PHYSICAL REVIEW B 79, 134526 (2009)

Vortex-vortex interaction in thin superconducting films

Ernst Helmut Brandt
Max-Planck-Institut fiir Metallforschung, D-70506 Stuttgart, Germany
(Received 30 January 2009; revised manuscript received 5 April 2009; published 29 April 2009)

The properties of vortices in superconducting thin films are revisited. The interaction between two Pearl
vortices in an infinite film is approximated at all distances by a simple expression. The interaction of a vortex

with a regular lattice of real or image vortices is given. The two spring constants are calculated so that one
vortex in the vortex lattice feels when the surrounding vortices are rigidly pinned or are free. The modification
of these London results by the finite size of real films is obtained. In finite films, the interaction force between
two vortices is not a central force but depends on both vortex positions, not only on their distance. At the film
edges the interaction energy is zero and the interaction force is peaked. Even far from the edges the vortex
interaction considerably deviates from the Pearl result and is always smaller than it.
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I. INTRODUCTION

In this note the problem of vortices in thin superconduct-
ing films is revisited. Useful formulas for the interaction be-
tween vortices in thin superconducting films within London
theory are given when the film thickness d is smaller than the
London penetration depth . In such thin films the vortex
interaction is mediated mainly by the magnetic stray field,
and the screening of the in-plane supercurrents is governed
by the effective two-dimensional (2D) penetration depth A
=\%/d>\>d. The current density j(x,y,z) in thin films is
nearly independent of the z coordinate (perpendicular to the
film) and the sheet current in the film is thus J(x,y)
= ‘f/[lz/z'(x,y,z)dz = jd. The sheet current of a vortex in such a
thin film and the interaction force between two vortices was
calculated first by Judea Pearl! for an infinitely large film.
For infinite films of arbitrary thickness the Pearl-London vor-
tex and the vortex-vortex interaction were calculated
analytically,>* and the Ginzburg-Landau (GL) theory for pe-
riodic vortex lattices in such films with arbitrary GL param-

eter « in the entire range of inductions B was computed in
Ref. 5.

For superconductors of finite size, recently there have
been numerous computations based on the static or time-
dependent GL equations for small (mesoscopic) specimens
containing a few vortices, also giant vortices with several
flux quanta, and considering the equilibrium state or the pen-
etration, exit, nucleation, and annihilation of vortices. For
example, superconducting disks are considered in Refs.
6-12, and squares and other shapes are considered in Refs.
13-16; also considered are squares containing magnetic
dots,!”-!® antidots, or blind holes!>!" as pinning centers, and
disks in inhomogeneous magnetic field.?° When the 2D pen-
etration depth A=\?/d is much larger than the film size, the
energy of the magnetic stray field outside the specimen is
expected to be negligible and analytical approximations can
be made.?! Further work computes the properties of infinitely
long straight vortices in semi-infinite’??> or cylindrical®
samples and argues that these results apply also to thin films
in a perpendicular field in cases when the magnetic stray-
field energy outside the film may be disregarded.

The present paper focuses on situations when the stray-
field energy is not negligible, e.g., since A is smaller than the
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film size, and it is restricted to the London limit in which the
superconducting coherence length ¢ and vortex core radius
r.~ & are much smaller than the film size and A. In Sec. II
we first consider the limit of ideal screening (A=0) when the
sheet current and energy of vortices are completely deter-
mined by the stray field, and can be derived easily for an
infinite film. Introduction of a finite A then leads to Pearl
vortices, whose interaction is discussed in some detail in
Secs. II-V and in Appendix. Finally, in Sec. VI vortices and
their interaction in films of finite size are presented, which is
computed by a method®*?3 that applies to thin flat films of
any size and shape, and to any A. As a main result in Sec.
VII it will be shown that the sheet current and interaction of
vortices in films of finite size differ considerably from the
ideal Pearl result. As expected, this deviation is most pro-
nounced near the film edges, where the real interaction po-
tential vanishes while the interaction force is peaked. But
less expectedly, this deviation is considerable even when the
interacting vortex pair is located far from the film edges, e.g.,
near the center of a square film: the real interaction with a
central vortex is reduced from its Pearl value by a factor
which decreases approximately linearly from unity to zero as
one goes from the central vortex toward the edge, see Fig. 6
below. A summary is given in Sec. VIIL

II. VORTICES IN THIN INFINITE FILMS

The thin-film problem differs from the behavior of cur-
rents and vortices in bulk superconductors by the dominating
role of the magnetic stray field outside the film. The interac-
tion between vortices occurs mainly by this stray field and
thus has very long range (interacting over the entire film
width); while in bulk superconductors the vortex currents
and the vortex interaction are screened, and thus decrease
exponentially over the length \.

