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We investigate theoretically the properties of s-wave multiband superconductors in the weak-coupling �BCS�
limit in the presence of pair-breaking effects of magnetic field. It is shown that a gapless superconducting state
must appear in quasi-two-dimensional superconductors in magnetic fields parallel to the plane, corresponding
to a Sarma state induced on one of the Fermi surfaces. The emergence of the state in s-wave multiband
superconductors in the absence of anisotropy or spin-orbit interaction is usually accompanied by a zero-
temperature first-order metamagnetic phase transition. For anisotropic or non-s-wave multiband superconduct-
ors the order of the zero-temperature metamagnetic transition depends on model parameters, and it may take
the form of a smooth crossover. The details of the temperature–magnetic-field phase diagram for multiband
superconductors are investigated analytically at zero temperature and numerically at a finite temperature. It is
shown the zero-temperatures first-order phase transition gives rise to a critical region on the B-T phase
diagram. We suggest possible experiments to detect the gapless state.

DOI: 10.1103/PhysRevB.79.134517 PACS number�s�: 74.20.�z, 74.25.Ha, 74.70.Tx, 74.70.Kn

I. INTRODUCTION

Superconductivity in multiband metals was first investi-
gated theoretically shortly after the BCS theory.1–5 A resur-
gence of interest in multiband superconductivity has been
mostly related to experimental discovery of MgB2,6 and ob-
servation of the two s-wave gaps by various techniques.7–14

Recent discovery of iron oxypnictides,15 a new family of
quasi-two-dimensional �2D� high-temperature superconduct-
ors, has also attracted enormous theoretical interest to the
problem of multiband superconductivity. First-principles nu-
merical band-structure calculations16–18 show that several
bands cross the Fermi level in these materials. While the
pairing mechanism in iron oxypnictides is not yet clear, sev-
eral bands are involved in the determination of both normal
and superconducting properties.18,19 The existence of multi-
band energy spectrum20 and associated several energy
gaps21,22 was also verified experimentally in an older,
quasi-2D s-wave superconductor NbSe2. BCS investigations
of multiband superconductivity were restarted,23,24 but were
mostly centered around the physics that arises due to the
presence of two separate gaps. The multiband energy spec-
trum is also present in most unconventional heavy fermion
superconductors due to extreme complexity of the band
structure of these materials, as indicated by de Haas–van
Alfven measurements. For example, gapless superconductiv-
ity of Abrikosov-Gor’kov type25 was recently observed in
thermal-conductivity data for La-doped CeCoIn5,26 as indi-
cated by unusual Wiedeman-Franz 1 /x behavior of thermal
conductivity at small concentration of La, x. The unusual
behavior was attributed to the multiband structure26,27 of this
material, a d-wave superconductor.

Theoretical study of multiband superconductivity has not
only been motivated by the above compounds. A somewhat
modified multiband model is applicable to other new
materials,28 where a single Fermi surface gets spin split into
two pieces with different Fermi momenta due to interactions,
such as superconductors without center of inversion �CI�
�Ref. 29� �for example, CePt3Si �Ref. 30��, or ferromagnetic

superconductors �UGe2,31,32 ZrZn2,33 or URhGe �Ref. 34��. A
particular case of CI-symmetry breaking is two-dimensional
surface superconductivity,35,36 where two Fermi surfaces
arise as a result of spin-orbit interaction of Rashba form.37,38

The Fermi surface will also get spin split in exchange
field, an external magnetic field without orbital effects. Theo-
retically, paramagnetic pair breaking by exchange field cor-
responds to the old problem of unbalanced pairing, first stud-
ied in the early 60‘s,39–44 when the B-T phase diagram for
three-dimensional materials in exchange field has first been
obtained. Orbital effects are almost always present in three
dimensions, and even in very anisotropic quasi-2D materials,
unless Hc2 in magnetic fields parallel to the 2D plane close to
Clogston paramagnetic limit.39,40 This is, perhaps, the reason
why the consequences of the theory have not studied in de-
tail experimentally. A study of thin films in magnetic fields
parallel to the surface remains, perhaps, the most promising
experimental setup for the observation of unbalanced pairing
in superconductors.45–47 A possible observation of the
Larkin-Ovchinnikov-Fulde-Ferrel �LOFF� �Refs. 41 and 42�
has also been reported in some quasi-2D superconductors,
such as those based on charge-transfer organic salts of
BEDT-TTF or ET–ion48 and the 1–1-5 family heavy fermion
materials.49–53

While most theoretical studies of superconductivity in
multiband compounds concentrated on the mechanism of su-
perconductivity and the effects of several energy gaps on
superconducting properties, some recent studies54 found that
a new class of superfluids could potentially arise in these
materials, one that features coexistence of fully gapped and
gapless states. For the most part, this class of states was
proposed in Bose-Einstein condensation for different non-
identical fermions condensed by an optical trap,55 or in high-
energy physics,56 where the “breached” superfluid state ap-
pears as a result of pairing between different quarks57,58 in
the asymptotically free limit.

Gapless solutions of this type were previously known, but
in most cases were found to be energetically unstable. The
first example corresponds to the second unstable solution in
the unbalanced pairing problem, and is commonly referred to
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as Sarma state.43,44 The second solution of the gap equation
for a superconductor placed in an exchange field was first
obtained by the Green’s functions method by Baltensperger59

and Gor’kov and Rusinov,60 where it was found to be ener-
getically unstable. The exact nature of this unstable state and
the existence of unpaired electron- and hole-Fermi surfaces
were later clarified within BCS theory by Sarma and
Takada.43,44 The second example is pairing in a doped �un-
balanced� excitonic gas, leading to an excitonic
condensate,61,62 which is actually the same two-band unbal-
anced pairing problem as one considered by Liu and
Wilczek.55 The solution previously found for this problem
takes the form of a magnetically �ferromagnetically or anti-
ferromagnetically� polarized gapless state,63,64 and is differ-
ent from “interior gap superfluid” of Liu and Wilczek. Simi-
lar to Sarma state, this solution is usually unstable with
respect to formation of LOFF state or domains,65–67 although
the stability of this magnetic solution has not been fully in-
vestigated as a function of masses involved. The third ex-
ample is the Sarma gapless state, which appears in the prob-
lem of s-wave pairing in ferromagnetic superconductors.68

