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A cluster mean-field method is introduced and the applications to the Ising and Heisenberg models are
demonstrated. We divide the lattice sites into clusters whose size and shape are selected so that the equivalence
of all sites in a cluster is preserved. Since the strength of interactions of a cluster with its surrounding clusters
is strongly dependent on the spin configuration of the central cluster itself, we include this contribution in the
effective fields acting on the spins. The effects of “correlations” between clusters can be taken into account
beyond the standard mean-field level and as a result our cluster-based method gives qualitatively �and even
quantitatively� correct results for the both Ising and Heisenberg models. Especially, for the Ising model on the
honeycomb and square lattices, the calculated results of the critical temperature are very close �overestimated
by only less than 5%� to the exact values.
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I. INTRODUCTION

In general, it is difficult to find the exact solution of an
interacting many-body system, except for a few simple
cases. Hence, various mean-field theories1–5 have been pro-
posed and widely used to get some insight into the properties
and behavior of the systems. A mean-field concept was first
used by Weiss1 for the problem of ferromagnetism. Weiss’s
molecular-field theory �MFT� was successful in providing a
qualitative understanding of the transition from ferromag-
netic to paramagnetic states. After the initial success by
Weiss,1 the MFT has played an important role in the studies
of many-body systems and is still often used as a starting
point of the investigation due to its simplicity.

In the vicinity of the critical point, mean-field-type theo-
ries generally breaks down since statistical fluctuations ne-
glected in them become important. Therefore, in order to
study the detailed critical properties �e.g., critical exponents�,
it is necessary to resort to other techniques, such as the
renormalization-group methods.6–8 However, since mean-
field-type methods are capable of predicting the behavior of
the system over a wide range of parameters �e.g., tempera-
ture� at a relatively low cost, a further development of those
methods is still important, and many attempts have been
made even in recent years.9–13

The Ising model is the simplest nontrivial model of coop-
erative phenomena. The Hamiltonian for this model is given
by

H = − J�
�i,j�

�i� j , �1�

where the sum runs over all nearest-neighbor pairs, J is the
coupling strength, and the spin �i takes either +1 or −1. In
the MFT, the interactions between a spin and its surrounding
spins are treated approximately, and the many-body problem
is reduced to an effective one-body problem of a single spin
in the effective magnetic field heff=zJm, where z is the num-
ber of nearest neighbors and m is the magnetization of the
system. Solving the self-consistent equation for the magneti-
zation m= ���, where �¯� is an average over the ensemble,
one can obtain the well-known result for the critical tempera-

ture of the transition from ferromagnetic to paramagnetic
states,

kBTc/J = z . �2�

Mean-field-type methods generally give only classical pre-
dictions for the critical exponents but the value of the calcu-
lated critical temperature is a reasonable measure for assess-
ing the accuracy of the method.

To obtain more accurate results than this “one-site clus-
ter” approximation, it is quite natural that one attempts to
increase the size of clusters.2,4,5,12,14–17 For example, in the
so-called Bethe-Peierls-Weiss �BPW� approximation,2,14,15

using a cluster of �z+1� sites �one central spin and its sur-
rounding z spins�, one can partially take into account the
effects of spin correlations and fluctuations. The interactions
of the central spin with its nearest neighbors �called the “first
shell”� are treated exactly, while the influence of spins out-
side the cluster is replaced by an effective field heff which
acts on the z spins of the first shell. Unlike the MFT, the
effective field heff is determined by the condition that the
average value of the central spin should be equal to that of
the spin on a first-shell site. Recently, Du et al.11 extended
the BPW method by using a group of chains composed of a
central chain and its nearest-neighbor chains instead of the
cluster of �z+1� sites. Also, Etxebarria et al.12 proposed an-
other extended BPW method and demonstrated that it yields
a fairly accurate estimate of critical temperature for the
square-lattice Ising model.

Oguchi’s method5,18 is a more straightforward way to im-
prove the results of the MFT. In this method, one considers a
cluster consisting of Nc neighboring spins. The interactions
between the spins at the cluster edge and the outside spins
are treated approximately as effective internal fields. Calcu-
lating the average ��i� for each site in the cluster, one regards
the mean value of them as the magnetization of the system,
i.e., m= �1 /Nc����i�. Then the effective fields are deter-
mined self-consistently by the value of m. Clearly, the case
of Nc=1 corresponds to the conventional MFT. Although it is
expected that one can obtain closer results to the exact values
as the size of the cluster Nc is increased, this method has two
shortcomings. First, one has to deal with a quite large cluster
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to get sufficiently accurate results. In practice, it is difficult
to solve exactly the Nc-site problem of such a large cluster.
Second, since the system is divided into finite-size clusters,
equivalence of all sites �or periodicity of the system� is gen-
erally lost with few exceptions.

