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In 1955 Fermi, Pasta, and Ulam showed that a simple model for a nonlinear one-dimensional chain of
particles can be nonergodic, which implied infinite thermal conductivity. A more recent investigation of a
realistic model for an individual polyethylene chain suggests that this phenomenon can even persist in real
polymer chains. The reason for the divergent behavior and its associated mechanism, however, remains un-
clear. This paper presents a general formulation for normal-mode vibrational contributions to thermal conduc-
tivity, which is then used to analyze molecular dynamics simulations of individual polyethylene chains. Our
analysis shows that cross correlations for midfrequency longitudinal-acoustic phonons are responsible for the
divergent thermal conductivity in our model.
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I. INTRODUCTION

Fermi, Pasta, and Ulam’s1 �FPU� “remarkable little dis-
covery” that nonlinear chains of oscillators can be noner-
godic led to the discovery of solitons and gave birth to the
modern field of computational nonlinear dynamics.2,3 The
FPU problem was originally proposed in order to study the
system’s rate of thermalization and approach to equilibrium.
This was based on an expected evolution toward an equipar-
tition of mode energy, as a result of the mode-mode interac-
tions induced by the nonlinear particle interactions. The sur-
prising recurrence phenomenon that was observed suggested
that even an anharmonic chain of oscillators can have infinite
thermal conductivity.2,3

Since the FPU discovery, the idea of anomalous heat con-
duction has been more thoroughly investigated,2,4–15 shed-
ding light on the possibility for engineering thermal super-
conductors through ballistic heat conduction. Most previous
works have investigated fictitious systems,2,4–14 where the
interactions between particles were chosen for better under-
standing of the circumstances required for infinite conductiv-
ity. Although some have conjectured that anomalous heat
conduction can occur in carbon nanotubes,16 less restrictive
analysis indicates finite scattering rates and eventual conver-
gence of thermal conductivity with increasing tube length.17

Our recent simulations of individual polymer chains,15 on the
other hand, have indicated the potential for anomalous heat
conduction through the divergence of Green-Kubo integrals.

Our polyethylene chain model differs from previous
works13,14,18 in the sense that we used a more realistic chemi-
cal bonding based description of the atomic interactions
through the adaptive intermolecular reactive empirical bond
order �AIREBO� potential.15,19,20 In this model, the motion
of hydrogen atoms can affect the bonding between neighbor-
ing pairs of carbon atoms through many-body angular terms.
The explicit treatment of both carbon and hydrogen atoms in
this model also leads to a wide spectrum of optical phonon
frequencies ranging from �30–85 THz. Although these op-
tical modes are expected to have small contributions to the
conductivity, they can reduce the thermal conductivity by
scattering lower frequency acoustic modes.21 This added

complexity was neglected in earlier works, which either
studied fictitious molecules or employed united atom
models.2,4–14 The explicit treatment of hydrogen atoms also
leads to interesting interactions between different
polarizations.20 The ramifications of these effects, however,
have not been studied thoroughly in the literature.

For heat conduction in crystalline materials, it is common
to start from the Boltzmann equation to derive an expression
for the thermal conductivity.22 This approach depicts thermal
conductivity as proportional to the average time between
phonon collisions. From this perspective, a system having
infinite thermal conductivity implies that some phonons do
not experience phonon-phonon collisions �umklapp
scattering23� and therefore conduct heat ballistically. In the
FPU problem, however, phonon-phonon collisions �mode-
mode interactions� do occur from the nonlinear forces be-
tween particles. How is it that phonon-phonon collisions can
occur, giving rise to a finite nonzero scattering rate, and yet
the thermal conductivity is still infinite? Over the years, it
has proved quite difficult to explain this phenomenon with
Boltzmann equation based arguments. Later, we will discuss
how this issue arises out of the Stosszahlansatz assumption
of “molecular chaos,” which is used to simplify the scatter-
ing integral.24 Here we present an interpretation of anoma-
lous heat conduction based on mode-mode cross correla-
tions. Our interpretation points to a mechanism that is not
intuitively captured by the widely used expressions for ther-
mal conductivity based on the Boltzmann equation,25 which
assume that phonon-phonon collisions are chaotic and
uncorrelated.24

In this paper we present more detailed analysis of the
same model15 for an individual polyethylene chain, which
was previously used to demonstrate the potential for diver-
gence �infinite thermal conductivity�. We first derive the ex-
pressions used to analyze the simulations and then provide
our interpretation of their meaning. We then proceed to a
description of the model and simulation procedures. We later
show correspondence between the simulation results and our
correlation based explanation of the divergent Green-Kubo
integrals. Our analyses indicate that the longitudinal-acoustic
modes are associated with the processes responsible for the
divergent thermal conductivity in polyethylene chains.
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II. SIMULATION ANALYSIS

