, and spin currents, ���†���2, thus leading
to a two-body potential with a time-reversal symmetry. Now,
because the fluctuation fields H� are real, the Fourier com-
ponents of their matrix elements must satisfy the constraint

�p,�n�H��q,�m� = �− p,− �n�H�� − q,− �m��. �14�

If one divides the Brillouin zone into two subspaces of states

p ,�n� �regions 1 and 2� and 
−p ,−�n� �regions 3 and 4� and
adopt the parametrization introduced in Sec. II A, this con-
dition can be cast in the form

H� = PH�
� P , �15�

where

P = �0 1

1 0
	 �16�

reverses both momentum and frequency. Hence, the matrices
H� must have the block structure

H� = �B� C�

C�
� B�

� 	 , �17�

where B� are Hermitian and C� are complex symmetric.40

Finally, we turn to the bipartite symmetry, appropriate for
a square lattice, composed of two interpenetrating sublattices
A and B. Consider the transformation

��r� � �+ ��r� if r � A ,

− ��r� if r � B .
� �18�

The full Hamiltonian H is not expected to be invariant under
such a transformation because the kinetic terms couple fields
defined on neighboring sites. However, we will assume that
the interaction part of the Hamiltonian, Hint, is bipartite in-
variant �as is the case for the U term in the Hubbard model�.
We first determine the momentum representation of Eq. �18�.
Using the definition of Q= �� ,��� /a, Eq. �18� can be rewrit-
ten as ��r��exp�iQ ·r /����r�. Then, in the momentum rep-
resentation, the bipartite transformation takes the form

��p� � Q��p� = ��p + Q� . �19�

Dividing the Brillouin zone in the two subspaces 
p� �regions
1 and 3� and 
p+Q� �regions 2 and 4�, the bipartite invari-
ance of H� is written as
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H� = QH�Q , �20�

with

Q = �1 0

0 1
	 . �21�

H� must then have the block structure

H� = �D� E�

E� D�
	 , �22�

where D� and E� are Hermitian. An alternative, but weaker,
requirement on H� could be that matrix elements between
states with momenta p1+Q and p2+Q are equal to those
between p1 and p2. This amounts to take equal diagonal
blocks in the right side of Eq. �22�, with no constraint on the
off-diagonal blocks. This second choice results in a free en-
ergy with a slightly different form but leads to the same main
results as the choice of Eq. �22�. This alternative form is
discussed further in the Appendix.

Combining the requirements imposed by the three sym-
metries, we arrive at an interaction matrix of the form

Hint = �
�=0

3

���
B�d B�o C�d C�o

B�o B�d C�o C�d

C�d
� C�o

� B�d
� B�o

�

C�o
� C�d

� B�o
� B�d

�
� , �23�

where the 4�4 block structure of Hint refers to the regions of
the Brillouin zone. Each block is described by an M �M
matrix; blocks B�d and B�o are Hermitian, while C�d and
C�o are complex symmetric. Overall, Hint contains 16 inde-
pendent blocks.

2. Probability distribution

We represent the 16 blocks by Ab with b=1, . . . ,16. Their
matrix elements are drawn on a normal distribution

P�Hint� = exp�− 8M�
b=1

16

�b
2 Tr�AbAb

†�	 , �24�

where �b
2 represent inverse variances. This form allows us to

perform the integration over Hint analytically and thus to de-
termine the partition function exactly.41 In order to make the
partition function invariant under SU�2� rotations, the in-
verse variances associated with each of the three blocks that
describe a spin-fluctuation exchange are chosen equal. Since
12 of the 16 independent blocks describe spin fluctuations
and four describe density fluctuations, we arrive at a total of
4+4=8 independent variances. The resulting distribution
function is then given as

P�Hint� = exp
− 8M��B0d
2 Tr�B0dB0d

† � + �Bd

2 Tr�Bd · Bd
†�

+ �B0o
2 Tr�B0oB0o

† � + �Bo

2 Tr�Bo · Bo
†�

+ �C0d
2 Tr�C0dC0d

† � + �Cd

2 Tr�Cd · Cd
†�

+ �C0o
2 Tr�C0oC0o

† � + �Co

2 Tr�Co · Co
†�� , �25�

where the inverse variances can be tuned individually at will

in order to favor various scattering mechanisms.

3. Noninteracting terms

The noninteracting part of the single-particle Hamiltonian
is written as

�†H0� = �†�− � + �T + �t�� . �26�

Here, the chemical-potential term, �, is a scalar while �T
and �t are matrices which describe temperature dependence
and hopping terms, respectively.

Temperature is introduced via Matsubara frequencies.
Following previous work in QCD,23,24 we include only the
two lowest frequencies, 
i�T. With this approximation, �T
takes the form

�T = diag�i�T,− i�T� � �1�spin � �1�Q � ��3�P, �27�

where the first term on the right side is an M �M diagonal
matrix. Hence, in each momentum region, half the states
have a positive frequency while the other half have a nega-
tive frequency. The final term on the right side of Eq. �27�
serves to implement the parametrization introduced above:
states with a fixed label i in regions 1 and 2 have frequencies
opposite to the corresponding states in regions 3 and 4.

Although limiting the sum over Matsubara frequencies
leads to an oversimplified description of temperature depen-
dence, we believe it to be sufficient to determine the general
characteristics of the phase transition. In fact, we will see
below that the parameter T serves as an energy scale which
influences the energy balance between the various order pa-
rameters, much as the average thermal energy does when all
frequencies are taken into account. The inclusion of all fre-
quencies would certainly modify the resulting phase diagram
but only in the trivial sense that every temperature T is
mapped monotonically to a new value.28 We will not seek to
refine the T dependence here since such mapping does not
alter the phase topology, i.e., the occurrence and the order of
transition lines. Since T as introduced here is an arbitrary
temperature scale, we will also drop the factor � to simplify
notation.