While it has been claimed68 that Sarma state is stabilized by
the presence of ferromagnetic order, this claim has been de-
bated later.69,70 According to recent work of Liu and Wilczek,
a large difference in effective masses on two Fermi surfaces
tends to stabilize the “breached” superfluid state already
within the unbalanced pairing problem.55

The main motivation for this paper is a detailed theoreti-
cal study of possible gapless states in multiband supercon-
ductors in the presence of exchange magnetic field,71 or the
multiband unbalanced pairing problem. While certain simi-
larity does exist, the multiband problem is really different72

from the unbalanced pairing problem considered in the
above cases; pairing between two different species of fermi-
ons �two different bands� is usually not a relevant mecha-
nism in multiband superconductors since the energy differ-
ence for the two bands, ���1 eV is much greater than Tc
�1 K. Nevertheless, for a superconductor placed in an ex-
ternal “exchange” field the unbalanced pairing problem is
recovered. Surprisingly, as it was shown in Ref. 71, the
multiband structure often leads to a stabilization of unusual
Sarma state on the second band in exchange fields �BB
��2, where �2 is the energy band on the second Fermi
surface. Thus, in quasi-2D superconductors where several
bands cross the Fermi surface, such as CeCoIn5 or
2H-NbSe2, the peculiarities of the B-T phase diagram may
not limited to high magnetic fields, where the LOFF-related
phenomena are observed. New singularities and gapless
states associated with the gaps on secondary Fermi surfaces
must arise in low magnetic fields as well.71 They correspond
to the appearance of Sarma state43 on the Fermi surface with
smaller gap, one that becomes energetically stable due to the
presence of the superconducting gap on the other Fermi sur-
face. This state is characterized43 by the presence of unpaired
spin-polarized electrons near the Fermi surface of the second
band, two open electron- and hole-Fermi surfaces, a para-
magnetic magnetic moment and a first-order phase transition
that always accompanies the appearance of this unusual state
in s-wave multiband superconductors in low magnetic
fields.71

The paper is organized as follows. In Sec. II we introduce
the multiband model and generalize its known solution in the
s-wave case to include effects of gap anisotropy and
non-s-wave pairing symmetry. We demonstrate that the ef-
fective coupling constants can be eliminated in favor of the
measurable parameters for multiband superconductors, such
as the superconducting transition temperature, Tc, and the
ratio of the gap amplitudes and the densities of states on
different Fermi surfaces. In particular, thermodynamics of
multiband superconductors is additive; the thermodynamic
potential � is a simple BCS sum over different bands. In
Sec. III we consider the problem of paramagnetic pair break-
ing in multiband superconductors and show that a gapless
state is energetically stable in low magnetic fields in some
region of model parameters. We investigate the stability and
the magnetic properties of this gapless state in an s-wave
two-band superconductor analytically at T=0, and provide
the details for the B-T phase diagram and the low-
temperature critical point that separates the partially gapless
state from fully gapped state. In Sec. IV we present our con-
clusions.

II. MULTIBAND MODEL IN THE WEAK-COUPLING
LIMIT

In a standard BCS approach73 the pairing interaction can
always be eliminated in favor of a single energy scale, Tc,
giving rise to the well-known universality of the BCS theory.
The critical temperature Tc is the only parameter that deter-
mines thermodynamic, kinetic, and other properties in the
weak-coupling limit. For example, the superconducting gap
at zero temperature, ��0�, is related to Tc in s-wave super-
conductors by the universal law, ��0�= �� /��Tc�1.76Tc.
Similar universality is applicable to non-s-wave supercon-
ductors as well, even though the universal ratio ��0� /Tc de-
pends on the type of pairing. For d-wave pairing, the weak-
coupling ratio of the maximum gap amplitude at T=0 to Tc is
��0� /Tc=2�Tc /��e�2.14.74 Since a number of interaction
parameters are involved in a multiband model, there is no
such universal relation between �	�0� on different Fermi sur-
faces and Tc. Thus, Tc cannot be the only parameter that
describes the properties of multiband superconductors. Geil-
ikman, Zaitsev, and Kresin3,4 showed using the method of
Pokrovskii75 that some universality is left in the weak-
coupling multiband model. First, the physical properties,
such as thermodynamics, are often additive over different
bands. Second, the ratios of the gap amplitudes on different
Fermi surfaces are temperature independent in the weak-
coupling limit. Third, Geilikman et al.3 found that all physi-
cal properties of a BCS multiband superconductor can be
expressed in terms of the transition temperature Tc, and other
quantities measurable in the normal state, such as the ratios
of densities of states on different Fermi surfaces, and the
temperature-independent ratio gap amplitudes. The gap am-
plitudes themselves, however, are not universal. In this sec-
tion we introduce the multiband model, review some of the
results of Geilikman et al.3 that we will use in other sections,
and generalize their weak-coupling solution to the case of
arbitrary anisotropic pairing.
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The Hamiltonian for several separate Fermi surfaces has
the following form �see, for example, Ref. 72�:

Hel = �
	
k

��k�a	

† �k�a	
�k� +

1

2 �
k,k�

�
	�
1–4

V	�
1–4
�k,k��

�a	
1

† �− k�a	
2

† �k�a�
3
�k��a�
4

�− k�� , �1�

where 
1–4 are spin indices and V	�
1–4
�k ,k�� corresponds to

the model interaction for a pair of electrons from band �
with quasimomentum k� to band 	 with quasimomentum k.
The latter can be written in the following form:

V	�
1–4
�k,k�� = V	��k,k���i
y�
1
2

�i
y�
3
4

† . �2�

Note that the unbalanced pairing terms55,57,58 are not present
in this model BCS formulation since the mismatch between
different Fermi surfaces is usually too large �of the order of
�eV� for these terms to be relevant. We consider below any
possible type of the superconducting state. As usual, the in-
teractions in the model BCS Hamiltonian are taken in a fac-
torized form,

V	��k;k�� = ��,��V	����,��� , �3�

where �� ,�� is the appropriate irreducible representation,
normalized to unity

	 d�

4�

��,��
2 = 1. �4�

For example, for the s-wave pairing

��,�� = 1, �5�

while for the d-wave pairing,

��,�� = �2 cos�2�� . �6�

The energy gaps on each Fermi surface �	�k� can be eas-
ily expressed in terms of the interaction matrix V	��k ;k��
and the anomalous Gor’kov functions F��i�n ,k� as