The long-range currents and forces can be shown for the
ideal-screening limit of zero A as follows. Consider one vor-
tex in the center of a large circular film with radius R — oe.
On length scales larger than N this point vortex behaves like
a magnetic dipole, composed of two magnetic monopoles:
one sends magnetic flux @, into the space above the film and
one receives the same flux from the lower half space. Here
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®y=h/2¢=2.07X 107" T m? is the quantum of magnetic
flux. The magnetic field lines of this point vortex are straight
radial lines, all passing through this point. The magnitude of
this magnetic stray field is ®,/(27r3) above and —~®/ (2773
below the film since the flux @ has to pass through the shell
of any half sphere of three-dimensional (3D) radius ry=(r*
+2z%)"2 and surface area 27r3. Here r=(x>+y%)"? is the 2D
radius in the film plane z=0. Directly above and below the
film plane the stray field has the same magnitude ®,/(27r?)
but has opposite sign. This jump of the magnetic field com-
ponent parallel to the film is caused by a sheet current that
circulates around the vortex and equals this field difference
in size, J(r)=®y/(uymr?). This current thus decreases very
slowly with radius r. The force F between this central vortex
and a second vortex at a distance r is radial (central force)
and repulsive, and in size is equal to just this sheet current
J(r) multiplied by the flux quantum P,

2
F() = DoJ(r) = —20. (1)
MoTT

The interaction potential V(r) between these two point vor-

tices (Pearl vortices) follows from its derivative F(r)=
—V(r)" and the definition V(c)=0,
2

V(r) =

(2)
Ko
Note that this result does not depend on A=\2/d. It applies
also for finite A if the distance is large, r> A.
The general results for arbitrary A can be derived from
the expression for the interaction potential noting that still
F(r)==V(r)" and J(r)=F(r)/ ®,. One has*

@} ( d’k 2 cos kr q>2

V(r) _ 0 “ ﬁ 2./0(kr)

o 2m1+2Ak

42 k+ 20K g

3)

where Jy(x) is a Bessel function and k2=k§+k3. The limits
for small and large distances are,' see also Eq. (2),

®;In(2.27A/
V(r) = £ n(2.27A/r) for r<A, (4)
mo  2mA
;1
V(ir)~—2— for r>A. (5)
Mo T

The factor of 2.27 is a fitted constant that follows from the
numerical evaluation of integral (3). An excellent fit to the
exact result valid for all distances 0<r<<o and all A is
within line thickness

;) 1(2.27/\ 0.27A 1)

V(r) = (6)

n - +
2mA r OA+r

Figure 1 shows the exact potential from Eq. (3), its limits (4)
and (5), and approximation (6). One can see that expression
(6) (dots) practically coincides with the exact potential (solid
line).

In the original paper by Pearl' the force f,(r)==V'(r)
between two point vortices was expressed in terms of Struve
and Neumann functions S, (or H,) and N, (or Y, the Bessel
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FIG. 1. The interaction potential V(r), Eq. (3), between two
Pearl vortices (solid lines), limits (4) and (5) (dashed lines), and
approximation (6) (dots). V is in units CI)O/ (moA) and r in units A
—)\2/ d. The upper plot shows directly V(r). The lower plot shows
\V versus \Vr to depict larger ranges of V and r, and to show the
validity of the limiting expressions at small and large r more
clearly.

function of the second kind, or Weber function),202’

s ()52 o
Aol Noa) " NoA) T w ) 0

Although both S| and N, are oscillating functions, this force
f12 is monotonic and agrees with —=V'(r), Eq. (3). The inter-
action potential V(r) may be also expressed in terms of
Struve and Weber functions, see Refs. 26 and 28,

B
(r)= 2hpg] 0\ 27 o\ 5A ()

fia(r) =

III. INTERACTION WITH VORTEX LATTICES

Next I consider the interaction potential V(r) between a
vortex at position r=(x,y) in the film and a regular lattice of
vortices sitting at ideal-lattice points R with reciprocal-lattice
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vectors K. This situation can be interpreted in two ways:

(1) This lattice can consist of real vortices in the film,
generated by a constant applied magnetic field B, perpen-
dicular to the film plane (along z). In this case it will be
typically a triangular lattice with density n=B,/®, since the
magnetic field has to penetrate the infinitely extended film
completely, i.e., the average induction B equals B,. The lat-
tice spacing is then a =~ (®y/B)">.