The hopping term �t in Eq. �26� is written as

�t = diag�t,− t� � �1�spin � ��3�Q � �1�P, �28�

where the first term on the right side is a diagonal M �M
matrix containing M /2 elements of +t and M /2 elements of
−t. The matrix �t mimics the nearest-neighbor hopping en-
ergy

�p = − 2t0�cos�pxa/�� + cos�pya/�� , �29�

whose band is symmetric around �0=0 and which satisfies
�p+Q=−�p. Here, again, we neglect the detailed momentum
dependence of the hopping energy and retain only its sym-
metries around �0=0 and under a shift by Q. In Eq. �28�, t is
a measure of the strength of the hopping term, which can be
tuned against the variances and thus against the interaction
strength.

III. THERMODYNAMIC POTENTIAL

In this section we evaluate the thermodynamic potential
corresponding to the partition function of Eq. �12� using
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methods which are standard in random matrix theory.19,23 It
is worth emphasing that the random matrix model of Eq. �12�
is solvable, i.e., the saddle-point method to be discussed be-
low becomes exact in the thermodynamic limit. We will con-
centrate on the main results and present more detailed calcu-
lations in the Appendix. These calculations are performed in
three steps. The first step consists of integrating over the
interaction matrix elements according to the distribution
P�Hint� of Eq. �25�. This integration leads to a four-fermion
interaction, Y, which receives contributions from the eight
independent blocks of Hint in Eq. �23�. In the second step, the
fermion fields are rearranged and the terms of Y are put in
two groups. The first group contains products of bilinears of
the form ��i

†�i �with an implicit sum over i�, which in-
cludes the antiferromagnetic order parameter. The second
group contains products involving bilinears of the form �i�i,
which are relevant for superconductivity. To keep track of
momentum and spin indices while rearranging terms, we use
the generalized Fierz identities of the Appendix. In the final
step, quartic fermion terms are linearized by means of
Hubbard-Stratonovitch transformations, which introduce an
auxiliary real field �, to be associated with an antiferromag-
netic order parameter, and a complex field �, to be associ-
ated with superconductivity. The resulting form of the parti-
tion function is given as

Z��,T� =� d�d�d��e−8M���,��, �30�

where � is the thermodynamic potential

���,�� = A���2 + B�2 − 1
4 log����2 + t2 − ��2 + ���2 + T2

− 1
4 log����2 + t2 + ��2 + ���2 + T2 , �31�

with

A � 8� 1

�B0d
2 −

1

�B0o
2 +

1

�C0d
2 −

1

�C0o
2 −

3

�Bd

2 +
3

�Bo

2 −
3

�Cd

2

+
3

�Co

2 	−1

, �32�

B � 8�−
1

�B0d
2 −

1

�B0o
2 −

1

�C0d
2 −

1

�C0o
2 +

1

�Bd

2 +
1

�Bo

2 +
1

�Cd

2

+
1

�Co

2 	−1

. �33�

Equations �31�–�33� constitute the main result of the model.
Note that the factor 8M in the argument of the exponential in
Eq. �30� plays the role of the volume of the system since M
scales with the total number of lattice sites. The phase dia-
gram can be established with the help of the saddle-point
approximation to Eq. �30�, which requires the simultaneous
solution of the two gap equations �� /��=0 and �� /��=0.
Due to the logarithm term in the right side of Eq. �31�, these
equations are polynomial in the auxiliary fields and can be
solved analytically. In the thermodynamic limit M→�, the
saddle-point approximation becomes exact and the solutions

of the gap equations that achieve the lowest value for �
describe the thermodynamic phases of the system.

As mentioned in Sec. I, the model becomes increasingly
simple as one proceeds through the calculation. From the
initially large number of parameters required to describe Hint
in Eq. �23�, there remain only a few constants in the final
form of the thermodynamic potential �Eq. �31�. This poten-
tial has a remarkably simple structure. Anticipating the re-
sults of Sec. IV, we note first that the topology of the phase
diagram depends only on a single parameter ratio

� =
B

A
, �34�

whose strength characterizes the relative importance of su-
perconductivity and antiferromagnetism. The terms A���2
and B�2 represent the energy cost of creating a constant field
in the corresponding channel. As shown in the Appendix, the
logarithmic term in � corresponds to the determinant of the
Hamiltonian for a single fermion in fixed constant external
fields � and �. These terms have the generic form

��
�


log�iT − �
��− iT − �
� , �35�

where �
 are the quasiparticle energies

�
 = ���t2 + �2 
 ��2 + ���21/2. �36�

These expressions are strongly reminiscent of the quasiparti-
cle energies of earlier mean-field models.29,30 Neglecting the
triplet order and approximating the square of the form factor
as 	d

2�1 in Eqs. �10� and �11� of Ref. 29, one finds quasi-
particle energies of the form E
�p�= ����p

2 +�2
��2

+ ���21/2, with �=2Jm and �=Jd. Equation �36� shows a
result of similar structure with, however, the simplification
�p� t which is a consequence of our coarse description of
momentum states which leads us to ignore the detailed mo-
mentum dependence of kinetic-energy terms.

Thus, the basic structure of the potential � is simply re-
lated to the energies of the elementary excitations of the
system for fixed constant external fields. This means that the
thermodynamic potential could have been constructed imme-
diately from the knowledge of the quasiparticle energies
alone, without going through the steps described in Sec. II.
Note, however, that the additional information which comes
from constructing the interactions at the more microscopic
level is useful. Through the dependence of A and B on the
individual variances, it establishes connections between the
microscopic mechanisms and the global properties of the
system.

IV. PHASE DIAGRAM

We now consider the various topologies that can be real-
ized in the phase diagram. Despite the simplicity of the ther-
modynamic potential, a full exploration of the parameter
space is a considerable task. Thus, we concentrate on a re-
stricted number of physically relevant cases.