�	�k� = − T �
n,�,k�

V	��k,k��F��i�n,k�� , �7�

F��i�n,k� =
���k�

�n
2 + �2 + 
���k�
2

. �8�

The transition temperature Tc is determined by the linear-
ized gap equation Eq. �7� for the gap amplitude

�	��,�� = �	��,�� , �9�

�	 = �
�

�	��� ln
2��D

�Tc
, �10�

where

�	� � − V	���, �11�

while the eigenvector �� corresponding to the largest eigen-
value of the interaction matrix �	� determines the ratios be-
tween gaps on different Fermi surfaces set at Tc. Here �� are

the densities of states �DOSs� per one spin direction for vari-
ous Fermi surfaces. While the system of gap equations Eq.
�7� seems to give a temperature-dependent ratio for gaps on
different Fermi surfaces, this result would violate the BCS
logarithmic approximation. Within the logarithmic accuracy,
the ratios between the gaps on different Fermi surfaces is set
at Tc from Eq. �10�, and is a temperature-independent con-
stant set by the interaction matrix Eq. �11�, the highest-
eigenvalue gap eigenvector.3,4 Then the multiband problem
can be parameterized in terms of Tc and the gap ratios, simi-
lar to how this is done in the single-band BCS model. An
additional related difficulty comes from the fact that the ker-
nel for the system of Fredholm integral equations Eq. �7� is
asymmetric, i.e., �	����	 for �	���. Generalizing the ap-
proach of Pokrovskii75 and following Geilikman et al.,3 we
introduce new variables and a symmetric kernel �	�=��	,

�	 = ��	�	, �12�

�	� = − ��	V	�
���. �13�

As usual, the gap equation in terms of the universal scale Tc
can be obtained by subtracting Eq. �10� from Eq. �7�. Writing
the result in new variables, we find

T�
�n
	 d��	���� 
��,��
2

�n
2 + �2 + 
��
2
��,��
2��

−
1

�n
2 + �2�

= �
�

�	��� ln� T

Tc
� . �14�

Let us now multiply Eq. �14� by �	, and sum over 	, using
the symmetry of �	� and Eq. �10�,

�
	

�	�	� = �
	

��	�	 =
��

ln
2��D

�Tc

. �15�

The gap equation is then considerably simplified, and can be
written in the universal form

T�
�n
	 d�u�

2� 
��,��
2

�n
2 + �2 + 
��
2
��,��
2��

−
1

�n
2 + �2�

= ln� T

Tc
� . �16�

Here

u�
2 =

��
2

�	
�	

2
=

����
2

�	
�	�	

2
�17�

are constant ratios, determined by the gap eigenvector at Tc
and the corresponding densities of states. The coefficients u�

are automatically normalized as

�
�

u�
2 = 1. �18�

As demonstrated in the above derivation, all physical prop-
erties in the multiband BCS model can be expressed in terms
of the transition temperature Tc, the relevant DOS, and
temperature-independent gap amplitudes. The gap ampli-
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tudes themselves, however, are not universal. The ratios of
the gaps on different Fermi surfaces are nonuniversal con-
stants, determined by the relevant interaction matrix �the
highest-eigenvalue eigenvector for �	� in Eq. �10��. Equation
�16� can be easily solved at T=0. Introducing the usual nor-
malization for the gap,

�BCS =
�Tc

�
e−�
��,��
2ln
��,��
�, �19�

and defining t	 as

�	0 � t	�BCS, �20�

we find

�
	

u	
2 ln t	 = 0, �21�

which sets a constraint on the amplitude of the gap eigenvec-
tor at T=0. Equation �19� gives a standard expression for the
zero-temperature amplitude of the energy gap for any single-
band BCS superconductor. For example,

�BCS =
�Tc

�
� 1.76Tc, s wave, �22�

�BCS =
�2�Tc

��e
� 1.51Tc, d wave. �23�

Note that due to the normalization condition Eq. �4�, our
definition for the d-wave gap amplitude is different from the
standard definition by a factor of �2. The temperature depen-
dence of the gap amplitude ��T� is determined by the uni-
versal gap equation Eq. �16�. For the general case multiband
case it differs from the single-band BCS temperature depen-
dence as

ln
T

Tc
= �

	
�
n=0

�

u	
2� 
��,��
2

��n + 0.5�2 + �t	��T�/2�T�2
��,��
2��

−
1

n + 0.5� . �24�

Since the ratios of the gaps on different Fermi surfaces are
set at Tc, one can obtain thermodynamic potential integrating
the gap equation Eq. �24� over the single coupling constant,
Tc,

�S − �N = − 	
0

Tc dTc�

Tc�
�
	

�	�	
2� T

Tc�
� . �25�

Thermodynamics is then given by a sum of standard weak-
coupling expressions for separate bands expressed in terms
of temperature-dependent energy gaps �	�T� as follows:

�S − �N = − �T�
	,n

�	��n
2 + �	

2 
��,��
2

+
�n

2

��n
2 + �	

2 
��,��
2
− 2
�n
�

�

. �26�

Integrating the above expression over � at zero temperature,

one finds the familiar3 factorized result for the ground-state
energy as

ES − EN = − �
	

�	�	0
2

2
�
��,��
2�� = − �BCS

2 �
	

�	t	
2

2
,

�27�

where we have used the normalization condition for �� ,��
given by Eq. �4�. The multiband gap equation does produce
overall change for the relevant quantities, such as, for ex-
ample, specific-heat jump at transition temperature, Tc, ob-
tained, for example, in Ref. 3,

�C

C
=

12

7��3��	
�	

�	
�	�	

4

��	
u	

2�	
2�2

=
12

7��3��	
�	

��	
�	�	

2�2

�	
�	�	

4
.

�28�

The above result of Geilikman et al.3 is applicable to any
anisotropic or unconventional superconductors belonging to
a one-dimensional representation of the point group,76,77

which includes d-wave multiband superconductors. For su-
perconductors belonging to a degenerate representation of
the point group, the corresponding generalized formula is
given by

�C

C
= ��C

C
�

BCS

1

�	
�	

��	
�	�	

2�2

�	
�	�	

4
, �29�

where ��C /C�BCS is the weak-coupling value of the specific-
heat jump at Tc for a given multiband representation, given,
for example, by Kuznetsova and the author in Ref. 78.