We first consider the Green-Kubo expression for thermal
conductivity, which is based on linear-response theory,22,26

� =
V

kBT2�
0

�

�Qz�t�Qz�t + t���dt�, �1�

where kB is Boltzmann’s constant, T is the system tempera-
ture, V is the system volume, and �Qz�t�Qz�t+ t��� is the heat
flux autocorrelation function. Qz represents the component of
the heat flux vector Q directed along the polyethylene chain
axis, which is the direction of interest. For the AIREBO po-
tential, which was used to model the atomic interactions,
Hardy’s derivation27 of the quantum heat flux operator can
be employed to determine Qz,

Qz =
1

V
�

i
�Ei · vi + �

j

�− �ri
� j · vi� · rij	 · ẑ , �2�

where the sum is over each atom i in the system which has
energy Ei, velocity vi, and potential energy �i while rij de-
notes the displacement between atoms i and j.

This equilibrium approach was chosen because it has
shown good agreement with experiments28–34 and has several
advantages over nonequilibrium methods. For one, the equi-
librium Green-Kubo method naturally incorporates the use of
periodic boundary conditions, in the sense that it allows for
calculation of the thermal conductivity in the infinite system
size limit, where boundary scattering is nonexistent. Non-
equilibrium approaches,16,18 on the other hand, apply heat
flux or temperature boundary conditions to certain regions of
atoms by local alteration of the atomic vibration dynamics.
The regions where these conditions are applied subsequently
induce an artificial form of phonon scattering, which func-
tions as a pseudoboundary. As a result, nonequilibrium ap-
proaches induce finite-size effects and require that the simu-
lation domain be larger than the phonon mean-free paths for
convergence of the results.16 For mechanically soft low
thermal-conductivity materials with short mean-free paths,
this approach is both intuitive and computationally efficient.
For stiff high thermal-conductivity materials, where the
mean-free paths are long, this method can require large simu-
lation domains that are exceedingly computationally expen-
sive. For the case of a single polyethylene chain, which is
stiff, the longitudinal-acoustic phonons have group velocities
�16 000 m /s.15,35 Relaxation time estimates for these
phonons exceed 10 ps,15 and therefore suggest that they
propagate ballistically in chains with submicron lengths. If
nonequilibrium approaches were used to investigate poten-
tially anomalous heat conduction in polyethylene,18 we
would expect boundary scattering to dominate until the chain
lengths were at least several microns long. This would re-
quire system sizes larger than 20 000 atoms, which are cur-
rently too computationally expensive.

The other major benefit of equilibrium simulations is that
they do not involve tampering with the natural atomic vibra-
tion. This allows us to study phonon-phonon interactions and
temperature-dependent anharmonic effects in isolation, with-
out boundary effects. The major drawback to equilibrium

approaches, however, is that they require long simulation
times for sufficient phase-space sampling. The other draw-
back to the Green-Kubo method is that the trajectory data for
an entire simulation of N atoms only results in a single value/
tensor for thermal conductivity, and does not provide de-
tailed information about the phonon transport. Modal
analysis,15,29–31,33 however, can provide much more detail
about the 3N modes and can be used in tandem with the
Green-Kubo method to analyze the atomic trajectories. This
approach15,29,31 involves projecting the atomic trajectory
onto the normal-mode shapes via the following spatial Fou-
rier transformation,

X�k,p,t� = �
j


mj

N
· �r j�t� − r j0� · p j�k,p� · exp�i · k · r j0� ,

�3�

where the sum is over all atoms in the system, mj is the mass
of atom j, r j0 is its equilibrium position while r j�t� is its time
dependent position. The indices k and p denote the wave
vector and polarization of each mode while p is the mode
eigenvector determined from lattice dynamics methods.36

The mode displacements, X, can then be used to calculate
each mode’s total energy after each simulation time step,

E�k,p,t� = X�k,p,t� · X��k,p,t� · �2

2
�

+  Ẋ�k,p,t� · Ẋ��k,p,t�
2

� , �4�

where � is the mode frequency, Ẋ is the time derivative of X,
and X� is its complex conjugate. The mode energy is propor-
tional to the mode occupation E�k , p , t�=h��n�t�+ 1

2 �. The
deviation from average energy �E�k , p , t�=E�k , p , t�
− �E�k , p�� is therefore proportional to the deviation from
average occupation �E�k , p , t�	�n�t� and can be used to de-
termine the mode’s attenuation rate


�k,p� =
� ��E�k,p,t� · �E�k,p,t + t���dt�

��E�k,p,t�2�
. �5�

Ladd et al.30 suggested this time constant corresponds to the
mode’s relaxation time. Henry and Chen29 subsequently used
this approach to study phonon relaxation times in silicon.
This modal analysis technique can provide temperature-,
strain, and defect dependent phonon-phonon relaxation times
without fitting parameters, which can be used as input to the
Boltzmann equation under the relaxation-time approxima-
tion.