Recently, Wysin and Kaplan9 made a significant improve-
ment to the MFT in a quite simple way. Their “self-
consistent” correlated field �SCCF� approximation remains
basically the same as the standard MFT in the sense that one
deals with effective one-site problems. In this method, the
effective field acting on a central spin from its surrounding
spins takes two different values heff

� =zJm�, depending on the
state of the spin itself ��i= +1 or −1�. Here m+ �m−� is the
average value of the spin on a first-shell site when the state
of the central spin is fixed to be +1 �−1�. Taking into account
the effects of correlations between neighboring spins in this
way, they obtained more accurate results of critical points
compared with some other methods, such as the BPW ap-
proximation and the Onsager reaction field �ORF�
correction.3,10,19

In this paper, as an attempt to further improve these meth-
ods, we introduce a new cluster-based approximation
method, which we refer to as the “correlated cluster mean-
field” �CCMF� theory. Depending on the lattice type, we se-
lect a cluster of a different size and shape. For example, the
calculation for a square-lattice model is based on square-
shaped four-site �2�2� clusters. Clearly, the four sites in this
cluster are equivalent by symmetry. Additionally, to take into
account the effects of the cluster-cluster correlations beyond
the standard mean-field level, we use a similar idea as in the
SCCF method of Ref. 9.

The paper is organized as follows. First, in Sec. II, we
demonstrate the application of our modified cluster mean-
field theory to the Ising model on several lattices. In Sec. III,
the accuracy of our method is verified by comparing the
obtained results with those obtained by some other methods.
In Sec. IV, the cluster-size dependence of the results is dis-
cussed. Then, in Sec. V, taking the isotropic Heisenberg
model in a uniform field as an example, we extend our ap-
proach to quantum spin systems. Finally, a summary is pre-
sented in Sec. VI.

II. CORRELATED CLUSTER MEAN-FIELD THEORY FOR
THE ISING MODEL

In the following, we shall demonstrate the application of
our method to the Ising model on typical four types of lat-
tices �honeycomb, triangular, square, and simple cubic� one
by one.

A. Honeycomb lattice

When the coordination number z is 3, unfortunately, the
SCCF approximation yields a wrong result: the equation for
Tc has no solution.9 It is therefore important to verify
whether the critical point can be calculated by applying our
method to the case of the two-dimensional �2D� honeycomb
lattice. We first divide the lattice into six-site hexagonal clus-
ters as seen in Fig. 1�a�. The strength of interactions of a

cluster with its surrounding clusters should be strongly de-
pendent on the spin configuration of the central cluster itself.
Thus, including this contribution into the effective fields act-
ing on the spins, we consider the following six-site problem
on cluster C:

HC = − J �
�i,j��C

�i� j − �
i�C

heff
�i �i, �3�

where the first �second� sum runs over all nearest-neighbor
pairs �all sites� within cluster C and heff

�i =Jm�i is the effective
field acting on site i from the neighboring spin in the nearby
connected cluster �namely, e.g., from the spin at site 4� for
i=1�. Here m�i is the mean field of the neighboring spin of
site i and we assume that its value depends on the state of
spin i,

m�i = �m+ ��i = + 1�
m− ��i = − 1� .

� �4�

Especially in this case, since there is only one bond between
two clusters, the situation is similar to that in the SCCF
approximation. Note that the values of m+ and m− do not
depend on the site number i due to the symmetry of the
hexagonal cluster.