As a simple example, let us consider the two-band case.
The expression for the constant ratio of the energy gaps on
different Fermi surfaces is then very easily obtained from Eq.
�10� in terms of the interaction constants Eq. �11� �also see,
for example, Ref. 23�,

�2�T�
�1�T�

=
�2�Tc�
�1�Tc�

=
2�12

�22 − �11 + ���11 − �22�2 + 4�12�21

� s .

�30�

The other relevant parameter of the BCS model is u1
2, defined

by Eq. �17�,

u1
2 =

�1

�1 + �2s2 = 1 − u2
2. �31�

Since the gaps on all Fermi surfaces have the same tempera-
ture dependence, let us introduce a normalized gap amplitude
� as given by Eq. �20�,

�	�T� = t	��T�, ��T = 0� = �BCS. �32�

We then easily find the expression for zero-temperature gaps
on the two Fermi surfaces,

t1 = s−u2
2
, t2 = su1

2
. �33�

The temperature dependence of the gaps on the two Fermi
surfaces must be the same. In addition to Tc, thermodynam-
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ics is completely determined by two other parameters, s and
u1, which can be easily found from experiment.

We conclude that the universality of the weak-coupling
BCS-like model is applicable to the multiband case. How-
ever, some nonuniversal constants, which depend on the in-
teractions, do enter the problem as temperature-independent
parameters. The total number of independent parameters for
an m-band BCS model is then significantly reduced to 2m
−1 measurable constants: Tc, m−1-independent constant
DOS ratios �	 /��, and m−1-independent constant gap ratios
�	 /��. A significant temperature dependence of the energy
gap ratios on different Fermi surfaces as, for example, ob-
served in MgB2, then corresponds to the failure of the weak-
coupling logarithmic approximation.

III. PARTIAL GAPLESS STATE IN MAGNETIC FIELD IN
S-WAVE SUPERCONDUCTORS

In this section we consider the unbalanced pairing
problem41,42 for a multiband s-wave superconductor placed
in paramagnetic magnetic field. The author and Gor’kov71

recently showed that a stable gapless state appears in small
magnetic fields. The emergence of this state for s-wave su-
perconductors is accompanied by zero-temperature first-
order phase transition. The s-wave case can be solved ana-
lytically at T=0. In what follows, we present our results for
the stability of the gapless state in s-wave multiband super-
conductors and the details of the B-T phase diagram.

A. Nature of the gapless state

We start by considering the general solution for the BCS
gap equation for a multiband superconductor placed in mag-
netic field. We neglect the diamagnetic effects �Hc2�. The
presence of paramagnetic magnetic field results in an addi-
tional Pauli term in the Hamiltonian for each separate band,

Hp = −
1

2 �
kij	

g	a	i
† �k��I · �ij�a	j�k�, I � �BB . �34�

Here g	 is the g factor for each band 	, taken to be isotropic
in this section. The multiband gap equations in magnetic
field have the same form Eq. �7�, with the Gor’kov function
F given by

F̂	��n,p� =
− i
̂y�k�p�

�i�n − I
̂z�2 − �	�k�2 − 
�	�p�
2
. �35�

The diagonalization procedure of Pokrovskii75 and Geilik-
man et al.3 is applicable in the presence of arbitrary magnetic
field, i.e., the ratios of the gaps on different Fermi surfaces
do not change as functions of both temperature and magnetic
field, and are determined by the gap eigenvector at Tc. For
example, Eq. �30� for the two-band problem in the presence
of magnetic field71 can be written as

s �
�2�T,B�
�1�T,B�

=
�2�Tc0�
�1�Tc0�

=
2�12

�22 − �11 + ���11 − �22�2 + 4�12�21

,

�36�

where Tc0=Tc�B=0�.

Thus, as it is the case with the energy gaps and thermo-
dynamics, it is possible to obtain a complete solution of the
multiband problem in magnetic field in terms of Tc, gap ra-
tios, and DOS ratios. The linearized gap equations in mag-
netic field produce the instability curve Tc�B�, which takes
the following form:

ln
Tc

Tc0
= ��1

2
� − �

	

u	
2Re���1

2
+ i

g	I

4�Tc
�� , �37�

where u	 are band-dependent constants given by Eq. �17�.
Note that in the free-electron case, g	=2, the multiband in-
stability curve Eq. �37� is reduced to the familiar single-band
result, in agreement with earlier results,71

ln
Tc

Tc0
= ��1

2
� − Re���1

2
+ i

I

2�Tc
�� . �38�

The re-entrant behavior of Tc with increased magnetic field
normally indicates the possibility of first-order phase transi-
tions on the B-T phase diagram. In a single-band problem the
homogeneous gap equation gives rise to a second unstable
solution59 in magnetic fields close to the paramagnetic limit,
also known as the Sarma43 state. The instability is resolved in
favor of an inhomogeneous LOFF �Refs. 41 and 42� state. As
we have shown in the recent letter,71 in the two-band case
one has three different solutions. In the general m-band case,
the number of solutions will be m+1. The T=0 solution of
the gap equation will change form at I=�	�B�. For the
s-wave case all solutions can be written out analytically as

�
	,g	I�2�	�I�

���g	I�2 − 4�	�I�2 + g	I

2�	0
�u	

2

� �
	,g	I�2���I�

����I�
��0

�u�
2

= 1. �39�

Here 	 and � are band indices, u	
2 are given by Eq. �17�,

while �	0 correspond to the solution of the multiband gap
equation at T=0 without the magnetic field, Eq. �20�. Stabil-
ity of these solutions can be inferred from the ground-state
energy, which can be easily obtained by the integration of the
gap equation over the coupling constant Tc, as in Eq. �25�,

ES − EN0 = − �
	

�	�	�I�2

2

−
1

4 �
�,g�I�2���I�

��g�I��g�I�2 − 4���I�2. �40�

Here EN0 is the normal-state energy in the absence of mag-
netic field.