The Green-Kubo expression for thermal conductivity and
modal decomposition methodology separately provide im-
portant information about phonon transport in crystalline ma-
terials. Combining the two formalisms, however, can eluci-
date even more information, particularly for systems such as
polymer chains, where anomalous heat conduction may be
possible.
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We begin by expressing the temporally varying heat flux,
in terms of the temporally varying phonon occupation
numbers.25 For a one-dimensional �1D� system such as a
polyethylene chain we express the heat flux as

Qz =
1

V
�

k
�

p

h�vz�n�t� , �6�

where h is Plank’s constant, vz is the phonon group velocity,
and �n is the deviation from the average occupation. Insert-
ing Eq. �6� into Eq. �1� results in an expression for thermal
conductivity in terms of the normal-mode-mode correlation
functions,

� =
1

VkBT2�
k

�
p

�
k�

�
p�

�h�h����vv��

��
0

�

��n�t��n��t + t���dt�. �7�

Here we can make use of Wick’s factorization scheme,25

�abcd� = �ab��cd� + �ac��bd� + �ad��bc� , �8�

to determine the squared deviation from average ��n2�, by
substituting the creation and annihilation operators a and a†

for the occupation n,

��n2� = �n2� − n̄2 = �a†aa†a� − n̄2

= �a†a��a†a� + �a†a†��aa� + �a†a��aa†� − n̄2

= n̄�n̄ + 1� , �9�

n̄ = �exp h�

kBT
� − 1	−1

. �10�

This then allows us to express the thermal conductivity in
terms of the normalized mode correlation functions
��n�t��n��t+t���


��n2�t����n�2�t��
as

� =
1

V
�

k
�

p
�
k�

�
p�

kB xex/2

�ex − 1�
x�ex�/2

�ex� − 1�
��vv��

��
0

� ��n�t��n��t + t���

��n2�t����n�2�t��

dt�, �11�

where x=h� /kBT and the normal-mode correlation function
��n�t��n��t+t���


��n2�t����n�2�t��
can be calculated from the molecular dynamics

trajectory data by recognizing that the normalized correlation
function for the mode’s occupation is equivalent to the nor-
malized correlation function for the mode’s energy
��n�t��n��t+t���


��n2�t����n�2�t��
= ��E�t��E��t+t���


��E�2�t����E�2�t��
. By identifying the specific heat

C=kBx2 exp�x��exp�x�−1�−2, Eq. �11� can be cast more intu-
itively as

� =
1

V
�

k
�

p
�
k�

�
p�


CC��vv���
0

� ��n�t��n��t + t���

��n2�t����n�2�t��

dt�.

�12�

Inspection of Eq. �12� reveals several interesting features that
bear resemblance to the way thermal conductivity is ex-
pressed when derived from the Boltzmann transport equa-
tion, using the relaxation-time approximation,22

� =
1

V
�

k
�

p

Cv2
 . �13�

Here, the single mode relaxation time 
 still includes all
possible phonon-phonon scattering interactions. The key dif-
ference between Eqs. �12� and �13� is that the relaxation time
in Eq. �13� is based on the Boltzmann equation and assumes
that phonon-phonon scattering events are not correlated. The
cross terms in Eq. �12�, where k�k� or p�p�, account for
the possibility that phonon-phonon scattering events could be
correlated, which would violate the Stosszahlansatz assump-
tion of molecular chaos.24 In previous works,29–31 where mo-
lecular dynamics simulations were used to study thermal
conductivity, only the terms where k=k� and p= p� were in-
cluded in accordance with Eqs. �5� and �13�. The added cor-
relation features captured by Eq. �12�, however, are impor-
tant for understanding anomalous heat conduction in 1D
polyethylene chain molecules. Next we offer an interpreta-
tion of Eq. �12� that will lead to a more intuitive explanation
for anomalous heat conduction.

