
Going beyond the dipole approximation to improve the refinement of magnetic structures
by neutron diffraction

M. Rotter* and A. T. Boothroyd
Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom

�Received 22 December 2008; revised manuscript received 9 March 2009; published 7 April 2009�

We have made an analysis of neutron-diffraction data for a number of rare-earth compounds to assess the use
of the dipole approximation in magnetic structure refinements. We present two examples. In the case of
CePd2Si2, our analysis confirms the published magnetic structure, but we find that use of the “exact” magnetic
form factor of Ce3+ gives a significantly improved description of the data. For NdBa2Cu3O6+x, however, we
find that incorrect conclusions have previously been drawn about the magnetic structure through the use of the
dipole approximation. We have extended the magnetic modeling suite MCPHASE to enable a straightforward
calculation of the higher-order anisotropic terms in the form factor of rare-earth-based systems.
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Neutron diffraction is the standard method for determin-
ing magnetic structures. Magnetic neutron diffraction arises
from the interaction between the magnetic moment of the
neutron and magnetic fields in the sample associated with
orbital currents and intrinsic spin of unpaired electrons. The
distribution of scattered neutrons is modulated by a form
factor, which for elastic scattering is the Fourier transform of
the magnetization. Most state-of-the-art magnetic structure
refinement procedures employ the dipole approximation for
the form factor, which assumes that the spatial distribution of
magnetization in an atom or ion is isotropic. This approxi-
mation is strictly valid only in the limit of small scattering
vectors, although for many problems it is accurate enough to
enable the magnetic structure to be solved. However, with
the best neutron-diffraction instrumentation it is possible to
measure diffraction intensities with sufficient precision that
the dipole approximation is not always satisfactory. For ex-
ample, in recent studies on Ce-based compounds it has been
shown that the modeling of diffraction data can be improved
by including higher-order corrections to the dipole
approximation.1–3

The purpose of this Rapid Communication is twofold.
First, we wish to demonstrate the importance of going be-
yond the dipole approximation in the analysis of magnetic
neutron-diffraction data. The focus here is on rare-earth ions,
but corrections to the dipole approximation are expected to
be even larger for transition metals.4,5 Second, we report the
incorporation of the exact form factor into the MCPHASE

modeling suite6–10 so that rare-earth magnetic structure cal-
culations similar to those presented here can be performed
for other compounds.

In the standard formalism11 the elastic magnetic neutron-
scattering cross section �d� /d��mag is proportional to the
square of the magnetic structure factor FM,

� d�

d�
�

mag
� �FM�2, �1�

where

FM = �
d

�M̂�d�Q�	exp�iQ · Rd�exp�− Wd� �2�

and

�M̂�d�Q�	 = Q � 
�M̂d�Q�	 � Q�/Q2. �3�

The summation is over the ions indexed by d in the magnetic
unit cell, with displacements Rd from the origin. The scatter-

ing vector is denoted by Q, with Q= �Q�, M̂d�Q� is the Fou-
rier transform of the magnetization operator and exp�−Wd� is
the Debye-Waller factor.

In the dipole approximation, �M̂d�Q�	 may be separated
into a product of a magnetic form factor fdip�Q�, which is a
scalar function of Q, and the thermal expectation value of the
magnetic moment �m̂d	 of the ion,

�M̂d�Q�	 = fdip�Q��m̂d	 . �4�

For rare-earth ions the dipole form factor is given by

fdip�Q� = �j0�Q�	 +
2 − gJ

gJ
�j2�Q�	 , �5�

where gJ denotes the Landé factor of the rare-earth ion. Ana-
lytical approximations for the expectation values of the
spherical Bessel functions �jl�Q�	 �for l=0,2 ,4 ,6� are avail-
able for many ions and have been tabulated.12 Many standard
refinement codes for magnetic structures make use of these
tables and compute the magnetic form factor by the dipole
approximation.

In order to go beyond the dipole approximation one must
include higher-order multipoles in the expansion of the spin
density and orbital current density. This was attempted by
Trammell,13 and the theory was presented in a more compact
form using Racah tensors by Johnston,14 and others.15 The
resulting form factor is anisotropic and includes the expecta-
tion values �j4�Q�	 and �j6�Q�	 in addition to �j0�Q�	 and
�j2�Q�	.