We can also write out the solution of the multiband gap
equation at finite temperatures since there is only a single
temperature and field-dependent variable, the same for all
�	�T ,B�,

��T,B� �
�	�T,B�

�	�T = 0,B = 0�
. �41�

The gap equation then takes a simple form
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ln���T,B�� = �
	

u	
2 f0��	�T,B�

T
,
g	I

2T
� , �42�

where

f0�x,y� = 	
0

� dt
�t2 + x2� sinh��t2 + x2�

cosh�y� + cosh��t2 + x2�
− 1� ,

�43�

which is the same function that appears in the single-band
model. The expression for thermodynamic potential in mag-
netic field is an analytic continuation of the corresponding
expression in zero field to i�̃n= i�n− �g	I /2�, which is also
factorizable

�S − �N�I� = −
1

2�
	

�	
�	�B,T�
2�1 + f1��	�B,T�
T

,
g	I

2T
�� ,

�44�

with

f1�x,y� =
1

2x2	
0

�

t2dt�cosh−2��t2 + x2 − y

2
�

+ cosh−2��t2 + x2 + y

2
� − cosh−2� t − y

2
�

− cosh−2� t + y

2
�� . �45�

Here

�N�I� = �N0 −
1

4�
	

�	�g	I�2 �46�

is the normal-state energy in exchange magnetic field I.
From the general analysis of Eq. �40� one can see that the

solution with g	I�2�	�I� for all 	 is always unstable, simi-
lar to the unstable Sarma state of the single-band problem.59

The low-field solution, g	I�2�	�I�=2�	0 for all 	, on the
other hand, corresponds the multiband BCS solution at I=0,
which is stable in low enough magnetic fields. The other
solutions of the gap equation correspond to partial Sarma
states, illustrated on Fig. 1 for the two-band case and g	=2.
The energy spectrum of the system for excitations near each
Fermi surface �FS� is given by the poles of the Green’s func-

tion Ĝ	��n ,k�,

Ê	�k� = ��	�k�2 + 
�	�k�
2 +
1

2
g	I
z. �47�

As the magnetic field exceeds the value of the smallest gap,
a strip of unpaired fully polarized quasiparticles forms in the
vicinity of the corresponding Fermi surface, giving rise to a
paramagnetic magnetic moment. Similar to the single-band
problem, the LOFF state competes with homogeneous solu-
tions in high magnetic fields. A generalization of the insta-
bility curve Eq. �37� can be written for an arbitrary inhomo-
geneous q vector as

ln
Tc

Tc0
= ��1

2
� − �

	

u	
2Re���1

2
+ i

g	I + 2�vF	q�
4�Tc

��� ,

�48�

where vF	 is the Fermi velocity for band 	. Tc�I� is then
found as a maximum with respect to q. The high-field phase
transition is always second order. As the field is lowered, the
regions of stability of various phases and the exact nature of
the LOFF state in the general case, when the energy gaps are
of the same order of magnitude, can only be obtained nu-
merically.

The zero-temperature phase transition in partially gapless
state in s-wave multiband superconductors is accompanied
by the appearance of the paramagnetic moment.71 In
non-s-wave multiband superconductors, however, magnetic
moment is always present in low magnetic fields due to the
nodes in the energy spectrum. The transition to partial Sarma
state then corresponds to a crossover from the nodal regime
to a regime with a full open Fermi surface. In completely
isotropic situation, the zero-temperature phase transition to
partial Sarma state in s-wave superconductors is always first
order, corresponding to the appearance of a finite paramag-
netic magnetic moment. Effects of spin-orbit, nonspherical
Fermi surface, or gap anisotropy can turn this phase transi-
tion into a smooth crossover. Similarly, due to effects of gap
anisotropy, the first-order zero-temperature phase transition
in multiband d-wave superconductors exists only in a certain
region of parameters.71 The first-order phase transition, if
present, disappears above a certain critical temperature, Tcr.

The analysis of the B-T phase diagram for multiband su-
perconductors depends on the same number of parameters as
the analysis of other properties considered in Sec. II. Thus,
for example, energetic stability of various gapless state will
depend on the value of these additional parameters. We thus
consider for simplicity a two-band model, which has only

I

E

Band 2

Band 1

open FS

p

Band 2

open FS

FIG. 1. Multiband partial Sarma state at T=0, characterized by
fully polarized unpaired electrons near the Fermi surface of the
driven band. The state is stabilized by the presence of the gap on the
primary Fermi surface.
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two additional physical constants, the ratio of the densities of
states on two Fermi surfaces, �2 /�1, and the ratio of the
energy gaps �2 /�1. We also assume for simplicity g1=g2
=2 and only consider homogeneous solutions since the
LOFF state will depend on the shape of both Fermi surfaces.
Figure 2�a� shows an example B-T phase diagram for homo-
geneous phases for the two-band isotropic s-wave model in
exchange field and parameters ��2 /�1�=0.2 and ��2 /�1�
=25 obtained with the help of the above expressions for the
temperature-dependent gaps and thermodynamic potential
�S. The instability line in Fig. 2�a� for the transition into a
uniform partially gapless superconducting state has the char-
acteristic reversal behavior, which indicates the presence of
either a LOFF state41,42 or a first-order phase transition. The
LOFF instability line for two equal circular Fermi surfaces
with different masses in two dimensions is shown by the red
dashed line. When only the uniform superconducting states
are considered, the partially gapless state will be separated
from the normal state in high magnetic field and low tem-
peratures by a first-order Clogston-type transition. At low
fields it is separated from the fully gapped superconducting
state by a first-order line that ends in a critical point. Figure
2 shows the details of the first-order phase transition from
fully gapped superconducting state to partially gapless super-
conducting state. The first-order transition is shown by the
solid black line that ends in a critical point at T=TCR
�0.058Tc0. The dashed red lines mark the boundaries meta-
stable region in the vicinity of the first-order phase transition
where unstable solutions of the gap equation are present.

Figure 3 shows the solution of the multiband gap equation
Eq. �42� as a function of temperature and magnetic field. The
unusual reversal behavior of the energy gap reflects the pres-
ence of a first-order phase transition. While there are three
different solutions at a given field in a region near this phase
transition, only one of these solutions is stable. Such a region
corresponds to the region of the first-order phase transition
where the hysteresis exists. The stable solution corresponds
to the minimum of the Free energy, Eq. �44�, shown in Fig.
4. The shape of the Gibbs Free energy at T�Tcr=0.058Tc0
also reflects the presence of the metastable states near the

first-order phase transition into the gapless superconducting
state. The system always picks the lowest energy. Thus, the
free energy of the system as a function of magnetic field has
a slope change at the point of first-order phase transition,
where the energy gap and paramagnetic magnetization have
a corresponding jump.