When the values of m+ and m− are obtained, the six-site
problem described in Eq. �3� is exactly solvable and we can
calculate the magnetization given by

m = ��i� = Tr��ie
−�HC�/Tr�e−�HC� �i � C� , �5�

where �=1 /kBT. The values of m+ and m− are determined in
the following self-consistent way. Let us now focus on the
cluster next to C, which we call cluster C� �see Fig. 1�b�	.
One obtains the values of m+ and m− by calculating the av-
erage values of the spin at, for example, site 4� in Fig. 1�b�
when the spin at site 1 is fixed to be +1 and −1, respectively,
i.e.,

m� = ��4��
�1=�1 = Tr��4�e
−�H

C�
�

�/Tr�e−�H
C�
�

� , �6�

where

FIG. 1. Schematic representation of the honeycomb lattice di-
vided into hexagonal clusters. The arrows indicate the effective
fields acting on the sites �a� in cluster C and �b� in cluster C� when
the spin at site 1 is fixed to be +1 or −1.
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HC�
� = − J �

�i,j��C�

�i� j − �
i�C�

�i�4��

heff
�i �i � J�4�. �7�

The upper �lower� signs correspond to the case where the
value of �1 is fixed to be +1 �−1�. Thus it is only necessary
to solve the set of two equations �namely, two six-site prob-
lems� given by Eqs. �6� and �7� self-consistently for m+ and
m− and then one can calculate the magnetization m from Eq.
�5�.

B. Square lattice

In the case of the square lattice, there are two bonds be-
tween two neighboring clusters as shown in Fig. 2 and this
makes matters somewhat more complicated. The spins in
cluster C� are strongly affected by the states of the spins at
site 1 and site 2 of cluster C and thus, including the effect of
the feedback, the effective fields acting on site 1 and site 2
should depend on the states of themselves. Then, for ex-
ample, the effective field from site 4� to site 1 can be denoted
by heff

�1�2 =Jm�1�2, where

m�i�j = �
m++ ��i = + 1, � j = + 1�
m+− ��i = + 1, � j = − 1�
m−+ ��i = − 1, � j = + 1�
m−− ��i = − 1, � j = − 1� .

� �8�

It is clear from the symmetry that the effective field from site
3� to site 2 should be heff

�2�1 =Jm�2�1 �see Fig. 2�a� for the
others	. In this way, within our approximation, the states of
the four spins in cluster C can be described by the Hamil-
tonian

HC = − J �
�i,j��C

�i� j − �
i,ī�C

heff
�i�ī�i = − J��1�2 + �2�3 + �3�4

+ �4�1� − J�m�1�2 + m�1�4��1 − J�m�2�3 + m�2�1��2

− J�m�3�4 + m�3�2��3 − J�m�4�1 + m�4�3��4, �9�

where �ī�C denotes the sum over all nearest neighbors of
site i within cluster C. The values of the four mean fields
shown in Eq. �8� can be determined by

mss� = ��4��
�1=s, �2=s� = Tr��4�e
−�H

C�
ss�

�/Tr�e−�H
C�
ss�

� , �10�

where

HC�
ss� = − J �

�i,j��C�

�i� j − �
i,ī�C�

�i,ī��3�,4��,4�,3���

heff
�i�ī�i − s�J�3�

− sJ�4� = − J��1��2� + �2��3� + �3��4� + �4��1��

− J�m�1��2� + m�1��4���1� − J�m�2��3� + m�2��1���2�

− J�m�3��2� + s���3� − J�m�4��1� + s��4�. �11�

The notation HC�
ss� corresponds to the case where the values of

�1 and �2 are fixed to be s and s�, respectively �s ,s�= +1 or
−1�. Solving the set of four equations given by Eqs. �10� and
�11� self-consistently, one can obtain the values of the mean
fields m++, m+−, m−+, and m−−. Then the magnetization m
�Eq. �5�	 can be calculated by solving the four-site problem
given by Eq. �9�.

C. Triangular lattice

For the triangular lattice, we perform the calculation
based on triangle-shaped three-site clusters shown in Fig. 3
in a basically similar fashion to the previous two cases. From
the geometry, there are two types of effective fields acting on
a site. Let us specifically focus on site 1 in cluster C. There
are four bonds from sites in other clusters to site 1: two of
them are from cluster C� and the other two are from cluster
C� and C�3�, respectively.

Since cluster C� is connected to cluster C at only one
point, the spins at site 2� and site 3� are directly affected only
by the state of the spin at site 1. Thus we assume that the two
effective fields from sites 2� and 3� depends only on the state
of the spin at site 1: 2heff

�1 =2Jm�1 �see Eq. �4� for the defini-
tion of m�i	.

