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We have measured pulsed microwave transmission through quasi-one-dimensional �quasi-1D� samples with
lengths up to three times the localization length as determined from measurements of the variance of intensity
fluctuations. Measurements are analyzed using four complementary approaches, each appropriate in a specific
time range: �i� diffusion theory; �ii� self-consistent localization theory �SCLT� with a renormalized diffusion
coefficient in space and frequency, D�z ,��; �iii� a dynamic single parameter scaling �DSPS� model, which
reflects the decay of localized modes which do not overlap in space and frequency; and �iv� simulations of 1D
random media. For times up to twice the diffusion time �D, diffusion theory gives an excellent fit to the data.
For times up to 4�D, the slowing of the decay rate of transmission is in accord with SCLT. For longer times,
transmission decays more slowly than the predictions of the SCLT, indicating the inability of this modified
diffusion theory to capture the decay of long-lived localized states. Beyond the Heisenberg time, the decay rate
approaches the predictions of the DSPS model, reflecting the increasing proportion of wave energy in long-
lived localized states. The decay rates obtained from 1D simulations are then in good agreement with
measurements in quasi-1D samples and coincide with decay rates given by the DSPS model.
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I. INTRODUCTION

The theory of localization was developed in the context of
electronic conduction.1,2 Because of electron-electron inter-
actions, however, the localization transition for electrons is
not a pure single-particle Anderson transition. Localization is
also possible for classical waves in acoustics and optics �see,
for example, Refs. 3 and 4�. However, the exponential decay
of average transmission expected for localized waves is also
found for diffusive waves in the presence of absorption. The
description of localization is made all the more complex by
inelastic scattering, since the impact of inelastic scattering
grows with path length and waves following trajectories of
all lengths contribute to the transmission. Since even low
absorption levels can affect transmission when the dwell
time of the wave in the sample is long, as it is in strongly
scattering samples, it is difficult to determine the localization
length from measurements of the exponential scaling of
transmission.5,6 Similarly, the rounding of the coherent-
backscattering �CBS� peak cannot unequivocally establish
localization since it is produced by both absorption and
localization.6–11 However, localization can be disentangled
from absorption using pulsed measurements since all paths
within the sample at a given delay time are of the same
length. The relative weights of paths are therefore unaffected
by absorption.12–15 Since pulsed measurements have not been
feasible for electrons, theoretical studies on electron localiza-
tion have focused on static transport.

Though dynamical studies bring a new dimension to stud-
ies of wave localization, it is essential that dynamics be un-
derstood in the context of static transport. Only then can the
degree of localization in the sample studied be established.
The increasing suppression of transport with time delay from
an exciting pulse, due to the increasing impact of weak lo-
calization with path length, becomes more significant as the

localization transition is approached but can also occur in
diffusive samples.14 The analysis of wave dynamics should
therefore start with the determination of the degree of steady-
state localization within sample. In the absence of inelastic
processes, the degree of localization can be expressed by the
dimensionless conductance2 g, or equivalently by the Thou-
less number,16 �=�� /��. 1 /�� gives the density of states of
the sample as a whole, and �� is the field correlation
frequency.17 Therefore, the Thouless number is also a mea-
sure of the degree of spectral overlap. The localization
threshold corresponds to the condition that g=�=1.16 The
localization threshold can also be expressed in terms of dy-
namic parameters as the condition that the Thouless time
equals the Heisenberg time, �Th=�H. Here, �Th=1 /��
=�2�D, and �H=1 /�� is the time required to visit each co-
herence volume of the sample. In the presence of absorption,
transmission drops, while the linewidth increases, so that g
and � are affected by absorption in different ways and their
values are no longer reliable measures of localization. An-
other measure of localization is the variance of transmitted
intensity between incident and outgoing modes, a and b, re-
spectively, normalized by the ensemble average value, sab
=Tab / �Tab�. For simplicity, we shall often denote Tab as I. In
the diffusive limit, the field is a Gaussian random variable
and var�sab�=1, whereas at the localization threshold,
var�sab��7 /3�2.33�.13,18 In quasi-one-dimensional �quasi-
1D� samples, var�sab�=2 var�sa�+1,18,19 where sa is the total
transmission normalized by its average over a random en-
semble of statistically equivalent samples, sa=Ta / �Ta�, for an
incident mode a. The localization threshold is at var�sa�
�2 /3g=2 /3 when absorption is absent, but is not signifi-
cantly affected by absorption.

