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We show that on superconducting spherical nanoshells, the coexistence of the Meissner state with a variety
of vortex patterns drives the phase transition to higher magnetic fields. The spherical geometry leads to a
Magnus-Lorentz force pushing the nucleating vortices and antivortices toward the poles, overcoming local
pinning centers, preventing vortex-antivortex recombination, and leading to the appearance of a Meissner belt
around the sphere equator. In sufficiently small and thin spherical shells paramagnetic vortex states can be
stable, enabling spatial separation of freely moving shells with different radii and vorticity in an inhomoge-
neous external magnetic field.
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I. INTRODUCTION

Controlling and understanding vortex behavior and creat-
ing a guided vortex �fluxon� motion in superconductors are
crucial for developing fluxonics devices.1–7 Several key ex-
periments have demonstrated how different vortex patterns
can be created and guided in mesoscopic and nanoscopic
superconductors.1–4 These breakthroughs in the pursuit of
“fluxonics” have focused on hybrid superconductor/
ferromagnet nanosystems1,2 or on the use of nanostructured
superconductors.3,4,8 Here, we investigate how the geometry
�curvature and topology� of the superconducting layer rather
than the patterning can be used to control flux. Curvature and
surface topology, which are known to strongly affect, e.g.,
charge ordering and the dynamics of defects on spherical
surfaces,9,10 have a profound influence also on the vortex
behavior in superconducting layers. We focus on the vortex
behavior in spherical nanoshells. These are nanoparticles
consisting of a dielectric core of typically 50–200 nm in
radius, coated by a 5–20 nm thin metallic shell.11 Thermo-
dynamically stable vortex states in nanoshells as well as the
dynamics of vortex trapping and releasing are investigated
within the Ginzburg-Landau formalism applied to a spherical
surface. Results of both variational analysis and numerical
solutions are presented.

In the Ginzburg-Landau formalism, superconductors are
described by a macroscopic wave function �= ���exp�i��
that couples to the electromagnetic field and takes the role of
the complex order parameter for the superconducting phase.
The modulus square of the order parameter ���2 corresponds
to the density of Cooper pairs, whereas the gradient of its
phase � defines the supercurrent. We focus on thin supercon-
ducting nanoshells with a shell thickness W smaller than the
correlation length � �that also defines the vortex core size�.
This requirement simplifies the treatment in two important
ways. First, the order parameter will be constant in the shell
along the radial direction, so � will only depend on the
spherical angles �= �� ,��. Second, if the thickness of a shell
also satisfies the inequality WR��2, where R is the shell
radius and � is the London penetration depth, the external
magnetic field will be only weakly perturbed by the
nanoshell.

II. VORTEX-ANTIVORTEX SEPARATION AND THE
MEISSNER BELT

Bulk superconductors expel the magnetic field and form a
Meissner state up to a lower critical field Hc1. When exposed
to higher fields, type II superconductors allow the magnetic
field to penetrate in the form of quantized superconducting
Abrikosov vortices, up to a field Hc2. The behavior of super-
conducting nanoshells can be derived from a variational ar-
gument in which we consider a nanoshell with a vortex line
along the z axis at a magnetic field Hc1	H	Hc2. This vor-
tex line punctures the shell in two points, forming “cores”
around which the two-dimensional �2D� superflow on the
surface takes place. The 2D superflow on the northern hemi-
sphere ��	
 /2� rotates anticlockwise around the unit vector
er at the core, whereas on the southern hemisphere
���
 /2� it rotates clockwise around the unit vector er at the
southern core. We will refer to the local flow pattern on the
northern hemisphere as a 2D vortex and to that on the south-
ern hemisphere as a 2D antivortex. When we ramp down the
magnetic field to a value H	Hc1, where the vortex state is
unstable, the vortex line, still parallel to the south-north axis,
is moved away from the poles �so as to expel vorticity from
the system�. In other words, the 2D vortex and 2D antivortex
move on their respective hemispheres toward the equator.
There, they can merge, and the clockwise and anticlockwise
flows cancel each other out, leaving a uniform order param-
eter. The dynamical behavior for expelling vorticity,
sketched above in a qualitative way, can be investigated
more rigorously using variational calculus on the Gibbs free
energy. In the case of thin shells, W��2 /R, the Gibbs free
energy becomes