III. SCATTERING AND CORRELATION PARADIGMS

The traditional viewpoint for understanding lattice ther-
mal conductivity is based evaluation of phonon-scattering
rates.22,25 In this paradigm, we begin from the idealization of
a perfectly harmonic crystal, where the system’s normal
modes/phonons are noninteracting. In this limit, the thermal
conductivity of the crystal is infinite. The next step is then to
consider anharmonicity, which is the degree of departure
from this idealization. Anharmonicity leads to umklapp scat-
tering, finite scattering rates, and finite thermal
conductivity.23 From this view point, it is thought that the
sequence of scattering events is random,24,25 and this per-
spective leads to full consistency with Fourier’s law for heat
conduction.22,25 The results of the famous FPU problem,
however, are difficult to understand from this view point.
From this scattering based paradigm, the FPU system exhib-
its phonon-phonon scattering through its mode-mode inter-
actions and should therefore have finite thermal conductivity.
It is here that we offer an interpretation of Eq. �12� based on
mode-mode correlation rather than scattering, which pro-
vides a different way of thinking about anomalous heat con-
duction.

Consider the opposing limit of a crystal with completely
random atomic motion. Although this situation does not oc-
cur in nature, it serves as an idealization from which we can
deviate in order to investigate the effects of correlation. In
this limit, we consider that the motion of every atom as com-
pletely independent of the surrounding atoms, such that there
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are no atomic interactions to allow two atoms to influence
each other’s trajectory. We also consider that each atom is
localized to a specific region through an onsite potential.
This denies each atom the ability to transfer heat by convec-
tive diffusion. Although this situation does not occur in na-
ture we have chosen this idealization so that no aspect of the
atomic motion is correlated, and therefore if the heat flux
autocorrelation function in Eq. �1� were evaluated, the result-
ant thermal conductivity would be zero. In this idealized
limit of random uncorrelated atomic motion, the atoms are
noninteracting while in the opposing limit of an idealized
perfectly harmonic crystal, the phonons are noninteracting.
By proposing this counteridealization to the perfectly har-
monic crystal, we can now consider all real materials as a
deviation from the uncorrelated limit, as there is always
some finite correlation in the atomic motion.

Starting from the limit of uncorrelated motion leads to a
correlation based paradigm for thinking about thermal con-
duction, where the correlation in Eq. �1� now acts as a mea-
sure of departure from this limit. From this point of view we
consider any form of patterned or correlated motion in the
system’s trajectory as a contribution to thermal conductivity.
For systems where phonons are present, this perspective in-
tuitively accounts for the possibility that scattering events
can occur in an ordered sequence. It is important to note here
that Eq. �1� measures the amount of correlation in the atomic
motion, which is valid for any phase of matter. Equation �12�
was derived for a special case, where the system energy is
comprised of normal modes and Eq. �6� is valid. As a result,
Eq. �12� shows that thermal conductivity is increased by
normal-mode correlations in crystalline materials, which de-
rive from the underlying correlation in the atomic motion. To
expand on this point, let us postulate the meaning of the
temporal fluctuations in mode energy used to calculate the
correlations in Eq. �12�.

Let us reconsider the classical picture of the idealized
perfectly harmonic crystal where the system is initialized
with all the energy in one particular mode. This system will
perpetually stay in the initial state unless otherwise per-
turbed. We would therefore observe that the singly excited
mode’s total energy is constant. If we then add anharmonic-
ity to the particle interactions, however, we would expect the
mode’s total energy to change with time due to interactions
with other modes. We therefore interpret the mode energy
fluctuations as a direct measure of the mode-mode interac-
tions �phonon-phonon scattering events� taking place at a
given instant.

For three-dimensional �3D� bulk materials where many
different scattering events are possible, we would expect the
order or sequence of scattering events involving one mode
�k , p� to be independent and unrelated to the sequence of
scattering events for another mode �k� , p��. This would be
consistent with notion that phonon-phonon collisions are
chaotic, which would imply that the cross terms �k�k� or
p�p�� of Eq. �12� could be neglected.24 This simplification
would reduce Eq. �12� to Eq. �13�. The validity of the mo-
lecular chaos assumption is partially supported by the agree-
ment with experiments that was obtained in previous studies
that employed Eqs. �5� and �13� for bulk materials.29,31 For
3D materials we would expect that the number of allowable

phonon-phonon scattering events is large and therefore cha-
otic because many choices for interactions exist. This would
imply that the cross terms in Eq. �13� are negligible. For 1D
chain lattices, however, the number of allowable scattering
events is significantly reduced from that of a 3D bulk mate-
rial and therefore the assumption of chaotic collisions be-
comes questionable. From our interpretation, the cross terms
of Eq. �12� account for the possibility that the sequence of
phonon-phonon scattering events can be temporally corre-
lated, which would lead to an additional contribution to heat
conduction.