First, we assume that the interactions are attractive in the
antiferromagnetic channel. As shown in the Appendix, this
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requires that the variances satisfy the inequality

B = 8�−
1

�B0d
2 −

1

�B0o
2 −

1

�C0d
2 −

1

�C0o
2 +

1

�Bd

2 +
1

�Bo

2 +
1

�Cd

2

+
1

�Co

2 	−1

� 0, �37�

which implies that spin-fluctuation exchange is stronger than
density-fluctuation exchange. In fact, this condition can be
related to the requirement that the on-site potential in the
Hubbard model is repulsive. In momentum representation,
the Hubbard Hamiltonian is written as

HH = �
�p

�p��p
† ��p + U �

p1p2p3p4

p1+p3,p2+p4
�↑p1

† �↑p2
�↓p3

† �↓p4
,

�38�

with U positive. The corresponding partition function con-
tains the thermal average Tr�e−HH/T. . .�, where the equivalent
of the weighting factor e−HH/T in the random matrix model is
the term eY. Hence, a positive U in the Hubbard model would
correspond to a negative four-fermion term of the form
�↑i

† �↑j�↓j
† �↓i in the random matrix model. Close inspection of

the four-fermion potentials in Eqs. �A3�–�A10� reveals that
they contain such terms and that they will be negative pro-
vided the inequality of Eq. �37� is satisfied.

As a second assumption, we consider interactions which
are attractive in the superconducting d-wave channel but re-
pulsive in the s-wave channel. This requires a particular
choice of the inverse variances. In the Appendix, we show
that such an interaction can be found among those that favor
spin fluctuations by putting more statistical weight on the
blocks Bo and Co than on Bd and Cd. This choice leads to a
positive constant A in Eq. �32�. Such a choice of the vari-
ances is expected to result from interactions which favor
large momentum transfer of order �Q. This result can be
related to the antiferromagnetic spin-fluctuation model of
Ref. 14 in which the spin susceptibility is peaked at a mo-
mentum exchange �Q. In the present approach, however,
we do not attempt to describe the dynamics of spin exchange
in detail but rather use the coarse device of the inverse vari-
ances to tune the relative strengths of the exchange mecha-
nisms.

Given the restricted parameter space that results from
these two assumptions, the system can develop different
phase structures in the �� , T� plane as a function of the
parameter ratio �=B /A. The phase structures can be grouped
according to their topology. We identify four distinct topolo-
gies which emerge as the parameter � is gradually increased.
The system switches from one topology to the next at spe-
cific values of � that depend on the strength of the hopping
term t. In general, systems with larger t develop a larger
kinetic energy per charge carrier and are found to favor su-
perconductivity over antiferromagnetism.

It is useful to note that because our model only includes
nearest-neighbor hopping, it cannot distinguish between
hole- and electron-doped systems. This symmetry can be
seen in the potential of Eq. �31�, where � is an even function
of �. Hence, �=0 corresponds here to half filling. In prin-

ciple, next-nearest neighbor and higher-order hopping terms
could be added to the model by using a hopping matrix, �t,
whose eigenvalues have a sign distribution that reproduces
the symmetries of the corresponding kinetic energies in the
various regions of the Brillouin zone. Although we have lim-
ited ourselves to nearest-neighbor terms here, we expect that
a model with a more elaborate hopping matrix would distin-
guish between electron and hole dopings.

A. Antiferromagnetism alone

For the smallest values of �=B /A, superconductivity is
too weak to compete with antiferromagnetism. Such a situa-
tion corresponds, for instance, to a large value for A, leading
to a prohibitively large energy cost �A���2 for creating a
constant field �.

Consider first the system at zero temperature and at half
filling ��=0�. Setting �=0 in Eq. �31�, we find the gap equa-
tion

� ��

��
�

�=0,�=0,T=0
= 2B� −

�

�2 + t2 = 0, �39�

which gives either �=0 �paramagnetic phase �PA� or �
=�1 / �2B�− t2 �antiferromagnetic phase �AF�. The latter so-
lution is real if the hopping term is not too strong, 2Bt2�1.
Given that B scales as an inverse variance �see Eq. �33�, this
condition is equivalent to the inequality t / tTH�1, where the
threshold value tTH=1 /�2B is a measure of the interaction
strength. When this condition is fulfilled, �=�1 / �2B�− t2 is
the absolute minimum of � and the ground state is antifer-
romagnetic. In the rest of this work, we will explicitly as-
sume that t� tTH, so that the half-filled state is antiferromag-
netic.

In contrast to our approach, mean-field studies of the
Hubbard model find an antiferromagnetic ground state no
matter how weak the interactions are or how large the hop-
ping term is.31,32 There, the absence of a threshold results
from the logarithmic singularity that occurs in the density of
states at the edge of the magnetic Brillouin zone. At half
filling, the divergent density of states leads to a gap with an
exponential dependence on t /U, �� t exp�−2��t /U�, where
U is the strength of the on-site repulsion. In the random
matrix approach, the detailed band structure is ignored and,
because of the coarse description of momentum states, no
divergence appears in the density of states. As a result, the
interaction must be sufficiently strong to produce an antifer-
romagnetic ground state. Given the level of approximations
underlying our approach, this behavior is not unreasonable.
Discrepancies with microscopic theories are to be expected
in cases where the condensates are weak and thus sensitive to
fluctuations. Understanding the fate of these condensates
clearly requires more than mean-field approximation.

We now turn to the phase diagram in the �� ,T� plane.
Choosing t / tTH=0.5, the superconducting phase does not de-
velop so long as ���� with ���0.1. The corresponding
phase structure is shown in Fig. 2 and resembles that of
chiral symmetry breaking in QCD with two flavors and three
colors, in the limit where a color-superconducting phase is
ignored �see Ref. 23�. The gap equation d� /d�=0 ��=0 has a
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form similar to the QCD problem. It has a solution with �
=0, describing a paramagnetic phase, and solutions which
satisfy the quadratic equation

x2 + 2x�− �2 + T2 −
1

4B
	 + ��2 + T2�2 +

�2 − T2

2B
= 0,

�40�

where x=�2+ t2. For moderate � and high temperature, the
only real solution is �=0 and the system is in a paramagnetic
phase. Decreasing T at fixed �, two additional real solutions,

� = 
 �AF = 
 ��2 − t2 − T2 +
1

4B
+

1

4B
�1 − 64B2�2T2	1/2

,

�41�

can be found below the critical temperature

Tc��,t� = � 1

4B
− �2 − t2 +

1

4B
�1 − 16B�2 + 64B2�2t2	1/2

.