Far from the localization threshold, measurements of the
average pulsed transmission �I�t�� in opaque samples have
generally been well described by diffusion theory.20 For
times greater than the diffusion time �D, higher diffusion
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modes decay rapidly, leaving energy in the lowest diffusion
mode with a decay rate approaching the constant value,
1 /�D=�2D / �L+2z0�2.20 Here, D is the diffusion coefficient,
L is the sample length, and z0 is the distance beyond the
boundary at which the intensity within the sample extrapo-
lates to zero.21 However, a progressive suppression of the
decay rate of transmission has been observed in recent mi-
crowave experiments14 in samples which were determined to
be firmly on the diffusive side of the localization transition
from measurements of var�sab�. The response to a pulse was
found from spectral measurements of transmitted field in a
sample of randomly positioned alumina spheres at low con-
centrations, within a quasi-1D geometry, in a frequency
range between two Mie resonances of the spheres.14 Mea-
surements were made in samples with lengths for which
var�sab� was between 1.18 and 1.5.

The slowing decay of �I�t�� for diffusive waves reflects
the increasing prominence of longer-lived modes,14 which
are more remote from the sample boundaries and more
sharply peaked within the sample.3,22–25 This is associated
with the increasing enhancement of weak localization with
longer path length due to the scattering of the wave as it
crosses over its trajectory.26 The impact of localization on
electron dynamics at T=0 had been calculated using dia-
grammatic, nonlinear �, and supersymmetry approaches.22,27

Vollhardt and Wölfle28 �VW� developed a self-consistent dia-
grammatic theory of localization within a medium in terms
of a frequency-dependent renormalized diffusion coefficient
D���. To be consistent, Van Tiggelen et al.29 argued that D
must also be a function of depth within a bounded sample,
D�z ,��. Skipetrov and Van Tiggelen30,31 used self-consistent
localization theory �SCLT� to describe waves near the mo-
bility edge for t	�H in quasi-1D �Ref. 30� and slab
geometries.31 They described30 key features observed in mi-
crowave measurements14 for diffusive waves in quasi-one-
dimension and found a 1 / t2 falloff in reflection for localized
waves.

Suppressed pulsed transmission was also observed by
Störzer et al.15 in optical measurements in a titania powder
slab. Measurements of CBS gave a value of k�, where k is
the wave number and � is the transport mean free path, as
small as 2.5. The value of k� inside the sample is presumably
smaller but still appears to be larger than unity, which is the
Ioffe-Regel criterion for localization in three dimensions.32

The analysis of the measured �I�t�� was based on a phenom-
enological theory incorporating a temporally varying diffu-
sion coefficient D�t�.33 Such a phenomenological theory does
not consider the retardation of localization effects in the
renormalization of the diffusion coefficient. The influence of
retardation on an effective diffusion coefficient can be cap-
tured, however, by a renormalization of the diffusion coeffi-
cient in frequency, i.e., D���.26,28–30 Statistical measure-
ments of the nature of propagation were not reported, so that
the precise degree of correlation and associated localization
was not ascertained.

Measurements of the dynamics of localized waves in
which static localization was established were first reported
for microwave radiation in quasi-1D samples in Ref. 34.
Those results are recapitulated and elaborated here. Recently,
Hu et al.35 reported suppressed leakage rate in measurement

of pulsed ultrasound transmission through a slab of alumi-
num beads. A single sample was studied because the delicate
balancing to properly sinter the sample was only achieved in
a single sample. Intensity statistics could be determined,
however, by measuring intensity across the sample surface
over a range of frequencies. These measurements gave
var�sab�=2.6
2.33 in one frequency range, indicating that
ultrasound propagation was close to the Anderson localiza-
tion transition on the localized side. Pulsed decay in the
sample was well fitted by SCLT.

In this paper, we present microwave measurements and
analysis of dynamic transmission for localized waves in
quasi-1D samples with lengths greater than the average lo-

calization length, L
�̄. The localization length was deter-
mined from measurements of variance of intensity fluctua-
tions, as discussed in Appendix A. Measurements are
analyzed in different time ranges using four different ap-
proaches. For times up to twice the peak arrival time, tp
��D, �I�t�� is well described by classical diffusion theory.
For t
2�D, however, measurements fall more slowly than
predicted by diffusion theory. For 2�D	 t	4�D, measure-
ments are in accord with SCLT, which includes a position-
and frequency-dependent diffusion coefficient D�z ,��.30,31

For t
4�D, the transmission decay rate ��t�=
−�d�I�t�� /dt� / �I�t��=−d ln�I�t�� /dt is increasingly sup-
pressed by localization up to a factor of nearly 3 relative to
the early diffusive decay rate 1 /�D in the samples measured.
This leads to an enhancement in the transmitted flux by a
factor of 105 at a time of 20tp. However, the SCLT predicts a
faster decay rate than observed in the experiment. The break-
down of SCLT reflects the inability of a modified diffusion
theory to capture the decay of long-lived states in the me-
dium. In order to model the long-time decay of transmission,
we develop a dynamic single parameter scaling �DSPS�
model, which is based on the key element of steady-state
single parameter scaling �SPS�, a Gaussian distribution of