(2) In a second application the lattice may be formed by
the image vortices sitting on a superlattice that is constructed
to achieve periodic boundary conditions in the numerical
simulation of a film with vortex pinning. In this case the
superlattice may be chosen such that the basic cell is a rect-
angle with side lengths (L,,L,). The regular lattice positions
are then R=(uL,,vL,) where wu,v=0,*1,%2,... are
integers, and the reciprocal-lattice vectors are K
=Qmu/Ly,27v/Ly).

The interaction potential between the probing vortex at
position r and the periodic lattice of vortices (or images) is
obtained by linear superposition of potentials of form (3),

@ [ % 5 2 exp[ik(r - R)]

=) L 2AR ©)

This potential is periodic, Vpe(r+R)=V(r). The infinite
lattice sum in Eq. (8) can be evaluated using the formula

> exp(ikR) = 4721, 8,(k - K), (10)
R K

where n is the density of lattice points R; the density of
reciprocal-lattice points is 1/(47°n). Inserting Eq. (10) into
Eq. (9) and performing the k integration over the 2D delta
functions &,(k—K), one obtains

CID(Z)n 2 cos(Kr)
=2

—. 11
Mo K70 K+2AK’ t

Vper(r) =

This periodic potential may be used for computer simulation
of vortex pinning in a thin film with periodic boundary con-
ditions. In this case the superlattice density is n=1/(L,L,).

Next I apply this potential to the following problem. Con-
sider a regular (e.g., triangular) vortex lattice in the film in
which all vortices are pinned to these ideal vortex positions
and the central vortex at R=0 is moved a bit in x direction.
Which interaction potential with all other vortices does this
central vortex see? To obtain this potential V.(r) or its cur-
vature V7(0)=3*V,(r)/dx* at r=0, we have to subtract from
the complete lattice sum (9) the term with R=0 since this
term describes the interaction of the shifted vortex at r=0
with the unshifted vortex at R=0, which would be very large
and diverging as r — R. The resulting potential is
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D] [ Pk 2 explik(r — R)]
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~ ®,B 2 cos(Kr) J d*k 2 cos(kr)
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(12)

with B=n®,,. This result is still general and applies to any r.
To obtain its curvature at r=0 we apply to it the Laplace
operator V2=¢/dx>+ >/ dy*. This creates a factor —K> in the
sum and a factor —k in the integral. Due to symmetry of the
triangular (and also the square) vortex lattice, the curvature
of V.r) at r=0 is the same along all directions, i.e.,
one has VC(r)=VC(0)+%VZ(O)r2+O(x4,x2y2,y4) with V7(0)
=PV, x>=PV,/dy*=3V?V, at x=y=0. The result for this
curvature is thus

®(B f &I’k 2k > 2K?
2uo | J 4mnk+2AK* Sy K+2AK? |
(13)

VI(0) =

The sum and the integral in Eq. (13) largely compensate.
This may be seen by formally introducing an upper boundary
Kmax=Kmax» Which makes the integral and the sum finite but
drops out from their difference. The main contribution to this
difference comes from the integral at small k= kg, where kg
is the radius of the Brillouin zone (BZ) approximated by a
circle. One has k§=47m for all vortex lattice symmetries.

For A larger than the vortex spacing a, one has AK>1
for all K. More precisely, the condition is K%(): 1672/ (3a?)
> A2, thus 2mA>a is sufficient. In this case the general
result (13) may be evaluated approximately by keeping just
the integral over 0 <k=kp and noting that the remaining
integral for k>kjp is compensated by the sum over K# 0.
The final result for the curvature in this limit is then

B DyBd
V(0)= = = (14)
2o 2o

IV. RESULTS FROM ELASTICITY

Spring constant (14) may be calculated also from the elas-
ticity theory of the vortex lattice,?*3! see Appendix. In this
case one requires nonlocal elasticity with a dispersive com-
pressional modulus c¢;;(k). The result coincides with Eq.
(14).