�42�

Below Tc�� , t�, these solutions are local minima of the free
energy ��� ,�=0� and �=0 becomes a maximum. The finite
roots 
�AF describe an antiferromagnetic phase. They van-
ish at Tc�� , t�, which thus characterizes a second-order tran-
sition from an antiferromagnetic to a paramagnetic phase. In
the opposite regime of low temperatures and finite �, the
transition is found to be discontinuous. It takes place along a
first-order line �actually, a triple line �see Ref. 23� which
starts on the zero-temperature axis at

�1 =�0.14

B
+ t2 �43�

and extends with decreasing � toward the zero-� axis. This
line meets the second-order line T=Tc�� , t� at the tricricital
point t���3 ,T3�, given as

�3 = �−
1 − 4Bt2

8B
+

�1 + �1 − 4Bt2�2

8B
	1/2

, �44�

T3 = �1 − 4Bt2

8B
+

�1 + �1 − 4Bt2�2

8B
	1/2

. �45�

The first- and second-order lines meet with equal slopes
dT /d�.

The thermodynamic potential ��� ,�=0� can be ex-
panded as a series of powers in � near the critical lines. The
result resembles a Ginzburg-Landau expansion. For ���3
and near Tc�� , t�, the free energy is found to scale as
��� ,�=0�����=0,�=0�+b4�� ,T��4+O��6�, so that the
second-order phase transition has the critical exponents of a
mean-field 	4 theory. Near the tricritical point, one has
��� ,�=0�����=0,�=0�+b6�� ,T��6+O��8� and the
critical exponents are now those of a mean-field 	6 theory.
Note, however, that the coefficients b4 and b6 here are known
functions of � and T.

B. Competition between antiferromagnetism and
superconductivity

As the coupling ratio B /A increases, a superconducting
phase can be favored over an antiferromagnetic one. As dop-
ing is increased, the new carriers disrupt the antiferromag-
netic correlations. If the interaction is sufficiently strong in
the pairing channel, this can lead to a transition to a super-
conducting phase with ��0. Such a transition can generally
take place in one of two ways, either through the appearance
of a “wedge” of mixed broken symmetry with both ��0 and
��0, with continuous transitions toward the pure AF and
SC phases, or via a discontinuous transition between the two
pure phases. The first case was encountered in a random
matrix model of Ref. 23 when the coupling ratio of QCD
was altered in favor of color superconductivity. Here, how-
ever, the second case is found as shown in Fig. 3.

To understand the onset of superconductivity, consider a
pure phase with �=0 and ��0. The gap equation, d���
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FIG. 2. Phase diagram for t / tTH=0.5 and ��0.1. The transition
from the AF to the PA is second order at half filling and first order
at zero temperature �thick line�. These two lines merge at a tricriti-
cal point, t. Here, temperature is plotted in units of Tc�Tc��=0, t
=0�, which is the transition temperature at half filling in the limit
t→0, while chemical potential is plotted in units of �0�1 /�2B,
which represents the AF field at half filling, zero temperature, and
for t→0.
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FIG. 3. Phase diagram for t / tTH=0.5 and �=0.2. In addition to
the phase structure of Fig. 2, there is a SC emerging out of the
antiferromagnetic phase via a first-order transition. This phase un-
dergoes a second-order transition to the paramagnetic phase at ei-
ther higher � or higher T. Here, t is a tricritical point. The scales Tc

and �0 are those defined in the caption of Fig. 2.
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=0,�� /d�=0 always has a root �=0, which is a local mini-
mum at either large � or large T. For moderate � and for T
less than

Tc���,t� = � 1

4A
− �2 − t2 +

1

4A
�1 + 64A2�2t2	1/2

, �46�

the solution �=0 becomes a local maximum, while ��0,��
exhibits two local minima, given by the roots with

��� = �SC = � 1

4A
− �2 − T2 − t2 +

1

4A
�1 + 64A2�2t2	1/2

,

�47�

which describe the superconducting phase. �SC vanishes on
the curve T=Tc��� , t�, which is thus a second-order transi-
tion line. In particular, the thermodynamic potential behaves
like ���=0,�����0,0�+a4���4+O����6� in the vicinity of
the phase boundary.

The curve T=Tc��� , t� meets the T=0 axis at �+
= �1 / �4A�+ t2+�1+16At2 / �4A�1/2. For t2�1 / �2A�, this line
also meets the �=0 axis, so that the region T�Tc��� , t�
contains the half-filled state with �=T=0. For t2�1 / �2A�,
on the other hand, the curve T=Tc��� , t� has the shape of a
dome, which starts on the T=0 axis at �−= �t2+1 / �4A�
−�1+16At2 / �4A�1/2, reaches a maximum Tmax
= �1 / �8At��1+16At2 at �max=�64A2t4−1 / �8At�, and de-
creases again to meet the T=0 axis at �=�+.

The condition for the superconducting phase to emerge
out of the AF phase is now clear. The curve T=Tc� must end
at �+��1, where �1 is given by Eq. �43�. In that case, there
is an intermediate region where the superconducting state
achieves a lower energy than both the paramagnetic and the
antiferromagnetic states. For a fixed ratio t / tTH, the threshold
condition �+=�1 gives the critical value �=�� which marks
the onset of superconductivity. The result is a decreasing
function of t, with ���0.28 for t=0, ���0.1 for t=0.5tTH,
and ���0.03 in the limit t→ tTH. For values of ����, the
superconducting phase develops in a wedge adjacent to the
antiferromagnetic phase, with a first-order transition toward
the antiferromagnetic state at the lower � and a second-order
transition toward the paramagnetic phase at the higher �, as
illustrated in Fig. 3.

Figure 4 shows the zero-temperature auxiliary fields �AF
and �SC as a function of the chemical potential, �. Note that
�SC vanishes at �=�+ with the mean-field exponent 1/2 so
that �SC���+−��1/2. The variation of the antiferromagnetic
field �AF with � should be not be considered significant; it is
a direct consequence of the approximate description of tem-
perature dependence. In fact, taking the sum over all Mat-
subara frequencies produces a constant condensation field by
a mechanism similar to that observed in the phase diagram of
QCD with two colors and light masses �see Ref. 28�.