Lyapunov exponents, =1 /2�, with average ̄=1 /2�̄ and
var��= ̄ /L.36 As is the case of the SPS model, the DSPS
model assumes that all modes are exponentially localized
and ignores the spectral and spatial overlap of modes that
leads to the formation of more rapidly decaying necklace
states. For this reason, we do not expect this model to accu-
rately represent transmission at early times, but explore the
degree to which the model is able to catch aspects of decay at
times long enough that dynamics is dominated by long-lived
modes. Beyond the Heisenberg time, the decay rate ap-
proaches the predictions of the DSPS model. The decay rates
obtained from 1D simulations are also found to be in good
agreement with measurements in quasi-1D samples and to
coincide with decay rates given by the DSPS model. This
indicates that dynamics at late times is determined by the
similar distributions of � in 1D and quasi-1D samples. In
contrast, the short-time dynamics is affected by mode over-
lap which may differ sharply in 1D and quasi-1D samples.
1D simulations give a peak in the decay rate which is higher
and peaks later than in measurements in quasi-1D samples.
The diffusionlike delay of the transmission peak reflects the
impact of short-lived, spectrally overlapping, quasiextended
modes, described by Pendry23 as necklace states.23–25 These
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results indicate the greater prominence of overlapping modes
in 1D samples than in quasi-1D samples at times of a few
times tp.

II. EXPERIMENTS

Microwave spectra of the field transmitted through low-
density random mixtures of alumina spheres were taken with
the use of a vector network analyzer. The wave is launched
and detected by conical horns placed 30 cm in front of and
behind the sample. Alumina spheres with diameter of 0.95
cm and index of refraction of 3.14 are embedded within Sty-
rofoam shells to produce a sample with alumina volume frac-
tion of 0.068, which displays distinct sphere resonances.37

The sample is contained within a copper tube with diameter
of 7.3 cm and thin plastic end pieces. Spectra are taken for
10 000 configurations produced by briefly rotating the tube,
in samples of lengths 13, 29, 40, 50, 61, and 90 cm. Mea-
surements are made just above the first sphere resonance
over the frequency range of 9.95–10.15 GHz, in which the
change in static and dynamic propagation parameters is
small.

A typical transmission spectrum in a sample with L
=40 cm, obtained by squaring the corresponding field spec-
trum, I���= 	E���	2, is shown in Fig. 1�a�. The response to a
Gaussian incident pulse, I0�t��exp�−t2 /�t

2�, with �t=20 ns,
is obtained by taking the Fourier transform of the product of
the field spectrum and the spectrum of the incident pulse,

which is a Gaussian envelope of width ��= �2��t�−1

=8 MHz peaked at the carrier frequency �c. The square of
the time-dependent field I�t� for the two incident pulses
whose intensity spectra are indicated in Fig. 1�a� are shown
in Fig. 1�b�. For the isolated line �dashed red curve�, I�t�
rises in the time of the incident pulse and then decays expo-
nentially with decay rate �=0.012 ns−1, which is essentially
governed by the full width at half maximum �FWHM�
Lorentzian linewidth, ��E=� /2�=1.9 MHz. For the over-
lapping lines �dotted blue curve�, I�t� shows structure due to
the beating of the underlying modes. �I�t�� is obtained by
subtracting from the average of the measured time response
the constant background at long times which results from
noise in the measurement of I���. To compensate for losses
due to absorption, and thus to facilitate the comparison of the
measurements to dynamical models of localization, �I�t�� is
multiplied by exp�t /�a�, where 1 /�a is the absorption rate.
1 /�a=0.0064 ns−1 is found from the decay rate of transmis-
sion in a 40-cm-long sample with copper end caps, which is
weakly coupled to the measurement ports, so that the leakage
rate is well below the absorption rate �Fig. 2�.

III. THEORETICAL APPROACHES

We next describe the two theoretical approaches used to
describe pulse transmission, which are �1� SCLT and �2�
DSPS model.