In Appendix also is calculated the spring constant V7, (0)
felt by the central vortex when the surrounding vortices are
not pinned but are held in place only by the interaction with
their neighbors. In this case, the elastic response of the cen-
tral vortex depends only on the shear modulus cg of the
triangular vortex lattice,>3! which is not dispersive. Thus,
local elasticity theory is sufficient for this problem. However,
now an inner cutoff radius k. ;,=1/R; is required for the k
integral, which is taken from the finite radius R, of the thin
disk containing the vortex lattice. It is assumed that the vor-
tices are pinned at the edge of the disk, at r=R,. The result-
ing elastic spring constant is then
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B®, _ Ve(0)
4uoA In(Rykp) 2 In(mR /a)’

ellast(o) = (15)

This V,(0) is smaller than the spring constant V7 _(0) of
the rigidly pinned vortex lattice by a factor 0.5/In(7R,/a). A
constant force f;, on the central vortex thus displaces this
vortex a distance u that increases by a factor 2 In(wR,/a)
when pinning of the surrounding vortices is switched off.
In all the above expressions the vortex core radius r,=~ ¢
and the coherence length & were assumed to be smaller than
any other relevant length, in particular £< A=\?/d. This is
the London limit. Finite ¢ is easily considered by taking the
k integral not to infinite k£ but to some upper cutoff value
kmax = 1/&. This cutoff removes the logarithmic divergence
of V(r)«In(2.27A/r), Eq. (4), and smooths it over the core
radius r.= ¢. This smoothing may also be performed by re-
placing in the logarithm 7 by (r>+77)"? as shown in Refs.
32-34. The exact numerical solution of the GL equations for
a vortex and the periodic vortex lattice in films of finite
thickness is given in Ref. 5. The London solution for a vor-
tex in films of finite thickness is presented, e.g., in Ref. 4.

V. VORTEX LATTICE OF FINITE SIZE

Expressions (12)—(14) apply to an infinitely extended vor-
tex lattice. The finite size of the superconducting film can be
approximately accounted for by taking the sums 2, in Eq.
(12) over a finite area only, e.g., over a circular area of radius
R,=Na (disk radius), |[R|<R,, containing =~mN? vortices.
The approximate potential that a central vortex sees in the
presence of a regular lattice of pinned vortices in such a thin
disk is thus

V.(r,N)= > V(r-R), 0<|R|<Na. (16)
R

For N— o, Eq. (16) coincides with Eq. (12), and the curva-
tures coincide, V7(0,%)=V"(0), Eq. (13). For finite N, the
interaction and its curvature are reduced. To visualize this we
define the dimensionless curvature

flalA,N) = VE(0,N)/ V¢ .(0), (17)

with f(0,)=1. This function is shown in Fig. 2. One can
see that the dense-lattice limit, Eq. (14), is a good approxi-
mation when a=2A and N=20. For larger a and smaller N
the reduced curvature f(a/A,N) decreases. At small values
of x=a/A=2 for N=2, f(x) has a maximum and decreases
to zero when x— 0 because then also the disk radius R,
=aN goes to zero.

VI. VORTEX INTERACTION IN FILMS OF FINITE SIZE

The interaction potential and force between two vortices
in thin films of finite size and arbitrary shape depends on the
size and shape of the film. Moreover, it depends on the po-
sitions of both vortices, V=V(r,,r,), while for infinite films
(Sec. I) V(r) depends only on the distance r=|r;—r,|. These
dependences are obvious from the fact that the interaction
potential between two vortices has to vanish when one vor-
tex approaches the edge of the film, where its magnetic flux
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FIG. 2. The reduced curvature f(x,N)=V"(0,N)(2uoA/DyB),
Eq. (17), of the potential exerted on a central Pearl vortex by the
surrounding 7N%a? pinned vortices within a circular area of radius
Na. The function f is plotted versus the reduced vortex spacing x
=a/ A for several values of N=2 to N=o. While f(x,N) (upper plot)
for finite N has a maximum and vanishes at small and large x, the
product f(x,N)x for all N is monotonically increasing with x.