As for cluster C� �C�3��, on the other hand, there are con-
nections with cluster C at two points, site 1 and site 3 �site 1
and site 2�. Thus, in our procedure the effective field from
cluster C� �C�3�� to site 1 should depend on the spins at these
two sites: heff

�1�3 =Jm�1�3 �heff
�1�2 =Jm�1�2� �see Eq. �8� for the

definition of m�i�j	. When taken together, the total effective
field acting on site 1 is given by 2heff

�1 +heff
�1�3 +heff

�1�2 �see Fig.
3�a�	.

FIG. 2. Schematic representation of the square lattice divided
into square-shaped clusters. The arrows indicate the effective fields
acting on the sites �a� in cluster C and �b� in cluster C� when the
spins at site 1 and site 2 are fixed to be +1 or −1, respectively.

FIG. 3. Schematic representation of the triangular lattice divided
into triangle-shaped clusters. �a� The effective fields acting on site
1. �b� Positional relation between three clusters �C, C�, and C��.
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Eventually, for the case of the triangular lattice, we obtain
the following Hamiltonian describing the three spins in clus-
ter C:

HC = − J �
�i,j��C

�i� j − �
i�C

2heff
�i �i − �

i,ī�C

heff
�i�ī�i = − J��1�2

+ �2�3 + �3�1� − J�2m�1 + m�1�2 + m�1�3��1 − J�2m�2

+ m�2�3 + m�2�1��2 − J�2m�3 + m�3�1 + m�3�2��3. �12�

The magnetization m can be calculated from this Hamil-
tonian via Eq. �5�.

In a similar way to the previous two cases, let us deter-
mine the values of the mean fields m+, m−, m++, m+−, m−+,
and m−−. First, fixing the value of �1 and considering the
three-site problem of cluster C�, one can obtain the equations
for the mean fields m+ and m−,

m� = ��2��
�1=�1 = Tr��2�e
−�H

C�
�

�/Tr�e−�H
C�
�

� , �13�

where

HC�
� = − J �

�i,j��C�

�i� j − �
i�C�

2heff
�i �i

− �
i,ī�C�

�i,ī��2�,3��,3�,2���

heff
�i�ī�i � J��2� + �3�� = − J��1��2�

+ �2��3� + �3��1�� − J�2m�1� + m�1��2� + m�1��3���1�

− J�2m�2� + m�2��1� � 1��2� − J�2m�3�

+ m�3��1� � 1��3�. �14�

The upper �lower� signs correspond to the case where the
value of �1 is fixed to be +1 �−1�. Due to the symmetry, of
course, one can obtain the same value of m� by calculating
��3�� 
�1=�1 instead of Eq. �13�.

Next, we calculate the other type of the mean fields: m++,
m+−, m−+, and m−−. To this end we now focus on, for ex-
ample, cluster C� �see Fig. 3�b�	. In a similar manner to the
case of the square lattice, we can derive the following equa-
tions for the four mean fields:

mss� = ��2��
�1=s, �3=s� = Tr��2�e
−�H

C�
ss�

�/Tr�e−�H
C�
ss�

� , �15�

where

HC�
ss� = − J �

�i,j��C�

�i� j − �
i�C�

�i�2��

2heff
�i �i − �

i,ī�C�

heff
�i�ī�i − J�s

+ s���2� = − J��1��2� + �2��3� + �3��1�� − J�2m�1�

+ m�1��2� + m�1��3���1� − J�m�2��3� + m�2��1� + s

+ s���2� − J�2m�3� + m�3��1� + m�3��2���3�. �16�

In the case of the triangular lattice, one have to solve the
set of six nonlinear equations in terms of the six parameters
m+, m−, m++, m+−, m−+, and m−−, which are given by Eqs.

�13�–�16�. Nonetheless, since the cluster we selected here
consists of only three sites, it is easy to solve the set of
equations.

D. Simple cubic lattice

As an example of three-dimensional �3D� lattices, we
show the application of our method to the case of the simple
cubic lattice, where the calculation is performed based on
eight-site cubic clusters. In this case, clusters are connected
by four points of each face �see Fig. 4� and thus we have 24

mean fields �m++++ ,m+++− , . . . ,m−−−−�. For example, the ef-
fective field from site 1� to site 2 is defined by a function of
the states of the four spins �2, �3, �6, and �7. Due to sym-
metries, only 12 of the 24 mean fields are actually indepen-
dent. The calculation is straightforward extension of that in
the case of the square lattice, so we display only the final
result in Sec. III.