�1� In an open system, the SCLT developed by VW �Ref.
28� can be generalized as follows:

1

D�z,��
=

1

DB

1 +

vE

2N
G�z,z;��� , �1�

where DB=vE� /3 is the Boltzmann diffusion constant,
D�z ,�� is the renormalized diffusion coefficient, N is the
number of transverse modes, and vE is the transport velocity.
The diagonal intensity Green’s function G�z ,z ;�� represents
the return probability at z and can be obtained from the fol-
lowing generalized diffusion equation:30
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FIG. 1. �Color online� �a� Transmitted intensity spectrum �solid
black curve� in a random sample of L=40 cm and Gaussian spectra
of incident pulses peaked at the center of the isolated line �dashed
red curve� and overlapping lines �dotted blue curve�. �b� Intensity
responses to the Gaussian incident pulses with spectral functions
shown in �a�.
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FIG. 2. Transmission decay rate ��t� in the L=40 cm sample
weakly coupled to the measurement ports so that the leakage rate is
well below the absorption rate 1 /�a. 1 /�a=0.0064 ns−1 is found as
the average of ��t� for t
1.2 �s, multiplied by 0.91 to correct for
the copper end caps added to the tube.
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�z�D�z,���zG�z,z�;��� + i�G�z,z�;�� = − ��z − z�� ,

�2�

with mixed boundary conditions at both ends,
z0D�zb ;���zG�zb ,z� ;���DBG�zb ,z� ;��=0, where zb=0 or
L, z0= �2 /3���1+R� / �1−R� is the extrapolation length, and R
is the internal reflection coefficient.21,38,39 Equations �1� and
�2� are solved self-consistently in real � space to obtain
G�z ,z� ;��. The intensity just outside the output surface,
�I�t��, is obtained by taking the Fourier transform of
G�L ,z�=� ;�� in �. In our calculations, we use the values of
N=32, which is the number of propagating modes in the
waveguide at 10 GHz, and of vE=11.85 cm /ns calculated40

for a sample with a volume fraction of alumina spheres of
0.068 just above the first Mie resonance at 10 GHz. The
values of � and R will be determined by fitting the calculated
�I�t�� to the measured data. Equations �1� and �2� are derived
in Appendix B.

�2� Because transmission at long times may be determined
by the longitudinal structure of spectrally isolated localized
modes, we propose here a DSPS model to treat the statistics
of such modes. In one dimension, the steady-state intensity at
z=L of resonantly excited modes relative to the incident
wave at z=0+, for modes peaked a distance z from either
sample boundary, was given by Azbel,3 T=exp�−2
�L−2z�� for 0	z	L /2. The Lyapunov exponent =1 /2� is
drawn from a Gaussian distribution,

P�� = �L/2�̄ exp�− � − ̄�2/�2̄/L�� ,

according to the SPS hypothesis.36 Here we generalize the
SPS theory to study the dynamics of transmitted waves
through isolated localized modes. We assume that the posi-
tion of peak intensity for the modes is uniformly distributed
between 0 and L. The decay rate of localized states is the
ratio of the sum of the outgoing fluxes at the open ends to the
integrated wave energy inside the sample,

��,z� = �vE
1 + exp�− 2�L − 2z��

2 exp�2z� − exp�− 2�L − 2z�� − 1�/2
. �3�

The coupling factor � reflects the reduction in the transmit-
ted flux due to the angular spread about the normal to the
interface, as well as the angular average of internal reflection
at the interface, R, and by the character of transport near the
boundary. The transmitted intensity is then

�I�t�� =
1

2L
�

2/L

�

d�
0

L/2

dzP��T�2 exp�− �t� . �4�

The factor T�� /2�2exp�−�t� is the square of the Fourier
transform of a Lorentzian line in the field spectrum with
linewidth � /2�. Internal reflection does not change T appre-
ciably since the intensity throughout the sample is enhanced
by the same factor that inhibits transmission at the interface.

IV. RESULTS AND DISCUSSIONS

The early-time behavior of the measured �I�t�� in the 61-
cm-long sample is shown as the black curve in Fig. 3�a�. In

order to compare this result with SCLT, we fit �I�t�� of SCLT
to the measured data shown in Fig. 3�a� to determine the
values of the transport mean free path � and the internal
reflection coefficient R, which are the only fitting parameters.
The fit gives ��2.0 cm and R�0.64, and therefore DB
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FIG. 3. �Color online� �a� Fit of SCLT �dashed red curve� at
early times to the average intensity response �solid black curve� to a
Gaussian pulse with ��=15 MHz in the L=61 cm sample and the
result of classical diffusion theory �dotted blue curve�; �b� semiloga-
rithmic plot of �I�t�� including longer times; the measured and cal-
culated decay rates ��t� for the samples with �c� L=61 cm and �d�
L=90 cm. In �a� and �b�, the curves are normalized to the peak
value.
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=7.9 cm2 /ns, z0=6.1 cm, and �D=70.4 ns. The fit is shown
as the dashed red curve in Fig. 3�a�. Excellent agreement is
found between SCLT and experiment for t	4�D. To com-
pare the long-time behavior, we present these results in a
semilogarithmic plot in Fig. 3�b�. In Figs. 3�a� and 3�b�, we
also plot the result of classical diffusion theory41 �dotted blue
curve�, by using the values of R and DB obtained from the fit
above, in which localization effects are absent. The surpris-
ing agreement between classical diffusion, SCLT, and mea-
surement for t	2�D suggests that the renormalization of the
diffusion coefficient does not change significantly for early
times following the rapid rise of the transmitted pulse, even
for the localized waves studied here. Renormalization of the
diffusion constant becomes noticeable for t
2�D.