�G =� d���������2 + ���2���� − H sin���e�	2

− 2R2���2
1 −
1

2
���2�� . �1�

In this expression, we use spherical coordinates with the z
axis parallel to the external magnetic field such that ��

=e��� /���+e� sin−1����� /���. Two experimentally tunable
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parameters remain: the radius of the nanoshell and the exter-
nal magnetic field. The external magnetic field H appears in
Eq. �1� as H= /0=
R2H0 corresponding to the amount
of flux quanta of the applied field that pass through the equa-
torial plane of the sphere. The radius of the shell appears as
R=R / �2��, which is the ratio of shell radius to the coher-
ence length multiplied by 2. To describe a vortex state,
where the core of the vortex on the northern hemisphere is at
�= ��v ,0� and the corresponding antivortex is at �
−�v ,0�
on the southern hemisphere, we use the trial wave function

����,��� = a�1 − e−R���1 − e−R�
−��� ,

���,�� = arctan
 sin � sin �

sin � cos � − sin �v
�

− arctan
 sin � sin �

sin � cos � − sin�
 − �v�� ,

where a is a variational parameter and

cos � = cos � cos �v + sin � sin �v cos��� .

As illustrated in Fig. 1, where the calculated Gibbs free en-
ergy is plotted for different values of the magnetic field and
for the particular case of R=5, the homogeneous external
magnetic field gives rise to an energy barrier that pushes the
2D vortex and the 2D antivortex away from the equator and
toward the poles, separating the pair. This is in remarkable
contrast with flat superconducting films in a homogeneous
magnetic field, where vortex-antivortex pairs tend to annihi-
late. Unlike the Bean-Livingston barrier,12 the present meta-
stability barrier is not caused by the interaction with an im-
age vortex but by the surface curvature. The inset of Fig. 1

illustrates the origin of the Magnus-Lorentz force, which is
responsible for the separation of vortex-antivortex pairs.
When multiple single vortices and antivortices are present,
they aggregate at the opposite poles, forming a vortex lattice
polar region.

The equatorial region remains a vortex-free “Meissner
state,” although a shielding current is present. The Meissner
belt at the equator represents a Cooper pair reservoir tangent
to the magnetic field. As shown in Ref. 13, the current-
carrying capacity of superconducting strips can be enhanced
by geometrical barriers, which result in the coexistence of
isolated vortex-filled regions with current-carrying vortex-
free Meissner regions. In the case of a nanoshell, we find that
the coexistence of the Meissner belt with the vortex lattice at
the poles aids superconductivity in a similar way. In Fig. 2
we compare the superconductivity phase diagram for
nanoshells and disks. The results, shown in this figure and
below, originate from a finite-element numerical solution of
the time-dependent Ginzburg-Landau �TDGL� equation, de-
scribed in Ref. 14 and applicable also to the case when mag-
netic fields, induced by supercurrents, are non-negligible.
The set of parameters, governing the solution of the TDGL
equation in Ref. 14, contains—in addition to R and H—also
the ratio WR /�2. Figure 2 corresponds to the case of thin
layers where WR��2. As seen from Fig. 2, for nanoshells
the region in the phase diagram where superconducting vor-
tex state is present is considerably expanded; superconduct-
ing nanoshells tolerate considerably higher magnetic fields
than superconducting disks.

Due to the presence of the Meissner belt, in relatively
large shells not only the Meissner state but also the thermo-
dynamically stable states with one or few quanta of vorticity
are characterized by a negative magnetic moment of the
shell, i.e., these states are always diamagnetic �see, e.g., Fig.
2 of Ref. 14�. Our calculations show that paramagnetic states
with one or few vortex pairs �or a pair of giant vortices� can
be thermodynamically stable only in sufficiently small and
thin shells. In Fig. 3, this is illustrated for the case L=1,

FIG. 1. �Color online� The Gibbs free energy of a vortex-
antivortex pair, displaced away from the poles down to a latitude �,
is shown for different values of the applied magnetic field. The
origin of the metastability barrier, which develops with increasing
the applied magnetic field, is a Magnus-Lorentz FM force pushing
vortices toward the poles, as illustrated in the inset. This force arises
from a differential velocity field across the vortex due to the inter-
play between the supercurrent of the vortex, proportional to the
phase gradient ��, and the screening supercurrent induced by the
magnetic field H.