The zero-temperature phase transition into the state is
characterized by a metamagnetic jump of magnetization. At
T=0 the magnetic moment appears sharply, from M =0 to
M �0. At a finite temperature small magnetization is present
due to thermal population of the band with smaller energy
gap. The first-order phase transition line disappears at T
�Tcr, as the quasiparticle states above the gapless state be-
come thermally populated. Thus, one has two metamagnetic
transitions shown in Fig. 3, one corresponding to the transi-
tion into partially gapless Sarma state, the other is the first-
order phase transition from the partially gapped Sarma state
into the normal state.

(b)(a)

FIG. 2. �Color online� �a� B-T phase diagram for a 2D two-band superconductor with two equal circular Fermi surfaces �pF1= pF2� and
��2 /�1�=0.2, �m2 /m1�=25. The dotted blue line corresponds to the first-order phase transition into the partial Sarma state from the normal
state �right side, the Clogston limit� or fully gapped superconducting state �left side�. The LOFF instability is shown by a dashed red line.
The instability for the normal/uniform superconducting state is shown by the solid black line. �b� Details of low-temperature first-order
transition from fully gapped to gapless superconducting state. The black line marks the first-order phase transition. The red dashed lines
correspond to the boundaries of the region of metastable states, where the hysteretic behavior is expected to occur.

FIG. 3. �Color online� Numerical solution of the two-band BCS
gap equation ��T ,B� at different temperatures for parameters in
Fig. 2. Three solutions for the gap equation at low fields and tem-
peratures reflect the existence of unstable region near the first-order
phase transitions from fully gapped state into partially gapless state.
As the temperature is raised above the critical temperature, the first-
order region disappears, and there is only one solution for the gap
equation in low fields. The high-field behavior corresponds to the
usual first-order unstable Clogston limit.
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The analysis of the above equations can be done numeri-
cally for any parameters �2 /�1 and �2 /�1. For the s-wave
case, however, analytical results for the energy and the mag-
netic moment can be obtained at T=0. In a special case when
the critical point is located at low enough temperatures, the
critical region is fully determined by the second Fermi sur-
face and depends only on one energy scale. We consider
these simplified results below.

Finally, we note that the partial gapless state is not always
present on the B-T phase diagram; for some parameters of
the two-band model, as shown below, the first-order transi-
tion happens directly from the uniform superconducting state
into the normal state.

B. Magnetic properties of the partial gapless state at T=0

In this section we consider the low-field transition to par-
tial gapless state. As we have seen in Sec. III A, the gap
equation for the two-band model has three different solutions
and depends on two constant parameters, the ratio of the
energy gaps on the two Fermi surfaces s, determined only by
interactions, Eq. �36�, and the ratio of the densities of states
for the two bands. However, analytical expressions are more
conveniently written in terms of s and a combination of these
parameters u2

2, defined in Eq. �31�.
The uniform low-field solution at T=0 is the same as the

solution without the magnetic field. The first-order phase
transition appears near I��20. It is thus convenient to re-
write the solution in terms of �20 and other parameters of the
second Fermi surface. For example, the energy of the super-
conducting state at T=0 and B=0 is

Es0 = −
1

2u2
2�2�20

2 . �49�

Introducing

�̃ �
�2�B,T�

�20
=

�1�B,T�
�10

, �50�

Ĩ �
I

�20
, �51�

we find a simple expression for I in the partially gapped state
as

Ĩ =
1

2
�̃��̃u2

−2
+ �̃−u2

−2
� , �52�

or

Ĩ = �̃ cosh�u2
−2 ln �̃� . �53�

The expression for the energy also simplifies to

ES

ES0
= �̃ + 2u2

2Ĩ�Ĩ2 − �̃2. �54�

The first-order transition point is determined from the small-

est �̃�1 solution of the transcendental equation,

1 − u2
2 sinh�2u2

−2 ln �̃cr� = �̃cr
−2, �55�

where the solution changes abruptly from �̃=1 to the smaller
gap branch of Eq. �53�. The magnetization in the partial

Sarma state as a function of �̃ is also easily determined since
it is also just a fraction of the normal-state magnetization on
the second Fermi surface,

M = − 2�B�2I tanh�u2
−2 ln �̃� . �56�

Equations �53� and �56� determine the field dependence of
magnetization in the partial gapless state parametrically.
Magnetization has a jump from 0 to a finite value at the

first-order phase transition �̃cr. The transition point can be
easily found analytically in a particular case of u2

2�1, cor-
responding to “induced” superconductivity on the second
Fermi surface.71 Indeed, introducing

�� � �̃ − 1, �57�

Eq. �53� transforms to

�I =
1

2

��
2

u2
4 + ��, �58�

while for the condensation energy we easily find the follow-
ing expression:

ES

ES0
= 1 – 2��

2 −
4

3u2
4��

3 , �59�

The cubic terms in the energy lead to a first-order phase
transition71 at

�Icr = − 3u2
4/8, �60�

where the energy gap �� changes abruptly from ��=0 to
��=−3u2

4 /2. The magnetization changes abruptly at �Icr from
zero to

FIG. 4. �Color online� Free energy �S of the superconducting
state for a two-band superconductor in magnetic field at different
temperatures for the parameters in Fig. 2. The reversal behavior at
low temperatures T�Tcr=0.058Tc0 indicates the presence of the
first-order phase transition from the fully gapped superconducting
state into a partially gapless gapless superconducting state. The
first-order transition from the partially gapped superconducting
state to normal state in high magnetic fields happens at the point
when the condensation energy �S�T , I�=0.
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Mcr =
3

2
u2

2�B�2�20. �61�

C. High-field Clogston limit and energetic stability of the
gapless state at T=0

We now turn to the first-order transition in high magnetic
field, or the modification for the Clogston criterion for the
two-band model. The standard Clogston Criterion involves a
transition from the uniform superconducting state to the nor-
mal state, determined by

ES0 = −
�1�10

2

2
−

�2�20
2

2
= EN�I� = − ��1 + �2�Iclog

2 . �62�

We thus obtain

Iclog =
1
�2
��1�10

2 + �2�20
2

�1 + �2
�63�

The transition first-order transition from gapped two-band
superconductor to the normal state only happens at I= Iclog in
the absence of the partially gapless state. Since the partially
gapless state is different from the uniform gapped state, the
high-field transition to the normal state will also happen in a
different magnetic field, now determined by

ES�I� = EN�I� . �64�

After simple calculations, we find

�̃clog 1
2u2

−2
=

u1s2

u1�1 − s2� + �u1
2 − 2s2

, �65�

where u1=�1−u2
2, and the new Clogston limit Iclog 1 then

determined by Eq. �53� that connects �̃ and I in the partially
gapless state.