The calculation of the form factor requires diagonaliza-
tion of the appropriate Hamiltonian, which typically includes
the crystalline electric field, magnetic interactions and any
external field present, and calculation of the matrix elements

of M̂�Q� �we omit the index d in what follows for brevity�. A
natural basis for the rare-earth ions is the atomic wave func-
tions �SLJM	, where M =−J ,−J+1, . . .J. The formulae for
the matrix elements are rather intimidating, but Lovesey11

presented them in a compact form which we reproduce
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below.16 To be consistent with Ref. 11 we write the matrix elements in terms of the scattering operator

Q̂��−M̂��Q� / �2�B� �with �=x ,y ,z and �B the Bohr magneton� as follows:

�SLJM�Q̂x�SLJM�	 =
4�

2 �
K�,Q�

Z�K��
K�

P�K�,Q���YK�−1,Q�+1�Q̃��K� − Q���K� − Q� − 1�

− YK�−1,Q�−1�Q̃��K� + Q���K� + Q� − 1�� , �6�

�SLJM�Q̂y�SLJM�	 =
− i4�

2 �
K�,Q�

Z�K��
K�

P�K�,Q���YK�−1,Q�+1�Q̃��K� − Q���K� − Q� − 1�

+ YK�−1,Q�−1�Q̃��K� + Q���K� + Q� − 1�� , �7�

�SLJM�Q̂z�SLJM�	 = 4� �
K�,Q�

Z�K��
K�

P�K�,Q��YK�−1,Q��Q̃��K� − Q���K� + Q�� , �8�

where

Z�K�� = cK�−1�jK�−1�Q�	 + cK�+1�jK�+1�Q�	 �9�

P�K�,Q�� = �− 1�J−M�
� K� J J

− Q� M� − M
�

�K� J J

0 J − J
� . �10�

The coefficients cK� �K�=1,3 ,5 ,7� have been tabulated for
the different rare-earth ions �see Table 11.1 of Ref. 11�. The

Yl,m�Q̃� are spherical harmonics evaluated for the direction
of the scattering vector. The factor P�K� ,Q�� is defined in
terms of 3j symbols, which restrict Q�=M�−M.

As a first example of this approach we will analyze mag-
netic diffraction data of the heavy fermion superconductor
CePd2Si2 �Néel temperature TN�10 K�.17 To go beyond the
dipole approximation we need the eigenstates of each mag-
netic ion. The most straightforward method to obtain these is
to fit a mean field on each site in the magnetic unit cell so as
to stabilize the observed magnetic structure. Using an ad-
equate parametrization of the crystal field and these mean
fields one can calculate the eigenstates in the �SLJM	 basis
and hence compute the scattering cross section from Eqs.
�1�–�10�. However, more insight can be obtained if the mean
fields are calculated directly from a model based on the fun-
damental magnetic interactions. We follow this second ap-
proach for CePd2Si2.

The formalism is based on the following Hamiltonian H
for rare-earth systems:

H = �
s,l,m

Bl
mOl

m�Js� −
1

2 �
ss�

�,�=x,y,z

J���ss��J�
s J�

s�. �11�

The first term describes the crystal field acting on the ion at
site s in terms of Stevens operators Ol

m, and the second term
is the magnetic two-ion interaction. The crystal-field param-
eters Bl

m and exchange interactions J�ss�� were taken from
Refs. 18 and 19. In addition to the isotropic exchange inter-
action J���ss��=J�ss��	�� �here 	�� is the Kronecker sym-
bol�, some sort of anisotropy is needed in order to stabilize

the �experimentally observed� longitudinal modulation of the
antiferromagnetic spin density wave with respect to a trans-
versal one. It turns out that the classical dipole �CD� aniso-
tropy,

J��
CD�ss�� = �gJ�B�2

3�Rs
� − Rs�

� ��Rs
� − Rs�

� � − 	���Rs − Rs��
2

�Rs − Rs��
5 ,

�12�

would stabilize a transversal modulation. However, a classi-
cal dipole interaction �12� with reversed sign, i.e.,

J���ss�� = J�ss��	�� − J��
CD�ss�� , �13�

succeeds in reproducing the reported longitudinally modu-
lated magnetic structure. Note that this procedure, though
handy for our purpose, does not provide an explanation of
the origin of the anisotropy in this system. Based on this
model we found a mean field of 
16.7 T on the two Ce sites
of the antiferromagnetic unit cell.