The idea here is that scattering events need not occur
randomly, as is generally assumed in the study of heat
conduction.24,25 Any form of correlation or patterning of the
atomic motion can add to a material’s thermal conductivity.
If a system of phonons were to have sequenced or cyclically
occurring phonon-phonon scattering events, it could result in
mode-mode cross correlation, as indicated by Eq. �12�. This
therefore suggests that anomalous heat conduction can occur
in a system with finite �nonzero� scattering rates. If there is
some underlying persistent cyclic or sequenced scattering be-
havior, this phenomenon could then cause cross correlations
in Eq. �12� to remain correlated indefinitely, leading to infi-
nite thermal conductivity.

IV. SIMULATION PROCEDURES

We used the AIREBO potential19 to model individual
polyethylene chains in the zigzag conformation. The
AIREBO potential was implemented in LAMMPS, a parallel
molecular dynamics package developed at Sandia National
Laboratories.37 Based on previous results,15 which showed
divergent behavior, we focused on single chains that were 40
unit cells �ucs� in length, where the unit-cell length was
�2.56 Å and the cross-sectional area was taken to be
18 Å2. All simulations used periodic boundary conditions
along the length of the chain and were run for 10 ns with a
0.25 fs time step for good energy conservation. Each simu-

FIG. 1. �Color online� Green-Kubo thermal-conductivity inte-
grals. The results of five independent simulations are shown, which
exhibited contrasting behavior. Cases 1–4 use identical simulation
parameters and procedures but were initialized with different ran-
dom velocities. Case 5 uses the same initial velocities as case 4;
however the masses of three carbon atoms and five hydrogen atoms
were increased to heavier isotopes.
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lation was initialized with all atoms in their equilibrium po-
sitions, and random velocities corresponding to a quantum
corrected room temperature �300 K�.15,34,38

V. RESULTS AND DISCUSSION

Of the 60 independent simulations that were run, all of the
results discussed in this report correspond to the data ob-
tained from the five example cases shown in Fig. 1, which
showed strongly contrasting behavior. As compared to the
five cases shown in Fig. 1, all of the other 55 simulations
exhibited similar converging/diverging or intermediate be-
haviors. Cases 1–4 are identical simulations except that the
random initial velocities �random number seed� differed,
which lead to different phase-space trajectories. Case 5 used
the same initial velocities as case 4 but the masses of three
randomly selected carbon atoms and five randomly selected
hydrogen atoms were changed to heavier isotopes. Figure 1
shows the cumulative integral in Eq. �1� versus the amount
of integration time. The large oscillations are due to the fact

that each curve corresponds to the results of an individual
simulation trajectory. These oscillations are usually sup-
pressed by averaging over many independent simulations.
However, for the present investigation we focus on analysis
and explanation of the strong divergence in specific simula-
tions.

In Fig. 1, cases 1 and 2 show convergent behavior
�150 W /mK. This type of convergence is similar to what is
typically observed for 3D bulk materials.15,28,31–34,38,39 The
heat flux autocorrelation �HFAC� integrals of cases 3 and 4,
however, indicate divergence as the HFAC integral continues
increasing beyond 1000 W/mK at 5 ns. For most materials,
HFAC functions decay within 500 ps.15,28,31–34,38,39 Here we
have extended the integration by an order of magnitude to
investigate the long-time behavior for more insight into the
infinite time behavior. For cases 3 and 4, the HFAC does not
completely decay and has a persistent tail that causes the
integral to diverge �Fig. 1�. When these same divergent simu-
lations are run with isotopes present, the previously persis-
tent HFAC tails no longer endure, leading to a convergent
integral. This response to a physical modification of the

FIG. 2. �Color online� Normal
mode correlation functions �fluc-
tuating lines� and thermal-
conductivity contributions �gray-
dashed lines� for the longest
wavelength modes ��=40 ucs� of
the four acoustic polarizations in
case 3. In each panel the correla-
tion corresponds to the two modes
indicated by wave-vector index n
and polarization p. The raw data
�left-vertical axis� is shown with
light solid thin lines. Smoothed lo-
cal average values �left-vertical
axis� are shown with dark solid
thick lines. �a�–�d� show mode au-
tocorrelations while �e� and �f�
show cross correlations. In each
panel the cumulative contribution
to thermal conductivity �right-
vertical axis�, based on Eq. �12�,
is shown with gray-dashed lines.
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problem suggests that the divergent phenomenon is not a
result of unphysical numerical artifacts. Other simulations15

of longer chains, which also exhibit the same diverging be-
havior, lend additional support to this notion and suggest that
the divergent behavior is a result of a physically meaningful
aspect of the nonlinear AIREBO model.