The applicability of classical diffusion theory at early
times can also be seen in the excellent agreement between
the measured and calculated peak arrival times tp for six
sample lengths shown in Fig. 4. We believe that diffusion
theory is applicable to the early-time pulse transmission in
localized samples because the following inequalities are sat-
isfied in our measurements: �D	�H	�Th, where �D is a mea-
sure of the peak arrival time of a pulse diffusing through a
sample, tp��D. The first inequality, �D	�H, guarantees that
wave propagation is diffusive for early times. Since �H is the
time that would be required for a wave to visit each coher-
ence volume of the sample, the probability of a wave revis-
iting a coherence volume through which it has passed is less
than unity for �D	 t	�H, and wave interference does not
strongly modify average transport. As a result, propagation is
nearly diffusive. But since �H	�Th, g	1, and var�sa�

2 /3, waves are localized in the sample. Thus, our localized
samples are in the region of 1 /�2	g	1. For example, for
the L=61 cm sample we have �D=70.4 ns, �H=528 ns, and
�Th=695 ns, whereas for the L=90 cm sample �D
=136.3 ns, �H=780 ns, and �Th=1346 ns. The values of �H
are obtained from measurements of the average spacing be-
tween modes in a closed sample.37

It should be pointed out that in the quasi-1D system stud-
ied here, the radius of the tube is comparable to �. This is
different from the three-dimensional �3D� system studied in
Ref. 34, in which the wave was not confined in the transverse

plane. We also note that the values of tp shown in Fig. 4 do
not extrapolate to zero as L approaches zero. This is because
the intensity at the sample interface with air does not vanish.
Rather the intensity in diffusive samples follows a diffusion
equation in the bulk of the sample with a boundary condition
that the intensity extrapolates to zero a distance z0 beyond
the sample. In our samples, we find tp=0.89�L+2z0�2 /�2DB
and tp extrapolates to zero at L=−2z0.

Since the SCLT includes localization effects, it gives a
decay in �I�t�� which is slower than exponential, as seen in
Fig. 3�b�. However, for t
4�D, SCLT does not fully account
for the localization effects and gives a faster decay rate than
is measured. To show this more clearly, we plot both the
measured and calculated decay rates ��t� in Figs. 3�c� and
3�d� for the samples with L=61 cm and L=90 cm. The peak
positions shown in Figs. 3�a� and 3�b� correspond to ��t�
=0 in Figs. 3�c� and 3�d�, respectively. Also plotted in Figs.
3�c� and 3�d� are the results of the classical diffusion theory
�dotted blue lines�. It is also seen that for a given delay time,
a larger deviation is found for the L=61 cm sample than for
the L=90 cm sample which is deeper in the localization re-
gime. This is because the average number of times a path
returns to a coherence volume is larger in the shorter sample
for a given time delay, since the path lengths within the
samples are identical, while the sample volume is smaller for
the shorter sample. Thus the number of closed loops and the
consequent renormalization are greater in the shorter sample.
A slower decay in both samples suggests that more extended
quasimodes, which may exhibit diffusionlike behavior and
may be adequately described by SCLT, have largely decayed,
so that the wave is transmitted increasingly via long-lived
localized modes. Such isolated modes, as well as overlap-
ping modes, are observed in the intensity spectra shown in
Fig. 1�a�. Thus, it would be interesting to compare the mea-
sured �I�t�� at long times with the DSPS model. Since the
DSPS model is a 1D model, we can check the validity of this
model by comparing to results of 1D simulations.