Using this mean field in combination with the crystal field
we obtained the single-ion eigenvalues and eigenstates and
hence evaluated the magnetic neutron-diffraction intensity
via Eqs. �1�–�10�. Figure 1 compares the magnetic Bragg-
peak intensities calculated this way with those obtained via
the dipole approximation. Deviations between the two meth-
ods are large �typically 20%–50%� at higher scattering vec-
tors. Using the exact form factor we obtain a significant im-
provement in the description of the experimental intensities.
The improvement is reflected in the standard goodness-of-fit
parameters Rp �Ref. 20� and �2.21 The dipole approximation
gives Rp=15.6 and �2=27.2, whereas going beyond the di-
pole approximation we obtain Rp=8.4 and �2=7.7. Note that
magnetic intensities were scaled by a common factor in order
to obtain a reasonable fit. This shows that the moment cal-
culated on the basis of our model Hamiltonian comes out
about 40% too large. In an alternative approach we took the
mean field as a fitting parameter and obtained a smaller value
for the mean field �corresponding to a smaller magnetic mo-
ment�. This approach results in a slightly higher Rp factor but
will not substantially alter the conclusions.

The case of CePd2Si2 shows that going beyond the dipole
approximation significantly improves the description of ex-
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perimental magnetic neutron-diffraction intensities. In the
next example we will demonstrate that use of the dipole
approximation may even lead to incorrect conclusions about
the magnetic structure.

In Ref. 22 a neutron-diffraction study of magnetic order-
ing in NdBa2Cu3O6+x was reported. Diffraction data were
collected from the single-crystal samples and the intensities
fitted to magnetic structure models in which the dipole form
factor was used. For a crystal of superconducting
NdBa2Cu3O6.97 the best description of the experimental data
was obtained with a model for the antiferromagnetic struc-
ture in which the moments point not along the c axis but
tilted by �12° from the c axis �see Fig. 2�.

Although puzzling, a tilted moment which breaks the

crystal symmetry is not totally implausible. For example, an
earlier study of the magnetic order in PrBa2Cu3O6+x �Ref.
23� had revealed just such a tilt which originated from a
pseudodipolar Pr-Cu interaction coupling the magnetic or-
dering on the Pr and Cu sublattices. However, superconduct-
ing NdBa2Cu3O6.97 has no Cu magnetic order so the apparent
tilting of the Nd moments was a surprise.

Here we repeat the magnetic structure refinement using
the same data but calculating the diffraction intensities with
the anisotropic form factor of Nd3+. The ground state of the
Nd3+ ion was determined by fitting crystal-field spectra24–26

and susceptibility data27,28 simultaneously using a full inter-
mediate coupling calculation including mixing of all levels
up to 2 eV.29 Crystal-field parameters derived for
PrBa2Cu3O6+x �Ref. 30� scaled to Nd3+ were taken as starting
values for the fit. Only data for tetragonal �nonsuperconduct-
ing� NdBa2Cu3O6+x were included in this analysis. The best-
fit parameters from this analysis were converted into the co-
efficients of the Stevens operators required in Eq. �11�. The
values so obtained are B2

0=−236.9 �eV, B4
0= +16.76 �eV,

B4
4=−32.606 �eV, B6

0=−0.237 �eV, and B6
4=−6.324 �eV.

The neglect of the four additional orthorhombic crystal-field
parameters �B2

2, B4
2, B6

2, and B6
6� required to describe com-

pletely the crystal field in orthorhombic NdBa2Cu3O6.97 has
only very small influence on the shape of the 4f magnetiza-
tion density. This was checked by repeating the form factor
calculations with estimated orthorhombic crystal-field pa-
rameters derived from those of PrBa2Cu3O6+x by scaling.