With these five cases under consideration, we used the
previously discussed modal analysis technique in conjunc-
tion with the Green-Kubo method to calculate the normal-
mode correlation functions and their respective contributions
to the net thermal conductivity �Eq. �12��. Figure 2 shows
several normal-mode correlation functions corresponding to
modes with wavelengths of 40 ucs, for the divergent case 3.
In the remaining Figs. 2–6, the value n denotes the wave
vector as k=n2 /40 ucs, while the value for p denotes the
corresponding polarization. For the polarizations p, we have
used the following abbreviations: TAx corresponds to the
transverse-acoustic modes with vibrations perpendicular to
the C-C bonding plane, TAy corresponds to the transverse-
acoustic modes with vibrations in plane with the C-C bonds,
LA corresponds to the longitudinal-acoustic modes with vi-
brations along the chain axis, and Tors corresponds to the
torsional acoustic modes, which twist about the chain axis
in/out of the C-C bonding plane. Each figure panel contains a
title with the two modes and polarizations listed in parenthe-
ses. Figures 2�a�–2�d� show the autocorrelation functions for
the longest wavelength modes in each acoustic branch �di-
vergent case 3�. Other autocorrelation functions for the opti-
cal modes were also calculated but they all exhibited decay-
ing behavior with time constants between 0.1–5 ps. Although
optical modes have much smaller and often negligible con-
tributions to thermal conductivity, they can play an important
role in heat conduction by scattering with acoustic modes.21

Decaying behavior was also observed for the acoustic
modes; however, Figs. 2�a� and 2�c� show that the TAx and
Tors modes behave differently, and do not fully decay within
5 ns. This persistent correlation suggests that these modes do
not fully attenuate, which is related to mode-coupling theory
based explanations of anomalous heat conduction.5 Figures
2�b� and 2�d�, on the other hand, show that the TAy and LA
modes decay within 500 ps, which is consistent with normal
diffusive transport even though the decay time is long. The
two polarizations that exhibit nonattenuating behavior �TAx
and Tors� are the modes that correspond to the out of C-C
bonding plane vibrations.

Motivated by mode-coupling theory based explanations of
divergent thermal conductivity,5 the persistent Tax and Tors
correlations were initially thought to be the source of the
divergent phenomenon.15 This idea, however, was unable to
explain the divergence alone because the TAx and Tors au-
tocorrelation functions persisted in all cases. Even in cases 1
and 2 where the results converged, these TAx and Tors
modes exhibited nonattenuating behavior similar to that of
case 3, shown in Figs. 2�a� and 2�c�. The idea that this could
explain the divergence in Fig. 1 was further invalidated by
calculation of each correlation’s respective contribution to
the thermal conductivity using Eq. �12�, which is shown in
each panel with the right-side vertical axis. Examination of
the cumulative thermal-conductivity contribution for each of
these modes, via the integral in Eq. �12�, shows that despite
the fact that these modes do not fully decay, their contribu-
tion to thermal conductivity is only of order 10 W/mK. Con-
tributions of this magnitude are not large enough to account
for the rate of divergence observed for cases 3 and 4 in Fig.
1. The LA mode autocorrelation �Fig. 2�d��, however, has a
much larger contribution because the LA velocities are

FIG. 3. �Color online� Normal
mode cross-correlational functions
�fluctuating lines� and thermal-
conductivity contributions �gray-
dashed lines� for TAx and Tors
polarizations in case 3. In each
panel the correlation corresponds
to the two modes given by wave-
vector index n and polarization p.
The raw data �left-vertical axis� is
shown with light solid thin lines.
Smoothed local average values
�left-vertical axis� are shown with
dark solid thick lines. The cumu-
lative contribution to thermal con-
ductivity �right-vertical axis�,
based on Eq. �12�, is shown with
gray-dashed lines.

ASEGUN HENRY AND GANG CHEN PHYSICAL REVIEW B 79, 144305 �2009�

144305-6



�16 000 m /s. Although this mode’s contribution is stron-
ger, its autocorrelation decays within 500 ps, which cannot
account for the positive slope at 5 ns, for case 3 in Fig. 1.

It is interesting to note that, when the normalized mode
correlation is negative �Fig. 2�e��, it implies that the fluctua-
tions in mode energy are of opposite sign, such that one
mode is above its average energy while the other is below its
average energy. For example, if the correlation is negative at
time separation t�, it means that, on average when the energy
in mode k , p is above its average value at t= t0, the energy
fluctuations are correlated with those in mode k� , p� at time
t= t0+ t� while mode k� , p� is below its average energy. For
mode pairs that share the same sign for their group velocity,
this negative correlation can detract from the system’s ability
to conduct heat. This implies that mode correlations can
couple some of the energy from forward-scattering events to
backward-scattering events, such that the net effect is to
transport heat against the temperature gradient. Although
these negative correlation effects can lead to temporarily
negative values for thermal conductivity, which can be
viewed as a temporary microscopic violation of the second

law, the time average behavior is always positive and no
negative divergence was observed in any simulation.