+ Meissner belt

FIG. 2. �Color online� The phase diagram for a thin spherical
shell is compared to that of a flat thin disk. The shaded regions
show the values of magnetic field and radius where the supercon-
ducting �SC� state is supported. The solid lines correspond to the
boundaries between the thermodynamically stable normal and su-
perconducting states. The dashed lines correspond to the boundaries
between the thermodynamically stable Meissner and vortex states.
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where L is the number of quanta of vorticity present. For
small and thin spherical shells, the magnetic fields HL, which
correspond to the minima of the free energy for states with
L=1,2 , . . ., lie in the range where these states are thermody-
namically stable. As a result, those shells—when assumed to
be able to move freely—can manifest a rather peculiar be-
havior in a weakly inhomogeneous magnetic field �i.e., in a
field, which substantially varies only on a size scale much
larger than the shell radius�. Indeed, as illustrated in the inset
of Fig. 3, the values HL �which are almost insensitive to the
shell thickness W� strongly depend on R. This means that
shells with the same nonzero vorticity but different radius �as
well as shells with the same size but different vorticity� can
be spatially separated in an inhomogeneous magnetic field.
In a sense, this situation is analogous to the quantized levi-
tation, analyzed in Ref. 15 for a superconducting ring in the
magnetic field of another fixed ring �of course, while for the
levitating ring one should take care of keeping its orientation
parallel to the fixed ring, there is no need of such a care in
the case of spherically symmetric shells�. The aforedescribed
behavior of thin spherical nanoshells is in a remarkable con-
trast to the case of full spherical grains. As implied by the
results,16 based on the linearized Ginzburg-Landau equation,
as well as by our calculations for the nonlinear TDGL equa-
tion, thermodynamically stable states in full spherical grains
are always diamagnetic. This means that in an inhomoge-
neous magnetic field the thermodynamic equilibrium posi-
tion of all full grains will correspond to H=0 �or to the
lowest available value of H�.

III. FLUX HYSTERESIS

Vortices can only be expelled, or nucleated, near the equa-
tor, where the metastability energy barrier is high, enabling
flux hysteresis. In Fig. 4, the black solid curves show the
Gibbs free energy of the ground state as a function of the
magnetic field for a given shell geometry. The Meissner state
is thermodynamically stable below H�1.5, while for 1.5
	H	2.85, the state with a single vortex is stable. When the
magnetic field is slowly ramped up �green dashed curve�,

and down again �red dotted curve�, a clear hysteresis effect
in the vorticity is seen. Due to the metastability barrier, when
the field is ramped up, the vortex line is prohibited from
entering the nanoshell and vortices start nucleating at the
equator only at H�4.15 when the shell makes a transition
from the Meissner state to the state with three circulation
quanta. To expel all vortices from the shell, an external mag-
netic field has to be lowered down to H�0.5. Our calcula-
tions show that flux hysteresis is enhanced when increasing
the thickness and size of the shell; at WR��2 an external
magnetic field of opposite direction should be applied in or-
der to remove flux completely from the shell. We emphasize
that here the flux is trapped not by flux pinning at imperfec-
tions but rather by the topology of the system itself. While
the above simulations are performed for idealized spherically
symmetric nanoshells, in realistic nanoshells, inevitable im-
perfections may perturb the trapping potential for vortices. In
order to model the effect of those imperfections, we have
considered nanoshells with spatial variations in the
Ginzburg-Landau parameter �. According to the results of
our calculations, though the inhomogeneity of � usually
tends to destabilize metastable vortex states, this destabiliz-
ing effect on vortex trapping is not dramatic in the case of
relatively small variations in �. Our results imply that vortex
trapping should be robust also with respect to moderate de-
viations of the nanoshell shape from sphericity.