The 1D systems considered here are random samples of
L /a layers of equal thickness a, embedded in air with �=1
and wave speed c, the speed of light. The dielectric constant
in each layer is a random number between 0.3 and 1.7,
drawn from a uniform distribution. Thus, the random me-
dium has averaged dielectric constant �̄=1, which is equal to
the dielectric constant of the surrounding medium. This as-
sures that internal reflections at the sample boundaries do not
introduce effects above and beyond scattering within the
sample.42 The average localization length is calculated

through �̄=−L / �ln T�, where the static transmission coeffi-
cient T is calculated by using transfer-matrix method43 and
averaging over 1000 configurations. The calculated spectrum

of �̄ in terms of a dimensionless angular frequency is shown
in Fig. 5. In our dynamic study, we use a Gaussian incident
pulse with carrier frequency �0=1.65c /a and width �
=0.14c /a, and the time-varying intensity just beyond the
output surface is calculated. Over the width of the incident

spectrum, 1.50c /a	�	1.80c /a, the localization length �̄
=22a is relatively unchanged, as seen in the inset of Fig. 5.
�I�t�� is obtained by averaging over 10 000 configurations.
Since R=0 and no angle average is necessary, we take �
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t p
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s
)
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50

100

FIG. 4. �Color online� Comparison of the measured delay of the
intensity peak in alumina samples �circles� from the peak of an
incident Gaussian pulse of ����D

−1 with the prediction of diffusion
theory, tp=0.89�D �solid red curve�.
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=1. Further, we assume vE=c for the effective medium ve-
locity, since there are no resonances with individual elements
of the sample over the pulse bandwidth.

In choosing the values of L in 1D simulations, we take
advantage of the scaling property of the DSPS model, which
allows us to compare the decay rates ��t� of quasi-1D sys-

tems to 1D systems with the same values of L / �̄. This is

done by introducing the dimensionless time �� �̄ /�vE and
recasting �t of Eq. �4� into �����t /��, where the dimension-

less decay rate ��� �̃ can be written �see Eq. �3�� in the
form

�̃�̃, z̃;L/�̄� = ̃
1 + exp�− 2̃�L/�̄��1 − 2z̃��

„2 exp2�z̃̃� − exp�− 2̃�L/�̄��1 − 2z̃�� − 1�…
,

�5�

where ̃� / ̄ and z̃�z /L. It is clearly seen from Eq. �5�
that the dimensionless decay rate �̃, and hence �̃�t /�����,
becomes scaling functions of  / ̄ and z /L for any fixed

value of L / �̄, independent of whether the system is 1D or
quasi-1D. Thus, Eq. �5� allows us to compare the decay rates

�̃ of quasi-1D systems with 1D systems, as long as they

have the same value of L / �̄. The comparison does not de-
pend on the detailed characteristics of the sample such as the
layer thickness or the nature of randomness.

1D simulations were carried out for two sample lengths
which satisfy the scaling condition that L /22a=61 /30 and

90/30. Here we have used the measured value of �̄=30 cm
obtained from var�sab�, as shown in Appendix A. The results

of �̃���� are plotted as functions of t /� in Figs. 6�a� and
6�b�. Figure 6 shows that our 1D simulation results are in
good agreement with the predictions of DSPS model at long
times. This demonstrates the validity of DSPS and of the
scaling arguments we have used. For a different 1D system,
the localization length would change to a value different

from �̄=22a, but the value of � used in the dimensionless
time would also change, so that wave dynamics in the scaled
DSPS theory in units of � would remain the same.

To compare these results with the decay rates of the

quasi-1D systems, we fit ��t� obtained from Eq. �4� with �̄
=30 cm to the measured decay rates in Figs. 3�c� and 3�d� at
long times, to find ��0.05. This value depends only weakly

upon the value of �̄; it does not change even when �̄ is varied

by 10%. The dimensionless decay rates �̃ are plotted as
functions of t /� in Figs. 6�a� and 6�b�. The quasi-1D and 1D
results merge at long times for both the 61- and the 90-cm-
long samples.

The small coupling factor ��=0.05� at the boundary
found in the quasi-1D system is at least in part a conse-
quence of strong reflection of waves propagating off the nor-
mal to the surface in quasi-1D samples. This is reminiscent
of total internal reflection beyond the critical angle in
samples with smooth interfaces. The rise time of transmis-
sion in the DSPS model is essentially the rise time of local-
ized modes, which is the rise time of the incident pulse. Thus
the slower rise observed in the experiment indicates the
dominance of overlapping �as opposed to isolated� modes. At
long times, t
�H �or t /�
�H /��, however, the agreement of
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FIG. 5. Localization length of a 1D system of layers of thick-
ness a with random values of � plotted versus normalized angular
frequency, as determined from the calculated static transmission
coefficient.
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FIG. 6. �Color online� Decay rates in samples with �a� L
=61 cm and �b� 90 cm are compared to predictions of DSPS model
�dotted red curve�. �D=70.4 ns and �H=528 ns for L=61 cm, and
�D=136.3 ns and �H=780 ns for L=90 cm. The comparison to 1D
simulations �dashed green curve� is made by using the dimension-

less decay rate �̃=��, plotted as a function of the dimensionless

time t /�, where �= �̄ /�vE.
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the DSPS model with measurements indicates that the energy
within the sample is stored in long-lived localized modes. It
should be mentioned that what we have considered here is
the decay rate, not �I�t��, which can only be described if
overlapping states are included in the model. Since the DSPS
model does not include necklace states, it cannot give a com-
plete description of �I�t��, particularly at early times. We note
further that though states in finite samples are not strictly
localized since there is some degree of hybridization of reso-
nances within the sample, states may still be localized in an
effective sense with only weak admixtures of neighboring
states.