By examining Eq. �12� we see that cross correlations can
also contribute to the thermal conductivity. Figures 2�e� and
2�f� show cross correlations between the two nonattenuating
TAx and Tors modes, as well as the decaying TAy and LA
modes which have higher velocities. Even though the cross
correlation between the TAx and Tors modes reaches as high
as 0.2, implying that 20% of the energy fluctuations are cor-
related, the corresponding thermal-conductivity contributions
are still unable to account for the large persistent slopes in
Fig. 1. The panels of Fig. 3 show several cross correlations
for shorter wavelength modes in the TAx and Tors polariza-
tions but these cross correlations also show minimal contri-
butions to the thermal conductivity. Although these cross
correlations do not explain the divergent results in Fig. 1, the
small cross-correlational oscillations in Figs. 2�e�, 2�f�, and
3�a�–3�d� support the notion that the cross terms of Eq. �12�
may be negligible in many cases, particularly for 3D mate-
rials where divergent conductivity is not expected.29,31

FIG. 4. �Color online� Normal
mode correlation functions �fluc-
tuating lines� and thermal-
conductivity contributions �gray-
dashed lines� for LA modes in
case 3. In each panel the correla-
tion corresponds to the two modes
indicated by wave-vector index n
and polarization p. The raw data
�left-vertical axis� is shown with
light solid thin lines. Smoothed lo-
cal average values �left-vertical
axis� are shown with dark solid
thick lines. The cumulative contri-
bution to thermal conductivity
�right-vertical axis�, based on Eq.
�12�, is shown with gray-dashed
lines. �b� illustrates the short-time
behavior of the correlation in �a�.
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In order to explain the large rate of divergence in Fig. 1,
we can see from inspection of Eq. �12� that the phonon group
velocity plays the strongest role in determining contributions
to thermal conductivity. A rough inspection of the phonon
dispersion for polyethylene15,35 indicates that correlations be-
tween the LA phonons will have the strongest contribution to
thermal conductivity. Figure 4 shows several LA cross cor-
relations for the divergent case 3. Figure 4�a� shows that the
correlation between the n=4 and n=8 modes persists up to 5
ns. The corresponding contribution to thermal conductivity is
on the order of 100 W/mK, which is five to ten times higher
than that of other polarizations. Figure 4�b� shows a very
interesting feature of the divergent LA cross correlations at
short times. In the first 400 ps, the cross correlation decays
with oscillations, bearing strong resemblance to normal-
mode autocorrelations. The key feature in Fig. 4�a� is that the
cross correlation oscillates with a small positive offset,
which causes its integral to increase over the entire duration
considered. Several other persistent LA cross correlations are
also shown in Figs. 4�c� and 4�d�, which indicate that the n
=4 and n=8 cross correlation is not the only combination

that gives rise to this diverging trend. Figures 4�e� and 4�f�,
however, show that not all combinations of LA modes give
rise to a persistent tail. Nonetheless, the combined effects of
the several different LA mode combinations that have persis-
tent tails, when �k values are considered, results in a large
enough contribution that can account for the magnitude of
the divergent slopes in Fig. 1. A more complete correspon-
dence would require computation of all possible cross-
correlational combinations, which is beyond our current
computing capability. The results in Fig. 4, however, offer a
possible explanation for the divergence observed in the
Green-Kubo results of Fig. 1.

To test the results of Fig. 4 as a possible explanation for
the divergent HFAC integrals in cases 3 and 4, we also com-
puted LA cross correlations for the convergent cases 1 and 2,
which are shown in Fig. 5. Figure 5 shows that when the
same cross correlations, which were divergent for case 3
�Figs. 4�a�–4�d��, are computed for the convergent cases 1
and 2, the contributions to thermal conductivity oscillate
about zero. This lends support to our explanation for the
divergence, which is only associated with cases 3 and 4. This

FIG. 5. �Color online� Normal
mode correlation functions �fluc-
tuating lines� and thermal-
conductivity contributions �gray-
dashed lines� for LA modes in
cases 1 and 2. �a�, �c�, and �e� cor-
respond to case 1 while �b�, �d�,
and �f� correspond to case 2. In
each panel the correlation corre-
sponds to the two modes indicated
by wave-vector index n and polar-
ization p. The raw data �left-
vertical axis� is shown with light
solid thin lines. Smoothed local
average values �left-vertical axis�
are shown with dark solid thick
lines. The cumulative contribution
to thermal conductivity �right-
vertical axis�, based on Eq. �12�,
is shown with gray-dashed lines.
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also supports our hypothesis that cross correlations may be
negligible in many cases where normal chaotic phonon col-
lisions are expected.