III. DISCUSSION OF RESULTS FOR THE ISING MODEL

Before presenting the results obtained by the above pro-
cedures, we will briefly review the screened magnetic field
�SMF� approximation, which was recently proposed by
Zhuravlev.13 In his method, one considers an effective one-
site problem of a certain spin �the central spin� in an effec-
tive magnetic field like the standard MFT. The influence of
the interactions between the central spin and all others
should decrease quickly with the distance between them. In
the SMF, he took into account this “screening effect” in the

following way. Introducing the factor e−r2/a0
2
, he assumed that

the effective field acting on the central site can be repre-
sented by

heff = Jm�
��

e−r�
2 /a0

2
, �17�

where the sum is over all spins except for the central spin
itself. As a characteristic length a0, the lattice constant was
chosen in Ref. 13. For the calculation of the critical points,
one have only to replace the effective field in the MFT by
Eq. �17�. Then one obtains

kBTc/J = �
��

e−r�
2 /a0

2
. �18�

In Table I, we summarize the results of the critical tem-
perature Tc obtained by the CCMF and other methods. We
can see that the results obtained by our CCMF method are
very close to the exact results or approximate value from the

FIG. 4. Schematic representation of eight-site clusters for the
simple cubic lattice.
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series-expansion method.20–22 Particularly, for the honey-
comb and square lattices, our results �kBTc /J=1.593 and
2.362� overestimate the corresponding exact values by only
less than 5%. For the triangular lattice, the accuracy is infe-
rior as compared with the above two cases but is better than
those of the other methods �except for the “corrected” SMF
�Ref. 13� with the correction coefficient �=0.8	.

In most previous approaches, such as MFT, BPW, and
SCCF, the results are dependent only on the coordination
number z. In contrast, our cluster approach can distinguish
between two lattices with different geometries but equal co-
ordination numbers, as well as the SMF method. For ex-
ample, the obtained critical points of the triangular and
simple cubic lattices are different, although they have the
same coordination number z=6. This is because we selected
different clusters depending on the geometries of the lattices.
For the 3D simple cubic lattice, unfortunately, our result of
the critical point represents only a little improvement from
that of the SCCF approximation. This is attributed to the fact
that the importance of including cluster correlations is rela-
tively low compared with 2D cases since mean-field ap-
proaches are generally speaking expected to work better in
higher dimensions.

Next, focusing on the case of the square lattice, let us
compare the results obtained by the CCMF method with
those obtained by the extended version of the BPW method
proposed by Etxebarria et al.12 and Kikuchi’s square
approximation.4,23 In the method of Etxebarria et al., a rela-
tively large cluster �consisting of 12 spins� is considered, and
one introduces one effective field and three effective cou-
plings between the “boundary” spins, which are determined
by the condition that the periodicity of the system is pre-

served �for detail, see Ref. 12�. The so-called cluster-
variation method �CVM� proposed by Kikuchi4 provides a
systematic hierarchy of approximations, each of which is
specified by the set of “basic clusters” used for the calcula-
tion. For example, in the “square” approximation4,23 of the
CVM, the largest basic cluster is a 2�2 square.

In Table II, we summarize the results of the critical tem-
perature Tc and values of the connected correlation functions
between first and second neighbors at Tc obtained by
four different cluster-based approaches. In the CCMF calcu-
lation, the correlation functions between site i and site j
can be obtained by ��i� j�− ��i�2=Tr��i� j exp�−�HC	� /
Tr�exp�−�HC	�−m2 �i , j�C�. The extended BPW approxi-
mation gives the most accurate value �kBTc /J=2.351� com-
pared with the other approximation methods in Tables I and
II, although one have to deal with a 12-site problem. Kiku-
chi’s square approximation gives kBTc /J=2.426. The CVM
results are usually more and more accurate as the size of the
considered basic clusters increases. Using the Tanoji
approximation,24 where a nine-site cluster is used as the larg-
est basic cluster and 44 variational parameters �M =44� are
needed, one can obtain the more accurate result �kBTc /J
=2.346�. Our CCMF procedure can achieve the same level of
accuracy by treating only four sites. �However, note that in
the CCMF approach it is necessary to solve a set of four
slightly different four-site problems to obtain the values of
all unknown mean fields.�

IV. CLUSTER-SIZE DEPENDENCE AND CRITICAL
EXPONENTS

In Sec. II, we have demonstrated the application of the
CCMF method to the Ising model by using a cluster of ap-

TABLE I. Reduced critical temperatures �kBTc /J� for the Ising model on various types of lattices from
different approximations and exact or series values.