The longer delay of the peak in �� and the faster decay
rate after the peak found in 1D simulations relative to mea-
surements in the quasi-1D samples, seen in Fig. 6, indicate
that overlapping quasiextended modes23–25 which produce
diffusionlike behavior at early times are more prominent in
one dimension than in quasi-one-dimension. Since the local-
ization length is approximately equal to the transport mean
free path in random 1D samples, there does not exist a clear
region of diffusion in one dimension. The larger decay rate
found in the simulations at early times is due to the overlap
of modes, which results in necklace states rather than in strict
diffusion. At longer times, most of the energy stored in rela-
tively short-lived necklace states has leaked out and what
remains is the energy stored in spectrally isolated, long-lived
localized modes. As a result, the decay rate predicted by the
DSPS model accurately describes transmission in 1D and
quasi-1D samples at long times.

V. CONCLUSIONS

In conclusion, we have observed the evolution in time of
the nature of pulsed transmission of localized waves in
quasi-1D samples. At short times, t	2�D, propagation is de-
scribed by Boltzmann diffusion and the renormalization of
diffusion constant is insignificant. At intermediate times,
2�D	 t	4�D, transport is described in terms of a position-
and frequency-dependent renormalized diffusion coefficient,
while at later times, t
�H, energy flows predominantly from
isolated localized modes and the decay rate can be described
by the DSPS model, which coincides with results for 1D
simulations once the corresponding samples are appropri-
ately scaled. The evolving dynamics mirrors a change in the
modal distribution of energy with time. At early time, the
transmitted flux is primarily associated with short-lived over-
lapping modes, while at longer times, transmission derives
from long-lived localized modes. As a consequence, trans-
port for localized waves may be diffusive at early times,
while transport even for diffusive waves may be suppressed
at long times. This work shows that a unified theoretical
description of pulsed propagation of localized waves will
need to incorporate a full description of mode overlap, which
would include the distribution of spacings and widths of
quasimodes of the random medium as a function of the
average overlap parameter, �=�� /��.
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APPENDIX A: VARIANCE OF THE TOTAL
TRANSMISSION

It can be shown that the variance of normalized transmis-
sion, var�sa�, can be expressed in terms of a single parameter,

�=L / �̄, and therefore can be used to determine the localiza-

tion length �̄ of a random sample.44 In the context of random
matrix theory of quantum transport, the average and the vari-
ance of the total transmission Ta are given, respectively, by

�Ta� = N−1�T� and var�Ta� = N−2�var�T� + �tr�t†t�2�� ,

�A1�

where T=tr�t†t� is the conductance �transmittance�. Now we
make use of an identity that can be derived from DMPK
equation �see, for example, Refs. 45 and 46�,

�

��
�T� = − �T2� − �tr�t†t�2� . �A2�

Combining Eqs. �A1� and �A2�, we find

var�sa� = − �T�−2 �

��
�T� − 1. �A3�

The average T in the orthogonal ensemble was computed by
Mirlin et al.,47 as follows:

�T� =
�

4
�

0

�

d� tanh2���/2��1 + �2�−1P�1,�,��T�1,�,�,��

+ 8 �
l=3,5,. . .

� �
0

�

d�1�
0

�

d�2l�l2 − 1��1 tanh���1/2��2

�tanh���2/2�P�l,�1,�2�T�l,�1,�2,��

��
�,�1,�2=�1

�− 1 + �l + i�1�1 + i�2�2�−1, �A4�

where

P�l,�1,�2� = l2 + �1
2 + �2

2 + 1,

T�l,�1,�2,�� = e−P�l,�1,�2��/4.

The effects of localization and absorption are intertwined in
steady-state measurements. In order to obtain the values of
var�sa� that would be measured in the absence of absorption,
the field spectra are Fourier transformed to give the response
to a narrow Gaussian pulse in the time domain. To compen-
sate for losses due to absorption, the time-dependent field is
multiplied by exp�t /2�a�, where t is the time delay from the
incident pulse and 1 /�a=0.0064 ns−1 is the absorption rate
�see Fig. 2�. This new field is transformed back to the fre-
quency domain. Intensity spectra and the variance of inten-
sity are then computed. The values of var�sa� found from

var�sa�= �var�sab�−1� /2 and �̄ determined from Eq. �A3� for
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samples of lengths 29, 40, 50, 61, and 90 cm are listed in
Table I. Notice that the accuracy of var�sa� depends on the
dynamic range of the time-dependent field, which decreases
with increasing L since more of the transmitted signal is lost
due to absorption in longer samples. We expect therefore that
the values of var�sa� are smaller than would be obtained in a
sample without absorption and that the error increases with

L. This could explain a systematic increase in �̄ with increas-
ing L, seen in Table I. We conclude that the best estimate is

�̄=30 cm.