C. Bicritical point

As �=B /A increases above ��, the superconducting
phase boundary slides up along the first-order transition line
between the antiferromagnetic and the paramagnetic phases.
At a new critical value, �=�b, the superconducting phase

boundary reaches the tricritical point. The value of �b is
readily determined from the condition Tc���3 , t�=T3, where
�3, T3, and Tc� are, respectively, given by Eqs. �44�–�46�.
For t→0, this gives �b=�2 /2; �b then decreases with t, is
equal to �b�0.62 for t=0.5tTH, and reaches �b�0.29 in the
limit t→ tTH.

For ���b, the topology of the phase structure is
changed. The two second-order lines Tc�� , t�, Eq. �42�, and
Tc��� , t�, Eq. �46�, now intersect at a new critical point, b,
with

�b = � �

4B
−

�2

4B
+ t2�1 − ��2	1/2

, �48�

Tb = � �

4B
+

�2

4B
− �2t2	1/2

. �49�

In the vicinity of b, the thermodynamic potential can be ex-
panded as ��� ,�����0,0�+a4���4+b4�4+c4�2���2, where
a4, b4, and c4 are known coefficients satisfying the inequality
4a4b4−c4

2�0. As a result, the global minimum of � can only
be realized by a pure phase—either paramagnetic, antiferro-
magnetic, or superconducting. A mixed broken-symmetry
state with both nonvanishing � and � cannot be a global
minimum. Therefore, ��b ,Tb� is a bicritical point which ends
a first-order line separating the antiferromagnetic and super-
conducting phases. The coupled gap equations actually have
a root with a mixed broken symmetry. We have verified that,
away from b and at lower temperatures, �i� this state is al-
ways metastable �i.e., it is a saddle point� whenever its fields
are real and �ii� the transition line between the antiferromag-
netic and the superconducting phases is first order all the
way to the T=0 axis. The resulting phase structure is shown
in Fig. 5 for the case t=0.5tTH and �=0.8.

For even larger values of �, the bicritical point migrates
toward the �=0 axis and reaches it when �=1. In this case,
Tb=Tc��=0, t�. The antiferromagnetic phase thus exists only
at half filling, and the superconducting phase develops for all
finite � in the region T�Tc��� , t�. For ��1, the supercon-
ducting phase wins over the antiferromagnetic state, which
disappears from the phase diagram.
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FIG. 4. Zero-temperature auxiliary fields as a function of � for
the parameters corresponding to the phase diagram of Fig. 3. The
scale �0 is defined in the caption of Fig. 2.
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D. Discussion

1. Symmetries of Hint and correlations

The interaction part of the Hamiltonian was constructed
by imposing three different symmetries, which provide the
correlations necessary for generating finite condensates. Spin
rotational and time-reversal symmetries are intimately re-
lated to magnetism.39 The spin symmetry is obviously nec-
essary in order to express the order parameters. Time-
reversal symmetry leads to a block structure which produces
terms of the form �i

†� j�i
†� j, thereby yielding pairing conden-

sates �� j� j and �i
†�i

†. The bipartite block structure induces
correlations among states whose momenta are separated by
Q. The resulting four-fermion potential, ��i

†� j� j
†�i, thus

yields condensates of the form ��i
†�i where the coupled

momenta are separated by Q.

2. Effect of the hopping term

Since the form of the thermodynamic potential is rela-
tively simple, it is easy to vary the hopping parameter in

order to understand its influence on the phase structure of the
system. Figures 6–8 show the phase diagrams that are real-
ized by a system with t / tTH=0.7 and �=0.05, 0.2, and 0.8,
respectively. The resulting phase diagrams exhibit the same
basic topologies found in the previous case. No additional
phase diagrams are introduced by a larger value of t. Increas-
ing the hopping term has two primary effects. First, the
threshold parameters �� and �b are both reduced. Second,
larger t tends to increase the region occupied by the super-
conducting phase and decrease that occupied by the antifer-
romagnetic phase. This can be understood directly from the
form of the quasiparticle energies �
 in Eq. �36�. In the
antiferromagnetic phase, �
 directly depends on the combi-
nation �2+ t2. Increasing t without excessively increasing �


thus requires a reduction in �. In the superconducting phase,
however, �
 varies with t as �t
��2+ ���2 so that the � term
tends to reduce the sensitivity of � with respect to variations
of t.

3. Absence of a mixed broken-symmetry phase

In Sec. IV C, we found that � has a series expansion of
the form ��� ,�����0,0�+a4���4+b4�4+c4�2���2 near the
bicritical point, where the coefficients a4, b4, and c4 are
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FIG. 6. Phase diagram for t / tTH=0.7 and �=0.05. The transition
from the AF to the PA is second order at half filling �thin line� and
first order at zero temperature. These two lines merge at a tricritical
point, t. The scales Tc and �0 are those defined in Fig. 2.
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FIG. 5. Phase diagram for t / tTH=0.5 and �=0.8. The supercon-
ducting phase has grown beyond the tricritical point of Fig. 3. The
two second-order lines �thin lines� separating, respectively, the an-
tiferromagnetic and superconducting phases from the paramagnetic
phase now meet at a bicritical point, b, which is also the end point
of a first-order line �thick line� between the AF and SC phases. The
scales Tc and �0 are those defined in the caption of Fig. 2.
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known functions of t and � which satisfy the inequality
4a4b4−c4

2�0. As a result, a phase with both nonzero � and
nonzero � is never realized. Such a mixed broken-symmetry
state is in fact a solution of the coupled gap equations
�� /��=0 and �� /��=0 but is unstable since the matrix of
second derivatives has a negative determinant �i.e., the
mixed broken-symmetry phase is necessarily a saddle point
of ��� ,��. In this regard, the present random matrix result
differs from mean-field results for both the Hubbard29,33 and
t-J models,30 for which mixed broken-symmetry phases are
found along with a tetracritical—rather than a bicritical—
point in the �� ,T� plane. Coexisting phases have also been
reported in a number of numerical studies including varia-
tional cluster perturbation theory34 and variational Monte
Carlo methods,35 while other studies report phase
separation.36 Calculations from cellular dynamical mean-
field theory show a strong tendency to a homogeneous coex-
istence phase at weak coupling and a first-order phase tran-
sition at strong coupling.37