To further test our hypothesis, we also computed LA cross
correlations for case 4 and compared them to case 5, which
uses the same initial velocities but also includes isotopes. By
comparing the correlations and thermal-conductivity contri-
butions in Figs. 6�a�, 6�c�, and 6�e� with that of Figs. 6�b�,
6�d�, and 6�f�, we see that the presence of isotopes signifi-
cantly decreases the contribution to thermal conductivity.
From the cross-correlational results in Fig. 6, we see that the
presence of isotopes inhibits the persistent correlation, which
subsequently caused the HFAC divergence for case 4 in Fig.
1.

Based on the results of Figs. 2–6, we believe the HFAC
divergence is caused by persistent cross correlations between
certain LA modes. This persistent correlation has direct cor-
respondence with our interpretation of Eq. �12� as it relates
to our more intuitive explanation of anomalous heat conduc-
tion. Although our results only show divergence when the
chain length is longer than 40 ucs, Fig. 2�d� does not indicate

that the lowest mode in the LA polarization is directly caus-
ing the divergence through its own autocorrelation. Its pres-
ence in the system may however be necessary for correla-
tions to persist among other LA mode scattering processes.
Mode-coupling theories suggest that low-frequency long-
wavelength modes behave differently than higher frequency
modes, and diffuse slowly over a longer time scale.5 We do
see some consistency with this interpretation through the
nonattenuating TAx and Tors modes in Figs. 2�a� and 2�c�,
respectively. Based on Eq. �12�, however, these modes are
unable to account for the strong divergence observed in Fig.
1. The persistent cross correlations in Fig. 4 indicate that the
midfrequency LA modes may have a cyclically correlated
sequence of scattering events. The fact that the autocorrela-
tions for these modes �not shown� decay with convergent
contributions to thermal conductivity suggests that these
modes have finite nonzero scattering rates. The persistent
cross correlations, however, indicate that the scattering
events themselves are correlated and do not occur randomly,
as is commonly thought. Our evidence and explanation dif-
fers from that of previous authors5 and we believe it deserves

FIG. 6. �Color online� Normal
mode correlation functions �fluc-
tuating lines� and thermal-
conductivity contributions �gray-
dashed lines� for LA modes in
cases 4 and 5. �a�, �c�, and �e� cor-
respond to data from divergent
case 4 while �b�, �d�, and �f� cor-
respond to case 5, which is
equivalent to case 4 with the addi-
tion of isotopes. In each panel the
correlation corresponds to the two
modes indicated by wave-vector
index n and polarization p. The
raw data �left-vertical axis� is
shown with light solid thin lines.
Smoothed local average values
�left-vertical axis� are shown with
dark solid thick lines. The cumu-
lative contribution to thermal con-
ductivity �right-vertical axis�,
based on Eq. �12�, is shown with
gray-dashed lines.
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consideration as a possible mechanism for explaining
anomalous heat conduction in low dimensional lattices.

VI. CONCLUSION

We have presented an alternative framework and interpre-
tation of for phonon heat conduction, which allows for an
intuitive understanding of anomalous heat conduction in one-
dimensional lattices. The proposed interpretation is based on
an expression for thermal conductivity which combines the
Green-Kubo method with modal analysis. This expression
uses phonon creation and annihilation operators to write the
thermal conductivity as a summation of normalized autocor-
relation and cross-correlational functions. The contributions
from autocorrelations have been considered previously in or-
der to extract phonon relaxation times.15,29–31,33 Our results,
however, show that cross correlations between different
modes can also have significant contributions, particularly in
one-dimensional systems, where anomalous heat conduction
is anticipated. The results also indicate that these cross-term
contributions may be negligible for most 3D systems, where
many possible scattering events exist. For our model of a
single polyethylene chain, however, we observe persistent
cross correlations between several combinations of midfre-

quency longitudinal-acoustic modes. These persistent corre-
lations only arise for the simulations that exhibit divergent
thermal conductivity and are also able to account for the rate
of divergence. As a result we believe the divergent phenom-
enon exhibited by our model is the result of correlated scat-
tering events among these longitudinal-acoustic modes. Our
explanation for anomalous heat conduction in one-
dimensional lattices essentially states that the assumption of
molecular chaos24,25 in the Boltzmann equation is invalid for
low dimensional systems, where a low number of scattering
events are possible. Our correlated scattering event explana-
tion differs from that of previous works,5 which attribute
anomalous heat conduction to the slowly diffusing nonat-
tenuating nature of certain low-frequency modes, based on
mode-coupling theory. Although we observed evidence in
support of this explanation, evaluation of these modes’ con-
tributions to thermal conductivity suggested that they are un-
able to explain the divergence in our simulations.
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