It is obvious that the condition

Iclog 1 � Icr, �66�

where Icr is the magnetic field for the T=0 transition from
uniform into partially gapless state must be met for the par-
tially gapless state to be present on the phase diagram. In
particular, it is obvious that for

s �
u1

�2
�67�

the partially gapless state is definitely not present. The accu-
rate condition is given by Eq. �66�, which upon substitution
of Eq. �65� into Eq. �55� takes the following form:

1 − u2
2 sinh�2u2

−2 ln �̃clog 1� � �̃clog 1
−2 . �68�

The region of parameters of the two-band model where the
partially gapless state exists given by Eq. �68� is shown in
Fig. 5. We see that in order for the gapless state to be present
and easily observable, the second gap has to be much smaller
than the first gap, while the density of states on the second
Fermi surface should be quite a bit larger than on the first
one, otherwise the entropy change associated with the first-

order transition will be very small and not easily detectable.
Such transition will also be turned into a crossover in the
presence of even small gap anisotropy, impurities, nonzero
temperature, or other effects.79

We have not considered the details of the high-field stripe
LOFF �Refs. 41 and 42� region beyond the LOFF instability
in the normal state given by Eq. �48� and shown in Fig. 2,
since this calculation depends on the details of the shape of
the Fermi surfaces, their dimensionality, and thus a number
of additional parameters.80 Unlike the Clogston limit, the
LOFF region is very nonuniversal and sensitive to defects.
We note, however, that the LOFF stripe phase will also be
unusual since it forms in high enough magnetic fields in the
vicinity of the first-order transition between partially gapless
state and the normal state. In particular, the inhomogeneous
LOFF state will likely involve superconducting stripe order
made out of the partially gapless state. It is also not com-
pletely clear whether the phase transitions between the par-
tially gapless superconducting state and the LOFF state and
between the LOFF state and the normal state will be first or
second order.

D. Low-field critical region

The mathematics of the low-field critical region near the
T=0 first-order phase transition into the partially gapless su-
perconducting state and the associated thermodynamics is
rather bulky, and can only be studied numerically for the
general case �see Figs. 2–4 and 6�. Nevertheless, as it was
shown in Secs. III A–III C, only parameters for the second
Fermi surface are relevant for the first-order phase transition
at T=0. Unfortunately, both Fermi surfaces determine the
critical region at finite temperatures. However, when u2

2�1,
the critical region lies at very low temperatures, and thus
only the quasiparticle excitations near the gapless or nearly
gapless state on the second Fermi surface are important. The
results for the critical region then depend only on parameters
of the second Fermi surface only, and thus it can be found in
a universal form. We note that the special case u2

2�1, corre-
sponding to superconductivity driven by a single Fermi sur-
face and induced by interactions on other Fermi surfaces is,
perhaps, most common for multiband superconductors. In
this section we consider such a weak first-order transition,

FIG. 5. �Color online� The region of parameters for the two-
band model for which the T=0 gapless phase is present.
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assuming that both Fermi surfaces are completely isotropic.
The T=0 first-order phase transition in this limit happens

near I��20. To describe this phase transition and thermody-
namics near it, following Ref. 71, it is convenient to intro-
duce new dimensionless variables that correspond to devia-
tion of the second energy gap and the magnetic field from
�20,

�I �
I − �20

�20
, �69�

�� �
�2�T,I� − �20

�20
, �70�

and dimensionless temperature

t �
T

�20
. �71�

The solution for the metamagnetic transition at T=0 in
this limit is given by Eqs. �58� and �59�. It is not difficult to
extend this solution to finite temperatures. The gap equation
then takes the following form:

�� = − u2
2�t	

0

� �xdx

cosh2�x +
��−�I

2t � . �72�

Thermodynamics near the critical point is simply given by
the integral of the gap equation,

�S − �S0 = 4
�S0
	
−�

�I

����I�d�I. �73�

The critical point can be found by differentiating Eq. �72�
and solving the following two equations:

d�I

d��

=
d2�I

d��
2 = 0. �74�

The critical temperature is given by

tcr = A1
2u2

4, �75�

with

A1 � 	
0

� �x tanh�x + A2�dx

cosh2�x + A2�
, �76�

where A2 is the solution of

	
0

�

�xdx
1 – 2 sinh2�x + A2�

cosh4�x + A2�
= 0. �77�

The energy gap and magnetic field at the critical point are
given by

��,cr = − A1u2
4	

0

� �xdx

cosh2�x + A2�
, �78�

�I,cr = ��,cr − A2tcr. �79�

Solving for A1 and A2 numerically, we obtain

tcr = 0.3129u2
4, �80�

��,cr = − 0.7541u2
4, �81�

�I,cr = − 0.4071u2
4. �82�

It is not difficult to see that the solutions for the gap
equation, the energy, and the magnetic moment in the critical
region depend on single energy scale Tcr or u2

4�20. Thus,
universal numerical results for the critical region can be ob-
tained.

In Fig. 7 we show the first-order transition line on the B-T
phase diagram in universal units u2

−4�I and T / ��20u2
4�. Figure

8 shows the solution of the gap equation in the critical region
at different temperatures in universal units u2

−4�I and u2
−4��.

The gap equation has three different solutions. The black line
is the line of first-order phase transitions of Fig. 7 in these
coordinates. The two �� on this line at a given field �I cor-

FIG. 6. �Color online� Magnetic moment normalized to mag-
netic moment in the normal state at different temperatures for the
parameters in Fig. 2. The first-order jump in magnetization from
zero to finite magnetic moment in the lower fields and temperatures
T�Tcr=0.058Tc0 corresponds to a transition into partially gapless
state. The sharp transition is absent at temperatures above the criti-
cal temperature, as quasiparticle states above the second smaller
gap become thermally populated.