The differences arising at mean-field level between the
random matrix approach and microscopic models may well
be a consequence of the neglect of density of states effects in
the potential of Eq. �31�. In the absence of a logarithmic
divergence in the gap equations, condensation fields are
weakened and the energy balance between the phases can be
upset. We note, however, that some authors have questioned
whether the phase diagram is necessarily controlled solely by
the Van Hove singularity in the bare density of states35 as
mean-field microscopic results would seem to show. The dis-
cussion of this point shows an example of results that should
not be considered universal or robust; further careful numeri-
cal studies are needed to settle this issue. Although a random
matrix model will not give a definite answer, its comparison
to other mean-field approaches can help in identifying those
features that are sensitive to the specifics of models and their
numerical treatment and which are thus not protected by the
symmetries.

4. Absence of an exact higher symmetry

It is interesting to ask whether the potential of Eq. �31�
can exhibit a higher symmetry, such as the SO�5� symmetry
proposed by Zhang,38 either exactly or approximately in cer-
tain regions of the phase diagram. Such a symmetry should
manifest itself in the possibility of writing � as a function of
a single combination of the condensation fields, such as �2

+ ���2.
If we restrict our attention to �=B /A�1 so that AF order

truly competes with SC order, the answer is negative. Near
the bicritical point, we found that the coefficients in the se-
ries expansion of the thermodynamical potential, �
���0,0�+a4���4+b4�4+c4���2�2, satisfy the inequality
4a4b4−c4

2�0. This inequality eliminates the possibility that
the fourth-order terms are a perfect square. Therefore, no
simple symmetry—allowing for a rotation of the AF order
parameter into the SC order parameter—can be identified at
the level of two-body correlators. Moreover, we have been
unable to identify any other symmetry from an expansion of
� to higher order.

The limit �→1 can roughly be seen as one of approxi-
mate higher symmetry. In fact, the bicritical point migrates to
the vertical axis, �b→0, and we have 4a4b4−c4

2��b
4→0.

Then, � can be approximated as ����0,0�+ ��a4���2
+�b4�2�2, with a4�b4, a form which shows an approximate
higher symmetry. In the limit �→1, the antiferromagnetic
phase exists only in the immediate vicinity of half filling and
the superconducting phase dominants the region of finite
chemical potential. Realizing such a situation in actual ma-
terials would require very specific relationships between the
coupling constants.

V. CONCLUSIONS

In this paper, we have suggested a mean-field model for
investigating the thermodynamic competition between mag-
netic and superconducting orders in a two-dimensional
square lattice. This model describes interactions at a more
microscopic level than the familiar Hubbard or t-J Hamil-
tonian through the introduction of density and spin-
fluctuation exchanges. The single-particle Hamiltonian is
given a block structure that is dictated by spin, time-reversal,
and bipartite symmetries, and the detailed dynamics of inter-
actions are replaced by a normal distribution of random ma-
trix elements. The model is formulated in a momentum rep-
resentation so that a coarse description of the first Brillouin
region allows us to introduce a d-wave form factor that pos-
sesses the appropriate sign symmetry but neglects detailed
momentum dependences. Although this approach may seem
elaborate at first sight, the model simplifies dramatically as
one proceeds through the derivation. In fact, the resulting
thermodynamic potential has a simple and well-defined
structure that depends solely on the form of the quasiparticle
energies in given condensation fields.

We have explored a number of physically relevant cases
for which the interactions are attractive in both the antiferro-
magnetic and the d-wave channels and repulsive in the
s-wave channel. Such interactions naturally place greater
weight on spin-fluctuation exchanges, particularly those in-
volving a momentum transfer �Q. The phase diagram is
found to depend on a single parameter ratio, �, and a limited
number of topologies appear as a function of �. None of
these topologies allows for a mixed broken-symmetry phase
with coexisting antiferromagnetism and superconductivity,
probably as a consequence of the absence of the singularity
in the bare density of states. Except for the smallest values of
�, which result in a phase diagram involving antiferromag-
netism alone, the range of values for � that correspond to a
given topology is rather large. As a result, these phase to-
pologies should be regarded as robust with respect to mod-
erate variations of the detailed description of the interactions.

The random matrix approach described here has a broad
range of applications, as we have demonstrated by studying
the phase diagrams of QCD and that of the cuprates. Given
the relatively simple structure that is obtained for the ther-
modynamic potential, this method is convenient for obtain-
ing a direct zeroth-order description of the phase structure. In
fact, such a potential could also be written immediately
given only knowledge of the quasiparticle energies. How-
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ever, the explicit construction of the microscopic interactions
carries additional and possibly useful information regarding
the dependence of the coupling parameters on microscopic
variances. In the vicinity of critical points, the thermody-
namic potential can be expanded as a power series of the
condensation fields in a form similar to a Ginsburg-Landau
theory. The information relating microscopic processes to the
coupling parameters thus imposes significant constraints on
the Ginzburg-Landau coefficients and offers an improved un-
derstanding of the relation between global properties of the
system and its microscopic description.

In some sense, this paper can be regarded as “open source
theoretical physics.” It contains an “algorithm” that can be
adapted for use in other problems. The shortcoming if this
approach is clearly that it is no more than mean-field theory.
Its merit lies in the fact that it gives results which are aver-
aged over an ensemble of theories. Model-dependent details
are thus eliminated. The resulting thermodynamic potential is
dictated by the underlying symmetries of the problem and is
likely to be robust.