Lattice
MFT
�z� Exact or series BPW ORF SCCF SMF CCMF

Honeycomb 3 1.519 1.820 1.464 1.593

Square 4 2.269 2.885 2.595 2.142 2.362

Triangular 6 3.641 4.933 4.788 2.628�3.543a� 4.519

Simple cubic 6 4.510 4.933 3.955 4.788 4.570 4.753

aFrom the corrected SMF with �=0.8 �see Ref. 17�.

TABLE II. Comparison of the results obtained by the CCMF method for the square-lattice Ising model
with those obtained by the BPW method, its extended version proposed by Etxebarria et al. �Ref. 12�,
Kikuchi’s square approximation �Refs. 4 and 23�, and exact values. C1�Tc� and C2�Tc� are the values of the
correlation functions between first and second neighbors, respectively, at Tc. Nc is the size of the cluster and
M is the number of nonlinear equations involved.

Method Nc M kBTc /J C1�Tc� C2�Tc�

Exact 2.269 0.707 0.637

BPW 5 1 2.885 0.333 0.111

Etxebarria et al. 12 4 2.351 0.607 0.501

Kikuchi 4 3 2.426 0.562 0.438

CCMF 4 4 2.362 0.608 0.495
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propriate size and shape for each lattice type. For the square
lattice, we employed the clusters illustrated in Fig. 2. Here-
after we refer to this procedure as the square approximation
of the CCMF method for descriptive purposes.

In Table III we show the values of kBTc /J for the square-
lattice Ising model in three different approximations: the
single site �i.e., SCCF�, pair, and square approximations of
the CCMF method. In the “pair” approximation, we adopt a
nearest-neighbor pair of spins as a basic cluster for the cal-
culation �for detail, see the Appendix�. It can be seen that the
value of the critical temperature becomes more and more
close to the exact one �kBTc /J=2.269185¯� with increasing
the size of the used cluster. However, in all the cases, the
obtained critical exponents are classical ones, as in most
other mean-field approaches. Namely, the temperature de-
pendence of the spontaneous magnetization just below Tc is
given by

m = m̄�T − Tc

Tc
�1/2

for T 	 Tc, �19�

and the zero-field susceptibility just above Tc and just below
Tc are given by


 = �
̄+�T − Tc

Tc
�−1

for T � Tc


̄−�T − Tc

Tc
�−1

for T 	 Tc.� �20�

The values of the critical coefficients m̄ and 
̄� are also
shown in Table III.

The coherent-anomaly method �CAM� proposed by
Suzuki16 allows one to estimate nonclassical critical expo-
nents from a series of mean-field-type approximations. Now,
assuming that the approximations in the CCMF scheme con-
stitute a part of a canonical series,16 let us estimate the non-
classical critical exponents for the square-lattice Ising model.
According to the CAM, the critical coefficients m̄ and 
̄�

should behave asymptotically as

m̄ � c1��Tc�−�1/2−��, �21a�


̄+ � c2��Tc�−�−1�, �21b�


̄− � c3��Tc�−��−1� �21c�

for

� =
Tc − Tc

�

Tc
� → 0, �22�

where ci� are certain constants, Tc
� denotes the exact value of

the critical temperature, and Tc is the approximate critical
temperature obtained in each approximation. Since each
equation has three unknown variables, ci, Tc

�, and the critical
exponent ��, , or ��, we need the approximate values of Tc
and the corresponding critical coefficients �m̄, 
̄+, or 
̄−� for,
at least, three different levels of approximations.

In Table IV, we show the values of �, , and � obtained
from Eq. �21� and the data obtained from the three levels of
approximations of the CCMF method presented in Table III.
Although nonclassical exponents are obtained, the values of
them are not very accurate. This may be because the size of
clusters used in the approximations is relatively small.25 It is
expected that more accurate results are obtained by taking a
larger cluster like that used in the Tanoji approximation of
the CVM.24 However, since the initial lattice symmetry is
artificially broken,12,26 the CCMF theory is not directly ap-
plicable for a cluster larger than a certain critical size �e.g.,
the 2�2 cluster for the square lattice� in the present form.