goes to zero since supercurrents cannot circulate around a
vortex core positioned on the edge. Furthermore, the interac-
tion force in general is not a central force but, close to the
film edge, the force on the second vortex is directed perpen-
dicular to the edge no matter where the first vortex is posi-
tioned. This is so since the current generated by a vortex
flows along the film edge close to the edge, see Fig. 3. Al-
though the vortex interaction energy vanishes at the edges,
the interaction force has a peak there which increases with
decreasing A. Only when the two vortices are far from all
film edges and are close to each other, then the central Pearl
interaction potential V(r) of Sec. I is a good approximation,
see Sec. VIL

The vortex interaction in realistic films of finite extension
can be computed by the method described in Refs. 24 and
25. One has V(r;,r))=V;=V;=-Pg,(r;), where g(r) is the
stream function of the 2D sheet current density J;(r) caused
by a vortex centered at r; In general one has J(r)=-Z
X Vg(r)=V X (Zg)=(dg/dy,—dg/dx). The function g(r)
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FIG. 3. Current stream lines of a pair of vortices, coinciding
with the contour lines of the vortex-vortex interaction. Shown are
the contours of the logarithm of the interaction potential, Eq. (18),
for a square thin superconducting film of size 2w X 2w with slit and
central square hole, containing a pair of Pearl vortices (due to the
mirror symmetry of this computation) at x;=0.54w, y;= *x;; 88
X 88 grid points are used and 20 contours. The force exerted by this
vortex pair on a third probing vortex at position x,y acts perpen-
dicular to these contour lines. Top: 2D penetration depth A=0
(ideal screening). Bottom: A=0.15w.

=g(x,y) has several useful properties listed in Sec. 2A of
Ref. 25. In particular, its contour lines are the stream lines of
the sheet current, and it may be put that g=0 on the outer
edge of the film, which coincides with a stream line if there
is no current fed in by contacts.

The function g(x,y) and its sheet current J(x,y) can be
caused by an applied magnetic field, by the flux trapped in a
hole in the film, or by vortices, and also by applied currents,
which we do not consider here. Within London theory all
these contributions superimpose linearly. In Ref. 25 it is
shown how these sheet currents can be computed by intro-
ducing a grid of M equidistant or nonequidistant points r;
and then inverting a M X M matrix. The inverted matrix Kf},
Eq. (11) of Ref. 25, is closely related to the vortex interac-
tion. One has

V(r,.r) = V(r,.r) = — uy DIK 3w, (18)

where w; are the weights of the grid points. This potential is
repulsive (positive) and sharply peaked at r;=r;, and like the
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function g(x,y) it vanishes at the outer edge of the film. This
vanishing is linear for A >0, while for A=0 (ideal screen-
ing) g and V go to zero like \'6, where &is the distance to the
edge.

If the film contains one or more holes (is multiply con-
nected), the g(x,y) can have a nonzero value inside the hole,
g(x,y)=I=const, where I is the total current that circles
around the hole when the hole contains trapped magnetic
flux. If the hole is connected with the outer edge by a slit,
then its border is part of the outer edge and one has g=0
along the entire (inner and outer) edge of the film. If the slit
is short cut, one can trap flux in the slit and hole. If the slit is
bridged by a superconducting weak link, this film can be
used as a superconducting quantum interference device
(SQUID).?%

Figure 3 shows the contour lines of this vortex interaction,
coinciding with the stream lines of the sheet current J(x,y)
since Vx g. Depicted are the contours of the logarithm of the
interaction potential, Eq. (18), between a probing vortex sit-
ting at (x,y) and a pair of vortices at (x;, *y;) since our
computation assumes mirror symmetry about the x axis,
In[V(x;,y;;x,y)+ V(x;,—y;;x,y)]. In the regions where V is
very small, this logarithm shows more contours than a linear
contour plot would show.

Figure 4 shows the same interaction depicted as a 3D plot.
Both Figs. 3 and 4 show the geometry of a thin supercon-
ducting square of size 2w X 2w with a central square hole
and an open slit, which may be used as a SQUID. Depicted
are the cases A=0 (ideal screening) and A/w=0.15. One can
see that for A=0 the potential V and the stream function g at
the edges go to zero with vertical slope, Vegoyd
(S8=distance to the edge), and for finite A, Vocgoc S vanish
linearly at the inner and outer edges of the film. In Fig. 4, a
grid of only 46 X46 nonequidistant points is chosen such
that no grid points sit directly on the film edges. Therefore,
on the grid points closest to the outer edges of the film the
depicted V is not exactly zero even when it is zero on the
very edges.