Here, we have concentrated on the possible topologies of
the phase diagram and hence on the global minimum of � as
a function of � and T. We believe that the results presented
here represent a generic mean-field phase diagram. Other
features found either in theory or experiment are likely to be
“fragile.” For instance, the absence of a mixed broken-
symmetry state in the present model suggests that this state is
sensitive to model-dependent details, numerical approxima-
tions, or to the detailed properties of the sample studied.
Indeed, the mixed broken-symmetry state is not generic in
the cuprates.37 More comprehensive studies of � can be use-
ful in revealing, e.g., the competition between local minima
in � and other relatively fragile structures that could be sen-
sitive to model-dependent details and numerical approxima-
tions. In this sense, we suggest that the present methods may
provide a useful complement to the investigation of detailed
models of these systems.

APPENDIX: CALCULATION OF THE THERMODYNAMIC
POTENTIAL

In this appendix, we sketch the calculations leading to the
thermodynamic potential, �, of Eq. �31�. The calculations
closely follow those of the random matrix model for QCD
given in Ref. 23.

We start with the single-fermion Hamiltonian of Eq. �23�
and integrate exp�−�†Hint�� over the matrix elements of Hint
according to the normal probability distribution P�Hint� of
Eq. �25�. This integration can be written as

� DHintP�Hint�e−�†Hint� = eY , �A1�

where the four-fermion potential, Y, receives a contribution
from each of the eight independent block matrices

Y = YB0d + YBd
+ YB0o + YBo

+ YC0d + YCd
+ YC0o + YCo

.

�A2�

An integration over the matrix elements describing density
fluctuations gives

YB0d =
1

32M�B0d
2 �

ij

�1i1 j + 2i2 j + 3 j3i + 4 j4i��H.c.� ,

�A3�

YB0o =
1

32M�B0o
2 �

ij

�1i2 j + 2i1 j + 3 j4i + 4 j3i��H.c.� ,

�A4�

YC0d =
1

32M�C0d
2 �

ij

�1i3 j + 2i4 j + 1 j3i + 2 j4i��H.c.� ,

�A5�

YC0o =
1

32M�C0o
2 �

ij

�1 j4i + 2 j3i + 1i4 j + 2i3 j��H.c.� ,

�A6�

where �H.c.� indicates Hermitian conjugation and 1i1 j is a
compact notation for ���1i�

† �1j�. �Here, �1j� represents a
state with the momentum label j in region 1 and a spin index
�.� Integration over the matrix elements of the blocks de-
scribing spin fluctuations produces the terms

YBd
=

1

32M�Bd

2 �
ij

�1i�1 j + 2i�2 j + 3 j�3i + 4 j�4i� · �H.c.� ,

�A7�

YBo
=

1

32M�Bo

2 �
ij

�1i�2 j + 2i�1 j + 3 j�4i + 4 j�3i� · �H.c.� ,

�A8�

YCd
=

1

32M�Cd

2 �
ij

�1i�3 j + 2i�4 j + 1 j�3i + 2 j�4i� · �H.c.� ,

�A9�

YCo
=

1

32M�Co

2 �
ij

�1i�4 j + 2i�3 j + 1 j�4i + 2 j�3i� · �H.c.� ,

�A10�

where the notation 1i�2 j stands for ����1i�
† ����2j�.

Next, fermion fields are rearranged to make the conden-
sation channels apparent. Schematically, terms of the form
�i

†� j� j
†�i �with the sum over i and j implied� are brought

into the form −�i
†�i� j

†� j, which gives rise to condensates
�� j

†� j that are relevant for antiferromagnetism. Similarly,
terms of the form �i

†� j�i
†� j are rewritten as �i

†�i
†� j� j, which

contain condensates of the form �� j� j and are relevant for
superconductivity. Uncrossing necessitates keeping track of
momentum and spin indices. To uncross spin indices, we use
the SU�2� Fierz identities

abcd = 1
2adcb + 1

2�ad · �cb, �A11�
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�ab · �cd = 3
2adcb − 1

2�ad · �cb �A12�

for the antiferromagnetism channel and the identities

abcd = 1
2acdb + 1

2�ac · �db, �A13�

�ab · �cd = 1
2acdb + 1

2 ��1�ac��1�db − 3
2 ��2�ac��2�db

+ 1
2 ��3�ac��3�db �A14�

for superconductivity channels. To uncross momentum indi-
ces, each quadratic term �r

†�s �where r and s now denote
momentum indices� is written as an element of a 4�4 mo-
mentum matrix which is then decomposed on a complete
basis of 16 Hermitian Dirac matrices23 that satisfy

Tr��k�l� = 4kl �k,l = 1, . . . ,16� . �A15�

There exists a representation in which this basis contains the
operators �AF, �SC-d, and �SC-s, which were introduced, re-
spectively, in Eqs. �8�, �10�, and �11�, as well as an operator
that is proportional to the hopping term, �t, of Eq. �28�. With
this complete basis defined, we uncross momentum accord-
ing to the Fierz identities

��k�ab��l�cd = �
mn

xklmn��m�ad��n�cb, �A16�

xklmn =
1

16
Tr��k�n�l�m� �A17�

for terms relevant for antiferromagnetism and

��k�ab��l�cd = �
mn

xklmn��m�ac��n�db, �A18�

xklmn =
1

16
Tr��k�n�l

T�m� �A19�

for terms relevant for superconductivity. Here, Tr denotes a
trace and �T is the transpose of �.

Restricting ourselves to the antiferromagnetic and super-
conducting channels, uncrossing gives us the four-fermion
interaction

Y = YAF + YSC-d + . . . �A20�

=aAF��†�AF�3��2 + aSC-s��†�SC-s�2�†����SC-s�2��

+ aSC-d��†�SC-d�2�†����SC-d�2�� , �A21�

where a summation over spin, momentum, and random ma-
trix indices is implied in each fermion bilinear. The coeffi-
cients in the respective channels are given by

aAF =
1

256M�−
1

�B0d
2 −

1

�B0o
2 −

1

�C0d
2 −

1

�C0o
2 +

1

�Bd

2 +
1

�Bo

2

+
1

�Cd

2 +
1

�Co

2 	 , �A22�

aSC-s =
1

256M� 1

�B0d
2 +

1

�B0o
2 +

1

�C0d
2 +

1

�C0o
2 −

3

�Bd

2 −
3

�Bo

2

−
3

�Cd

2 −
3

�Co

2 	 , �A23�

aSC-d =
1

256M� 1

�B0d
2 −

1

�B0o
2 +

1

�C0d
2 −

1

�C0o
2 −

3

�Bd

2 +
3

�Bo

2

−
3

�Cd

2 +
3

�Co

2 	 . �A24�

Here, a positive �negative� coefficient corresponds to an at-
tractive �repulsive� channel. From the above equations, we
thus see that interactions for which the inverse variances �Bd