The particular dynamics of vortices entering the shell is
shown in Fig. 5. The distribution of supercurrents, typical for
a pair of 2D vortices, appears only when the separation be-

FIG. 3. �Color online� Boundaries of the region, where para-
magnetic states with L=1 on a spherical shell of radius R and
thickness W can be thermodynamically stable. Inset: magnetic
fields, which correspond to the equilibrium positions of thin spheri-
cal shells with vorticity L=1 and L=2 in an inhomogeneous mag-
netic field, as a function of the shell radius.
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FIG. 4. �Color online� Flux hysteresis in a superconducting
nanoshell. The Gibbs free-energy difference between the normal
and superconducting states is plotted as a function of the magnetic
field. The solid curve shows the thermodynamically stable state.
The dashed �dotted� curve corresponds to a slow increase �decrease�
in the applied magnetic field. Inset: on the left, a vortex pattern that
arises at high magnetic field �H=20� when a ringlike vortex in a
nanoshell with R /�=11.5 and WR��2 breaks up into separate
vortices. The color scale indicates the Cooper pair density from blue
�dark gray background� �high� to red �gray patches� �low�. The su-
percurrents are indicated by the arrow field. On the right, a cloud
pattern observed at the north pole of Saturn �Ref. 17�.
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tween the vortex cores is of the order of twice the coherence
length. As a consequence, vortex cores can only be present
outside a Meissner belt of latitudes ���M
�arctan�� / �2R�	 around the equator. Qualitatively, this
Meissner belt resembles the hurricane-free belt of 3° latitude
around the Earth equator. Expressing the Ginzburg-Landau
equations in hydrodynamic form, the resulting equations for
superfluid velocity and Cooper pair density are formally
similar to the shallow-atmosphere Euler equations used to
model atmospheric dynamics.18 As a result, there is a simi-
larity between the behavior of atmospheric vortices �cy-
clones� on the macroscopic globe and superconducting vor-
tices on the nanoshell. This is illustrated in the inset of Fig. 4
for the formation of polar vortex lattices. The lhs panel of
this inset shows a vortex pattern that arises on a nanoshell
when a ringlike vortex breaks up into separate vortices. The
rhs panel of the inset depicts a cloud pattern observed at the
north pole of Saturn. The initial axially symmetric state in
the nanoshell included nonuniform vorticity14,19 with a dif-
ferent angular-momentum state near the poles and near the
equator. Differential wind speeds �or superconducting cur-

rents� in two bands circling the pole lead to a depression �of
pressure in the atmosphere and of Cooper pair density in the
superconductor� in the interface between the bands. A modu-
lation of this depression reduces the energy in the case of a
superconductor—one can speculate that a similar mechanism
may be at work at Saturn’s pole.

IV. CONCLUSIONS

In nanoscopic superconductors, confinement potentials
and periodic modulation of material parameters have been
explored as tools to manipulate flux and quantum coherence.
Here, we have shown that the geometry of the sample can
also be used to manipulate flux. The spherical shell geometry
leads to two important properties: first, 2D-vortex-antivortex
pairs tend to separate rather than annihilate, and second, the
curvature enables the coexistence of a vortex state and a
Meissner �nonvortex� belt close to the equator on the same
surface. These properties result in a higher critical magnetic
field in a shell in comparison to a disk with corresponding
cross section. Also we find a pronounced hysteresis effect for
flux trapping in the nanoshell, allowing magnetic separation
of spheres with different vorticity in an inhomogeneous field.
Experimental techniques for producing monodisperse and
uniform SiO2 nanospheres20 that can be coated with a
metal11,21 such as niobium, either individually or in a film of
hemispheres, offer the prospect to probe the enhanced mag-
netic properties of nanoshells discussed in the present work.

Note added in proof. The authors thank G. Williams for
pointing out that curvature and topology affect the superfluid
transition as well as the superconducting transition. Curva-
ture effects in superfluids have been demonstrated in helium
films adsorbed in porous materials with small grain sizes,22

where the vortex dynamics is driven experimentally by
rotation.23–25
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