Figure 5 shows, for the same geometry and grid as in Fig.
4, the approximate vortex-vortex interaction obtained from
the Pearl potential of Sec. I valid for an infinite film. To
allow comparison with the correct numerical potential of Fig.
4, which has mirror symmetry, we symmetricize this ap-
proximate potential by plotting

V(r,r) = V{[(x _xi)2 +(y- )’i)2 + 5]1/2}
+V{[(x—x)*+ (y+y) >+ €, (19

where V(r) is the Pearl interaction of Sec. I, e.g., Eq. (6). The
cutoff e=4Xx 10~*w? was chosen to reach the same peak
heights as in Fig. 4. Note that the numerical interaction po-
tential, Eq. (18) and Fig. 4, has a natural cutoff and finite
peak heights, which are related to the spacing of the grid
points. The peaks of the numerical V (Fig. 4) are well ap-
proximated by the cutoff Pearl peaks of Eq. (19) (Fig. 5) if
they are far from all edges.

As the peak position r; of V(r,r;) approaches the film
edge, the amplitude of the correct potential and its peak
height decrease, and finally vanish as the edge is reached.
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FIG. 4. 3D plot of the interaction of a probing Pearl vortex FIG. 5. Same geometry as Fig. 4 but with Pearl potential, Eq.
positioned at (x,y) with a pair of vortices sitting at x;=0.4w, y; (19). This approximate interaction potential between a probing
==*0.5w in a thin square film of size 2w X 2w with slit and hole. Pearl vortex at (x,y) with a pair of vortices at x;=0.4w, y;
Plotted is the interaction potential, Eq. (18), in units ®g/(uew), =+ 0.5w does not vanish at the edges of the square film, and of its
versus x,y in units of w; 46X 46 grid points are used. Top: A=0 slit and hole, while the correct numerical interaction [Eq. (18)] de-
(ideal screening). Bottom: A=0.15w. picted in Fig. 4 does vanish there.

This means that the interaction energy of two vortices is
strongly reduced when both vortices are close to the film
edge. The interaction force, however, i.e., the slope of V,
may still be large, especially when A is small and r or r; or
both are close to the edge.

The V'8 behavior of the vortex interaction near the film
edge can be seen in Fig. 5 of Ref. 36, which shows this

potential (there called integral kernel K) for an infinite (along
y) thin strip with A=0, containing a dense row of vortices
(same x;, many y,); also shown there is the product

interaction potential is needed, e.g., for computer simulation
of vortex motion and vortex pinning in films, one may con-
struct this for simple film shapes such as circular disks, rect-
angles, or long strips by multiplying the Pearl potential by a
factor f(x,y) that vanishes at the film edges with a A depen-
dent slope, which looks like a conical mountain whose maxi-
mum height for A=0 reaches unity and for A>0 is some-
what lower than unity. This numerical finding means that for
A >0 the correct shape-dependent interaction is smaller than
the ideal Pearl potential. The physical reason for this is that
for finite films the magnetic field lines of a vortex do not

- /_ .

K(x,x;):[x=x;|* that enlarges the \& shape at the edges. This  extend to infinity but return around the film edges, thereby

ideal-screening potential has a In|x—x;| singularity obtained reducing the sheet current that causes the vortex-vortex in-

by integrating the 1/|r—r;| singularities of the Pearl potential teraction, see discussion before Eq. (1).

(for A=0) along the positions y;. Two examples for this factor flx,y)
=VoumX, )/ Vpean(x,¥), i.€., the ratio of the exact numerical

VII. RATIO OF NUMERICAL AND PEARL POTENTIALS

potential and the ideal Pearl potential, are depicted in Fig. 6

for a superconducting thin-film square with the first vortex

Analytical Pearl potential (19) (Fig. 5) does not depend on  positioned at the center (0,0) and the second vortex at (x,y).
the shape of the film; in particular, it does not vanish at the = This ratio has approximately conical shape, i.e., the correc-
outer and inner edges as it should. If an approximate analytic tion factor V, ./ Vpean ne€arly linearly goes from unity to zero
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FIG. 6. The ratio of the exact numerical interaction potential
between two  vortices and the  Pearl interaction,
Voum X5 ¥)/ Vpean(x,y), for a thin square of size 2w X 2w with one
vortex positioned at the square center (0,0) and the other vortex at
(xx,y). Top: A=0. Bottom: A=0.3w.