V. APPLICATION TO THE HEISENBERG MODEL

In this section, we consider the application of the CCMF
theory to a spin-1

2 Heisenberg ferromagnet in a uniform mag-
netic field as an example of quantum spin systems. The
Hamiltonian of the system is given by

H = − J�
�i,j�

Si · S j − h�
i

Si
z = − J�

�i,j�
�1

2
�Si

+Sj
− + Si

−Sj
+� + Si

zSj
z�

− h�
i

Si
z. �23�

Here Si= �Si
x ,Si

y ,Si
z� is the usual spin operator at site i, which

satisfies the commutation relation �Si
� ,Sj

�	= i����Si
��ij, Si

�

=Si
x� iSi

y are the spin raising and lowering operators, and h
denotes an applied magnetic field.

One of the advantage of cluster-based approaches, such as
the BPW and CCMF methods, is that the effects of the spin-
flip term, Si

+Sj
−+Si

−Sj
+, can be taken into account by the

straightforward application. Now, we focus again on the case
of the square lattice and calculate the magnetization of the
system by using the CCMF approach. In the square approxi-
mation �see Fig. 2�, we first introduce the four effective fields
heff

�i�j =Jm�i�j, where

TABLE III. The values of kBTc /J and the mean-field critical
coefficients for the square-lattice Ising model in the single site
�SCCF�, pair, and square approximations of the CCMF method.

Approximation kBTc /J m̄s J
̄+ J
̄−

SCCF 2.595225 2.534519 0.716621 0.358311

Pair 2.437857 2.922637 1.130168 0.565084

Square 2.362099 3.551663 1.537636 0.768818

TABLE IV. Comparison of the CAM estimates and exact values
of critical exponents.

kBTc /J � =�

CAM 0.343 2.138

�kBTc
� /J� �2.331� �2.118�

Exact 2.269 0.125 1.75
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m�i�j = m++�1

2
+ Si

z��1

2
+ Sj

z� + m+−�1

2
+ Si

z��1

2
− Sj

z�
+ m−+�1

2
− Si

z��1

2
+ Sj

z� + m−−�1

2
− Si

z��1

2
− Sj

z�

= �
m++ ��i = ↑, � j = ↑�
m+− ��i = ↑, � j = ↓�
m−+ ��i = ↓, � j = ↑�
m−− ��i = ↓, � j = ↓� .

� �24�

Here, �i= ↑ ,↓ represents the z component of the spin at site
i. The procedure for the calculations of these mean fields and
the magnetization m is almost the same as that in Sec. II B.
The difference is only that the Ising interaction between
neighboring spins in a cluster is replaced by the Heisenberg
one, Si ·S j, in this case.

The temperature dependence of the magnetization m ob-
tained by the CCMF approach is compared with those from
the MFT, BPW, the so-called random-phase approximation
�RPA�,27,28 Kikuchi’s square approximation,23 and quantum
Monte Carlo �QMC� calculations29–32 in Fig. 5. The BPW
approximation, which was first applied to the isotropic
Heisenberg model by Weiss in Ref. 15, gives a qualitatively
incorrect behavior in the low-temperature region. This be-
havior becomes more pronounced at lower magnetic field
strengths. Therefore, when applied to other systems, the
BPW method has a risk that one cannot decide whether the
behavior of the obtained results is an essential property of
the system or an artifact of the approximation. The similar
behavior in the low-temperature region is also observed in
the result of Kikuchi’s approximation. In the “Bethe-type” or
“effective-field” approaches, such as the BPW method2,14,15

and its extended versions,12,33 the values of the effective
fields �and effective couplings� are determined by the peri-
odic boundary conditions and thus these approaches gener-
ally overestimate the correlation effects between the spins.

The Green’s function method with the RPA decoupling
approximation �or “Tyablikov decoupling” method� is one of
the most popular approximation schemes to deal with quan-
tum spin systems. As is shown in the figure, the RPA is a

good approximation over a wide temperature range. How-
ever, since the treatment for the Ising term of the Hamil-
tonian is identical to that of the MFT, the approximation
should get worse as the Ising-type anisotropy of the system
increases. Especially, when the RPA scheme is applied to the
Ising model, the obtained results are the same as that of the
MFT. Besides, a special attention is required in applying the
RPA scheme to a relatively complicated system as is pointed
out in our recent study.30