2 ,
�Bo

2 , �Cd

2 , or �Co

2 are small compared to �B0d
2 , �B0o

2 , �C0d
2 , or

�C0o
2 are attractive in the antiferromagnetic channel. Such

interactions favor the exchange of spin fluctuations over the
exchange of density fluctuations. Similarly, interactions can
be made attractive in the d-wave channel and repulsive in the
s-wave channel by favoring the elements of the off-diagonal
block matrices Bo and Co over those of the diagonal blocks
Bd and Cd. Such interactions favor the exchange of spin
fluctuations with a large momentum transfer, �Q.

Below, we will assume that the random interactions favor
antiferromagnetism and superconductivity in the d-wave
channel and are repulsive for s-wave pairs; this situation cor-
responds to a particular choice for the variances such that
aAF�0 and aSC-d�0, whereas aSC-s�0. We will thus neglect
the s-wave channel in the remainder of the calculations. In
this case, combining Eqs. �12� and �A1� yields a partition
function of the form

Z��,T� =� D�†D�e−�†H0�+Y , �A25�

where, according to Eqs. �A20� and �A21�,

Y � aAF��†�AF�3��2 + aSC-d��†�SC-d�2�†����SC-d�2�� .

�A26�

The quartic fermion terms can now be written as the differ-
ence of two squares. Each square is linearized by the use of
a Hubbard-Stratonovitch transformation

eAQ2
�� dx exp�−

x2

4A
− Qx	 , �A27�

which introduces an auxiliary field x. When applied to Eq.
�A26�, such transformations introduce a real field, �, to be
associated with antiferromagnetism and a complex field, �,
to be related to superconductivity. The partition function is
then written as
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Z��,T� � � d�d�d��� D�†D� exp�− �†H0� −
���2

4aSC-d

−
�2

4aAF
	exp�− ��†�AF�3� −

�

2
�†�SC-d�2�†

−
��

2
��SC-d�2�	 , �A28�

where H0=−�+�T+�t �see Eq. �26�. Using the spinor �
= ��↑ ,�↓

†�, the fermion bilinears can be arranged in the Gor-

gov form �†H̃�, with

H̃ = �− � + �T + �t + ��AF − i��SC-d

i���SC-d � − �T − �t + ��AF
	 .

�A29�

Then, integrating over the fermion fields gives

� D�†D�e−�†H̃� = Det�H̃ , �A30�

so that the partition function in Eq. �A28� can be written as

Z��,T� =� d�d�d��e−8M���,��, �A31�

where � is the thermodynamic potential

� =
1

32M
� ���2

aSC-d
+

�2

aAF
− 4 log Det�H̃�	 . �A32�

Calculating the determinant of H̃ in Eq. �A29� then gives

���,�� = A���2 + B�2 − 1
4 log����2 + t2 − ��2 + ���2 + T2

− 1
4 log����2 + t2 + ��2 + ���2 + T2 , �A33�

with

A = 8� 1

�B0d
2 −

1

�B0o
2 +

1

�C0d
2 −

1

�C0o
2 −

3

�Bd

2 +
3

�Bo

2 −
3

�Cd

2

+
3

�Co

2 	−1

, �A34�

B = 8�−
1

�B0d
2 −

1

�B0o
2 −

1

�C0d
2 −

1

�C0o
2 +

1

�Bd

2 +
1

�Bo

2 +
1

�Cd

2

+
1

�Co

2 	−1

. �A35�

We can evaluate the properties of the competing phases by
determining the minima of the potential �. In the thermody-
namic limit, where M is taken to infinity, these minima will

give the exact solutions for the system since a saddle-point
evaluation gives limM→��1 /8M�ln Z=−min�,����.

We mentioned earlier an alternative to the bipartite sym-
metry. This alternative choice consists in taking the matrix
elements between states p1+Q and p2+Q equal to those
between p1 and p2, so that Eq. �22� becomes

H� = �D� E�

E�
† D�

	 , �A36�

where now E� are complex. Such a choice modifies the four-
fermion potentials YB0o, YC0o, YBo

, and YCo
as

YB0o =
1

8M�B0o
2 �

ij

�1i2 j + 4 j3i��H.c.� , �A37�

YC0o =
1

8M�C0o
2 �

ij

�1i4 j + 2 j3i��H.c.� , �A38�

YBo
=

1

8M�Bo

2 �
ij

�1i�2 j + 4 j�3i� · �H.c.� , �A39�

YCo
=

1

8M�Co

2 �
ij

�1i�4 j + 2 j�3i� · �H.c.� . �A40�

The coupling constants aAF, aSC-s, and aSC-d become

aAF =
1

256M�−
1

�B0d
2 −

1

�C0d
2 +

1

�Bd

2 +
1

�Cd

2 	 , �A41�

aSC-s =
1

256M� 1

�B0d
2 +

2

�B0o
2 +

1

�C0d
2 +

2

�C0o
2 −

3

�Bd

2 −
6

�Bo

2

−
3

�Cd

2 −
6

�Co

2 	 , �A42�

aSC-d =
1

256M� 1

�B0d
2 −

2

�B0o
2 +

1

�C0d
2 −

2

�C0o
2 −

3

�Bd

2 +
6

�Bo

2

−
3

�Cd

2 +
6

�Co

2 	 . �A43�

Again, the interaction can be made attractive in the AF chan-
nel by favoring spin over density exchanges, while it its at-
tractive in the d-wave channel and repulsive for s-wave pair-
ing when large momentum transfers are favored. The
resulting thermodynamic potential has the form of Eq.
�A33�, although with slightly different expressions for A and
B. The main results in the text remain valid with this alter-
native choice.
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