APPENDIX B: DERIVATIONS OF EQS. (1) and (2)

To derive Eqs. �1� and �2�, we first use the known result of
self-consistent localization theory for a 3D infinite medium
derived by Kirkpatrick.48 Equation �4.8b� of Ref. 48 leads to
the following self-consistent equation for the renormalized
diffusion constant:

1

D���
=

1

DB
+

3

4�2k3� dq�
1

− i� + D���q2 , �B1�

where  is the imaginary part of the self-energy. By using the
relations DB=vE� /3 and �E�=k /�, we can rewrite Eq. �B1�
as

1

D���
=

1

DB

1 +

vE

4�2k2� dq�
1

− i� + D���q2� , �B2�

or

1

D���
=

1

DB

1 +

2�vE

k2 G3D�r�,r�;��� , �B3�

where G3D�r� ,r� ;�� is the diagonal element of the following
Green’s function for the diffusion equation:

G3D�r�,r��;�� = � 1

2�
�3� dq�

eiq� ·�r�−r���

− i� + D���q2 . �B4�

Moreover G3D�r� ,r�� ;�� satisfies

D����2G3D�r�,r��;�� + i�G3D�r�,r��;�� = − ��r� − r��� .

�B5�

For quasi-1D samples studied here, we ignore weak localiza-
tion effects in the transverse direction because the radius of

the tube is comparable to �. In this case, the Green’s function
does not vary in the transverse direction and depends only
upon z. For a tube of finite length, the renormalized diffusion
constant also becomes a function of z, i.e., D�z ,��.29 From
the above considerations and Eq. �B5�, the Green’s function
of a quasi-1D system satisfies the following generalized dif-
fusion equation:

�z�D�z,���zGQ1D�z,z�;��� + i�GQ1D�z,z�;��

= −
1

A
��z − z�� , �B6�

where A=�R2 is the cross-sectional area of the waveguide.
Comparing Eq. �B6� with Eq. �2�, we find GQ1D�z ,z� ;��
= �1 /A�G�z ,z� ;��, where G denotes the Green’s function for
1D systems, i.e., Eq. �2�. To find the self-consistent equation
for quasi-1D systems, we replace G3D�r� ,r� ;�� in Eq. �B3� by
GQ1D�z ,z ;��= �1 /�R2�G�z ,z ;�� and D��� by D�z ,��,
yielding

1

D�z,��
=

1

DB

1 +

2vE

�kR�2G�z,z;��� . �B7�

Equation �1� is finally obtained by using the relation N
= �kR�2 /4 for the channel number of a cylindrical waveguide
in Eq. �B7�.

Below, we give an alternative derivation of Eq. �B3� by
using the result of Sadakata,49 which is obtained from the
self-consistent localization theory for tight-binding electrons.
Equation �2.14� of Ref. 49 gives the following expression for
the renormalization of conductivity:

1

����
=

1

�0

1 +

1

�NF
�

q�

1

D���q2 − i�� , �B8�

where NF is the density of states �DOS� per site. By using the
Einstein relation that relates the conductivity to the diffusion
constant, Eq. �B8� can be rewritten as

1

D���
=

1

DB

1 +

1

��NF/a3�
1

a3�
q�

1

− i� + D���q2� ,

�B9�

where a is the lattice constant and NF /a3 is the DOS per unit
volume. For scalar waves in three dimensions, the DOS per
unit volume has the form �3D=k2 / �2�2v�.50 After replacing
NF /a3 by �3D and the summation �1 /a3��q� by an integral
�1 / �2��3��dq� , Eq. �B9� becomes

1

D���
=

1

DB

1 +

2�v
k2 G3D�r�,r�;��� . �B10�

Equation �B10� has the same form as Eq. �B3� if the phase
velocity v equals the energy transport velocity vE, which is
true in the long-wavelength limit.

TABLE I. Values of var�sa�, L / �̄, and �̄ in alumina samples, as
found from Eq. �A3�.

L �cm� var�sa� L / �̄ �̄ �cm�

29 1.01 0.985 29.4

40 1.84 1.40 28.6

50 2.28 1.63 30.7

61 2.83 1.83 33.4

90 6.36 2.70 33.3
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