In the “Weiss-type” approaches, the effective fields are
defined in terms of some kind of mean fields �e.g., heff
=zJm in the simple MFT� and those values are determined
by the corresponding self-consistency conditions. Oguchi’s
method, the SCCF, and CCMF approaches are categorized
into this group. These approaches generally underestimate
the correlation effects between the spins and therefore over-
estimate the magnetization. The CCMF method also overes-
timates the magnetization as is shown in Fig. 5 but the dif-
ference from the QMC data is much smaller than that of the
MFT. Moreover, above a certain temperature �kBT /J�0.7�,
the accuracy exceeds that of the RPA scheme. The results
obtained here and in Sec. III indicate that our CCMF method
can give qualitatively �and even quantitatively� correct re-
sults over a wide range of temperature and strength of the
exchange anisotropy.

VI. SUMMARY

In this paper, we have proposed a cluster-based mean-
field approach, which we refer to as the CCMF theory and
have demonstrated its applications to the Ising and isotropic
Heisenberg models as examples. By using the CCMF ap-
proach, one can take into account the effects of spin correla-
tions between clusters beyond the standard mean-field level.
Since a cluster of different size and shape is used for each
lattice type, the obtained results are dependent not only on
the coordination number z but also on the geometry of the
lattice.

The results obtained from the CCMF method are in good
agreement with the corresponding exact values, series expan-
sion, or QMC data for the both Ising and isotropic Heisen-
berg models. Especially, for the Ising model on the honey-
comb and square lattices, the calculated results of the critical
temperature are very close �overestimated by only a few per-
cent� to the exact ones.

As well as being very accurate, the advantage of this
method is that it is widely applicable. Since the calculation in
the CCMF approach is based on clusters consisting of sev-
eral spins, in addition to the Ising-type interaction, the con-
tributions of other types of interactions �e.g., the Heisenberg-
type exchange interaction as we demonstrated� can be taken
into account in a straightforward way. Although we have
considered here only the two simple cases, this method is
expected to be useful also for studies of more complicated
and interesting systems. For example, the CCMF method
should work well for the XXZ model �Heisenberg-Ising
model� with easy-plane anisotropy30,34 and, of course, with
Ising-type anisotropy, which lies between the two models we
considered here. Also, the extensions to systems with four-

FIG. 5. The temperature dependence of the magnetization of an
isotropic Heisenberg ferromagnet at h /J=0.1. Comparison of the
result obtained from the CCMF approach with those of the MFT,
BPW, RPA, Kikuchi’s square approximation, and the QMC calcu-
lations. The error bar of the QMC results are smaller than the
linewidth.
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spin �ring� exchange interactions,35 higher spins, and random
systems36,37 should be considered in future studies.
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APPENDIX: PAIR APPROXIMATION OF CCMF

In the pair approximation for the square-lattice Ising
model, the states of a nearest-neighbor pair of spins �see Fig.
6� are described by the Hamiltonian

HC = − J �
�i,j��C

�i� j − �
i�C

heff
�i �i − �

i,ī�C

2heff
�i�ī�i = − J�1�2

− J�m�1 + 2m�1�2��1 − J�m�2 + 2m�2�1��2. �A1�

Oguchi’s pair approximation5 is obtained by requiring the

equality m�=m���=m, where m= �1 /2��C��i�, in the above
Hamiltonian. In the CCMF method, the values of the mean
fields are determined by solving the set of self-consistent
equations

m� = ��2��
�1=�1 = Tr��2�e
−�H

C�
�

�/Tr�e−�H
C�
�

� �A2�

and

mss� = ��1��
�1=s, �2=s� = Tr��1�e
−�H

C�
ss�

�/Tr�e−�H
C�
ss�

� ,

�A3�

where

HC�
� = − J �

�i,j��C�

�i� j − heff
�1��1� − �

i,ī�C

2heff
�i�ī�i � J�2� =

− J�1��2� − J�m�1� + 2m�1��2���1� − J�2m�2��1� � 1��2�

�A4�

and

HC�
ss� = − J �

�i,j��C�

�i� j − �
i�C�

heff
�i �i − �

i,ī�C

heff
�i�ī�i − sJ�1�

− s�J�2� = − J�1��2� − J�m�1� + m�1��2� + s��1�

− J�m�2� + m�2��1� + s���2�. �A5�

Then the magnetization m is calculated from Eqs. �5� and
�A1�.
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