as the second vortex moves from the center to the edge of the
square. It can be nicely seen in Fig. 6 that near the edges
Voum(x,y) vanishes =82 when A=0 and «& when A>0.
These plots also show the somewhat unexpected result that
the deviation of the exact interaction potential from the Pearl
potential can be considerable even when both vortices are far
from the film edges.

VIII. SUMMARY

It is shown that the interaction potential between two
Pearl vortices in a superconducting thin infinite film can be
well approximated by a simple logarithm at all distances, Eq.
(6) and Fig. 1. A general argument is given as to why this
interaction at large distances r> A has the universal behavior
V(r)=®3/ (uomr), independent of the 2D magnetic penetra-
tion depth A=\?/d. Explicit expressions are given for the
interaction of one central Pearl vortex with an infinite regular
lattice of pinned Pearl vortices or with the image vortices in
numerical simulations that use periodic boundary conditions.
The curvature of this interaction (spring constant of the cen-
tral vortex) is presented both for this regular rigid lattice and

PHYSICAL REVIEW B 79, 134526 (2009)

for the elastically deformable lattice of Pearl vortices. The
modification of these results by the finite extension of the
vortex lattice in finite films (e.g., disks) is given, see Fig. 2.
Finally, it is shown how the interaction of the vortices in thin
films of finite size and arbitrary shape can be computed. This
general vortex-vortex interaction potential depends not only
on the distance r=|r;—r,| of the two Pearl-type vortices but
on both positions r; and r,. The interaction in general is not
central; e.g., the interaction force on a vortex near the film
edge acts perpendicular to this edge no matter where the
other vortex is positioned. Anyway, this noncentral interac-
tion is caused by the other vortex and it vanishes when one
of the two vortices approaches the edge. Examples for this
correct interaction are shown in Figs. 3 and 4. Figure 5
shows the corresponding radial-symmetric and film-shape in-
dependent Pearl potential that, away from the film edges,
exhibits the approximately correct peaks but does not vanish
at the (inner and outer) film edges as the correct potential
does. The correct numerical vortex interaction in finite-size
films everywhere in the film is weaker than the ideal infinite-
film vortex interaction potential of Pearl except when both
vortices are close to each other near the middle of the film.
This is shown in Fig. 6 for a square film with one vortex at
the center.
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APPENDIX: ELASTICITY THEORY

The linear elastic restoring force experienced by a dis-
placed vortex in a 2D lattice of pinned or pin-free vortices
may also be calculated from the theory of elasticity of the
vortex lattice. Within this 2D problem the vortex lattice is
described by its uniaxial compressional modulus ¢;; and by
its shear modulus cg, Which is typically much smaller, cgq
< ¢y Within London theory one has for the triangular lattice
of parallel Abrikosov vortices?3!

EZ//.LO Eq)o

S _B%0 Al
1+ 97 16mue\? (A1)

cpi(k) =
where k=(k,,k,) is the wave vector of the periodic displace-
ment field. The k dependence (dispersion) of c;;(k) means
that the elasticity is nonlocal. One has the ratio c¢(0)/cgg
=8bk?=(32m/\3)(\/a)>>1, with b=B/B, and B,
=d,/(27E) as the upper critical field of the superconductor.
Expression (Al) is valid when the magnetic fields of the
vortices overlap, i.e., for vortex spacings a <<2m\ equivalent
to 1/(2«k*)<b<1. At very small inductions, approximate
expressions may be obtained by considering only nearest-
neighbor interaction, yielding ¢, % ¢ exp(—a/N).
Interestingly, for the 2D lattice of Pearl vortices in thin
films the same moduli ¢, cgs, Eq. (A1), apply (referred to
unit volume). Namely, in the limit of thin films with thick-
ness d <<\ in the London limit x> 1, one has> for the moduli

per unit area dc,;(k)=dB?/(uok®\?) =B/ (uok*A) (for k*\?