Figure 3 shows the anisotropic charge density at T=2 K
resulting from the crystal-field interaction alone. In order to
stabilize magnetic order it is necessary to introduce an anti-
ferromagnetic interaction between the two sublattices. For
our calculation we used J�ss��=−5 �eV corresponding to a
mean field of 1.8 T on each Nd3+ ion �at T=0.3 K�. This
interaction, together with the crystal field, leads to a mag-
netic structure with moments parallel to c for all tempera-
tures T�TN=0.62 K. In order to simulate the canted mag-
netic structure shown in Fig. 2 we introduced in addition to
J�ss�� a biquadratic interaction −1 /2�ss�K�ss���JsJs��

2 with
K�ss��=11 �eV.

In Table I we list the measured magnetic neutron-
diffraction intensities for NdBa2Cu3O6.97 together with the
fitted intensities calculated first by the dipole approximation
and second with the full anisotropic form factor. In the cal-
culation with the dipole form factor the best fit is achieved
with the Nd3+ moment tilted 12° away from the c axis, as
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FIG. 1. �Color online� Magnetic Bragg-peak intensities for
CePd2Si2 calculated �i� in the dipole approximation and �ii� going
beyond the dipole approximation �upper figure�. In both cases the
moments were assumed to be aligned parallel to the �110� direction.
The lower figure shows deviations between the exact calculation
and dipole approximation expressed as R=100��FM

exact�2
− �FM

dip�2� / �FM
dip�2 �bars� and comparison with experimental data ob-

tained on a single crystal at T=1.3 K �Ref. 17� plotted as
R=100��FM

exp�2− �FM
dip�2� / �FM

dip�2 �symbols�.

θ
c

ba

FIG. 2. Models for the magnetic structure of NdBa2Cu3O6.97.
Only the Nd moments are shown. A magnetic structure refinement
with the dipole form factor suggests a tilt of the spin axis from the
c direction of =12° �right�. With the exact anisotropic form factor
a better fit is achieved with moments parallel to c �left�.

a
b

c

FIG. 3. �Color online� 4f charge density of Nd3+ calculated from
the action of the crystal field in NdBa2Cu3O6.97 at T=2 K.
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found in Ref. 22. However, when the anisotropic form factor
is employed the best-fit model has the moments parallel to
the c axis. Indeed, the Rp value for this fit is lower than that
for the published magnetic structure �with a tilted moment�.
We conclude, therefore, that the most probable direction of
the ordered Nd3+ moment is along the c axis. Apart from
solving a longstanding puzzle, this exercise has illustrated
how the use of the dipole approximation for calculating mag-
netic scattering can in some cases lead to an incorrect mag-
netic structure refinement.

We have performed similar calculations for a series of
other rare-earth-based antiferromagnets including CePd2Ge2
and HoF3 and compared these to available experimental data.
The results indicate that the modeling of experimental mag-

netic neutron-diffraction data can be improved significantly
by employing the anisotropic multipolar magnetic form fac-
tor. Moreover, as we found here in the case of
NdBa2Cu3O6.97, using the dipole approximation may lead to
an incorrect magnetic structure. Thus, we are convinced that
state-of-the-art magnetic structure analysis should go beyond
the dipole approximation. In order to make such refinements
accessible to a wider scientific community we have adapted
the magnetic modeling suite MCPHASE �Ref. 6� to incorporate
the anisotropic form factor.
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and for providing us with the single-crystal data of CePd2Si2.
This work was supported by the Engineering and Physical
Sciences Research Council of Great Britain.
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h k l
�Q�

�1 /Å�
Iobs
�obs

Ref. 22
Imag
dip

=0
Imag
dip

=12°
Imag

=0
Imag

=12°

0.5 0.5 0.5 1.1749 115
4 117 110 111 104
0.5 0.5 1.5 1.3981 84
3 81 78 78 75
0.5 0.5 2.5 1.7617 50
1 49 49 49 49
0.5 0.5 3.5 2.1969 29
1 30 32 32 33
0.5 0.5 4.5 2.6690 22
2 19 21 21 23
0.5 0.5 5.5 3.1616 15
1 12 15 15 17
0.5 0.5 6.5 3.6663 12
1 8 11 10 13
1.5 1.5 0.5 3.4424 77
8 87 82 78 74
1.5 1.5 1.5 3.5248 65
7 82 77 74 70
1.5 1.5 2.5 3.6842 59
5 73 68 68 64
1.5 1.5 3.5 3.9110 51
5 60 58 60 57

�2 4.16 2.07 2.07 3.67
Rp 11.4 8.48 7.69 8.37
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