FIG. 7. �Color online� The T-B phase diagram near the first-
order transition to partially gapless Sarma state in the special case
of weak first-order transition, marked by a red solid line.
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respond to the two coexisting superconducting states on the
first-order line at a given temperature. The thermodynamic
potential �= ��S /�S0�−1 is shown in reduced units �u2

−8 in
Fig. 9. The behavior of the gap as a function of magnetic
field results, as usual, in the presence of metastable states in
the vicinity of the first-order phase transition. Finally, Fig. 10
shows the jump in paramagnetic magnetization at different
temperatures below the critical temperature Tcr in reduced
units of M / ��B�2�20u2

2�. As the temperature is raised to Tcr,
the first-order jump disappears.

IV. CONCLUSIONS

Let us now briefly summarize our main results. We have
performed a detailed calculation of energetically stable ho-
mogeneous superconducting states in the unbalanced pairing

problem for s-wave multiband superconductors. Our analysis
shows that this problem differs from one for single-band su-
perconductors, and that partially gapless states may be
present in the low-temperature region of the B-T phase dia-
gram. These states are characterized by a gapless Fermi spec-
trum, open Fermi surfaces, and a finite paramagnetic mag-
netic moment. The phase transition between fully gapped
and gapless superconducting states in magnetic field at T
=0 is a metamagnetic first-order phase transition, which cor-
responds to a sharp jump in magnetization on one of the
Fermi surfaces that becomes gapless.

The superconducting order is present on both Fermi sur-
faces, as shown in Fig. 1. At finite low temperatures the
metamagnetic first transition results a first-order line on the
B-T phase diagram that ends in a critical point, as shown in
Fig. 2. The presence of the gapless superconductivity also
modifies the high-field Clogston limit. While the state is
analogous to the one studied in Ref. 55, it is not the same.
Unlike the situation encountered in Bose condensation or
high-energy physics, unbalanced pairing of different species
of fermions in superconductors is energetically unfavorable
because of the large difference of the corresponding Fermi
surfaces. Pairing in multiband superconductors is associated
with each Fermi surface separately, although the gaps on
different Fermi surfaces are related by the interaction. In the
weak-coupling logarithmic scheme that ratio is temperature
and field independent. Nevertheless, we found that, similar to
Ref. 55, the gapless state is most visible when the supercon-
ducting gap on the heavier band is driven by the supercon-
ducting transition on the lighter band.

Strong anisotropy of the B-T diagram, which indicates a
quasi-2D nature of 2H-NbSe2, and its multigap
superconductivity21,20 makes a case for a possible first-order
phase transition to a ground state of this type in low mag-
netic fields parallel to the plane in this material.71 An unusual
first-order phase transition has been indeed observed in this
material81 for thermal-conductivity measurements in low
magnetic field H�10 kOe�Hc2 parallel to the basal plane.
This first-order phase transition is inconsistent with explana-
tions involving vortex lattice melting.81 The magnetic field at

FIG. 8. �Color online� Solution for the gap equation in the low-
field critical region as a function of magnetic field and temperature.
The black line is the first-order transition line for different tempera-
tures in B-� coordinates, also shown in Fig. 7 in B-T coordinates.

FIG. 9. �Color online� Gibbs free energy of the superconducting
state near the first-order phase transition to the partially gapless
state for different temperatures T�Tcr. The unusual behavior of the
Gibbs potential indicates the presence of metastable states near the
first-order transition from fully gapped to partially gapless super-
conducting state.

FIG. 10. �Color online� First-order metamagnetic transition into
partially gapless state at different temperatures T�Tcr. The transi-
tion disappears and becomes a crossover at T�Tcr.
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which this transition occurs is consistent with the value of
the small energy gap �0.1–0.2 meV observed in the photo-
emission experiments.21 The low-field first-order phase tran-
sition in NbSe2 was found to be strongly anisotropic, and the
hysteretic behavior of thermal conductivity disappears for
certain field directions,81 a behavior not expected in a simple
multiband model considered above, where a first-order phase
transition occurs for all field directions in the basal plane.
However, in the presence of CDW the CI symmetry is
broken,82 which itself has been shown to lead to a strong
in-plane anisotropy of the B-T phase diagram.36 Similar ef-
fects must be present for the low-field metamagnetic phase
transition as well. Gap anisotropy, g-factor anisotropy, and
spin-orbit coupling tend to wipe out the first-order line on the
B-T phase diagram, and turn it in a smooth crossover.71 We
have recently found that the order of the phase transition in
the presence of spin-orbit interaction may, too, be dependent
on direction. As a result of two different terms in the spin-
orbit interaction, the first-order phase transition becomes
very anisotropic. It is present for some field directions and
turns into a smooth crossover for other field directions.79

Experimental observation of the gapless state is subject to
the usual difficulties associated with the observation of para-
magnetic pair breaking and the LOFF state in superconduct-
ors. Namely, the orbital effects leading to Hc2 are almost
always present, even in strongly quasi-2D materials in mag-
netic fields parallel to the 2D planes. Perhaps, an ideal real-
ization of this state would be surface superconductivity or
superconductivity in thin films in fields parallel to the sur-
face. We note, however, that unlike the LOFF state, which is

difficult to observe, since it quickly disappears in the pres-
ence of impurities or orbital effects, the homogeneous par-
tially gapless state is more robust, and will appear in many
multiband strongly quasi-2D s-wave superconductors in the
mixed state as well, provided that the upper critical field is
close enough to the Clogston limit. The details of such first-
order transition in the mixed state will be similar to the phys-
ics considered above. Measurements of the specific heat in
applied field are the most direct way to observe the low-field
first-order phase transition in s-wave multiband supercon-
ductors, such as 2H-NbSe2.21 Paramagnetic pair breaking
also appears in the presence of ferromagnetic ordering as a
result of exchange coupling between localized moments and
delocalized carriers, such as in the original model of.41 Thus,
an observation,83 by scanning tunneling spectroscopy, of
large gapless regions of Fermi surface in superconducting
ErNi2B2C, a borocarbide multiband material where weak fer-
romagnetism coexists with superconductivity, is quite inter-
esting and possibly related to the effects of pair breaking on
the very small gap on one of the Fermi surfaces discussed in
this paper or in Ref. 27.
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