134526-7
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>1) and dcgg=B®,/ (16muyA). Thus, the below results ap-
ply both to the lattice of parallel Abrikosov vortices with
length d>a and to thin films with thickness d <<A.

We introduce the vortex displacements u,=u(R,) and
their Fourier transforms u(k)=[u,(k),u,(k)],

d*k A A
u,= f CRam)e™®, u(k)= S TR, (A2)
BZ 447 L n

Here n=B/®, is the vortex density and the k integral is over
the first BZ with area 4772n=77k%,, where ky=(4mn)'?
=~ 7/ a is the radius of the circle that may be used to approxi-
mate the hexagonal BZ. At the maximum k=kp one has
c11(kp)/cee=4. The elastic energy per unit area (hence the
factor d) is

d( d% .
Felasl = EJBZ mua(k)q)aﬁ(k)uﬁ(k) . (A3)

In it ®,4(k) with @,B=x,y is the elastic matrix, ®,4(k)
=(cy1—Cea)k ok g+ 8, 5c66k> With k2=k>+k>. Explicitly one has
B B x TRy

2 2 2 2
(I)xxzcllkx+c66k ’ q)yy:c66kx+cllk~’

(I)Xy = q)yx = (Cll - C66)kxk 'y (A4)

the determinant of @ ,4(k) is D(k)=k"*c,,cqq, and the inverse
matrix has the elements ('), =®, /D, ('), =D /D,
and (®71),,=(d7),,=D,,/D. We shall now apply this for-
malism to two problems.

First, we consider the problem of Eq. (12): all vortices are
rigidly pinned but the free vortex at the origin is shifted by a
distance u, along x, thus u,=u,9,X. Inserting this into Eq.
(A2) yields u(k)=(uy/n)X and elastic energy (A3) becomes

2 2 2
uy d dk u
Fau=2Vi0)=7 f Cuk)=5. (AS)

2 )y, a7
Since ¢;;>cq one has from Egs. (Al) and (A4) @,
~ ¢, (k2= (B?/ po)k2/ (1+k*\2) = (B?/ uh\})k>/ k. Averag-
ing k?/k>=cos” @ over the angle ¢ yields 3. With the BZ
area 47°n we thus obtain the potential curvature

_Bd_ J &k By
wN*n? J gy 4 K2 2ug\?’
This coincides with Eq. (14).

Second, we consider the case when all vortices in a cyl-

inder or disk with radius R; can move freely, only the vorti-
ces at the surface or edge r=R, are pinned to ensure zero

Vi (0)= (A6)
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displacement there. We calculate the elastic force f, that is
required to move the central vortex a distance u,, thereby
deforming the vortex lattice. Thus, the applied forces on the
vortices are all zero except for the force acting on the central
vortex, f,=f,0,0X. In general, we define the forces f, per
unit length (the total force on the wth vortex of length d is
df,) and their Fourier transform f(k)=[f,(k),f,(k)] by

&’k kR f, ke
f,= | ——SfK)e™Ry, f(k)=> ~e R (A7)
BZ 447 L n

Elastic energy (A3) may also be written as

d
Fepast = 52 f,,ll,,

d d*k .
=n JBZ ppe LK)l (Kk)

_do [ Ak
=S Lz OO, (A8)

Displacements and forces are related by

nf oK) = 5 (K)u5(K)

1o (K) = n® (k) f5(K). (A9)

For our example f,=f,8,0X one has f(k)=(fy/n)X and the
elastic energy becomes, with ®! zk{%/ (K*ceg),

df f d*k

dfy [ & dfs In(R kp)
2 Jp, 4

O (k) =
8776'66

Fojast = (A10)

For the k integral we have used a lower cutoff R,' and the
upper limit kz= 7r/a. The curvature of the elastic potential,
Vias(0), which the vortex at the origin feels is defined by

1 df
2 ‘/Zlast(o) ’

since the central force is dfy=Vi,(0)u, ie., Vi, (0) is a
spring constant. Comparing Egs. (A10) and (A11) and using
shear modulus (A1), we obtain

1 i
Fejast = Eu(z) elast(o) = (Al 1)

Vijasi(0) = = '
tast(0) duoh* In(Rkg) 2 In(mR/a)

(A12)

Thus, when the surrounding vortices are allowed to relax
elastically, the displacement of the central vortex, on which a
force acts, is increased by a factor 2 In(7R,/a).
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