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We show that stable localized topological soliton textures �skyrmions� with �2 topological charge ��1 exist
in a classical two-dimensional Heisenberg model of a ferromagnet with uniaxial anisotropy. For this model the
soliton exists only if the number of bound magnons exceeds some threshold value Ncr depending on � and the
effective anisotropy constant Keff. We define soliton phase diagram as the dependence of threshold energies and
bound magnons number on anisotropy constant. The phase boundary lines are monotonous for both �=1 and
��2 while the solitons with �=2 reveal peculiar nonmonotonous behavior, determining the transition regime
from low to high topological charges. In particular, the soliton energy per topological charge �topological
energy density� achieves a minimum neither for �=1 nor high charges but rather for intermediate values �

=2 or �=3. We show that this peculiarity is related to the character of convergence of integrals defining soliton
energy and number of bound magnons at different �.
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I. INTRODUCTION

The studies of nonlinear excitations of two-dimensional
�2D� and quasi-2D correlated spin systems are an important
issue of modern physics of magnetism, and can be useful for
development of general soliton concepts.1–6 The topological
textures such as localized solitons �skyrmions7� or magnetic
vortices make an important contribution to the thermody-
namics of magnetically ordered systems,8 or even determine
the character of its ordering as in the case of Berezinskii-
Kosterlitz-Thouless transition.9,10 In recent years the interest
for two-dimensional solitons has grown since they are fre-
quently realized as ground state in the finite-size mesoscopic
magnetic samples, so-called magnetic dots.11 Skyrmions and
other types of topological excitations appear not only in
physics of magnetism but in other branches of physics.
Namely, 2D soliton textures have been subject of intensive
studies in mathematical physics,12 theoretical condensed-
matter physics �e.g., in Ginzburg-Landau theory of
superconductivity13,14�, as well as in some astrophysical
models �see, e.g., Ref. 15, and references therein�. The ques-
tions of dynamics and stability of one-dimensional �1D� soli-
tons have been considered in Refs. 16–18.

The most “famous” topological solitons are magnetic vor-
tices having �1 topological charge. These vortices are usu-
ally related to thermodynamic aspects of soliton physics.9,10

Also, they appear in mesoscopic nanostructures.11 Easy-
plane magnets with continuously degenerated ground state
have vortices with the energy being logarithmically divergent
as a function of system size. The other and much less studied
example of topological solitons is magnetic skyrmions which
are present in isotropic or easy-axis magnets. Contrary to the
above vortices, the latter textures are characterized by non-
trivial �2 topological charge and finite energy. It is known
that they determine the response functions of 2D magnets at
finite temperatures19,20 and take part in long-range order
breakdown in isotropic magnets.21 The skyrmions form

ground state of magnetic nanoparticles with easy-axis
anisotropy.22 Their analysis is more complicated as com-
pared to magnetic vortices and comprises many nontrivial
features. An important example of latter features is the prob-
lem of a skyrmion stability since due to Hobart-Derrick theo-
rem the static solitons with finite energy are unstable for
wide class of models including standard continuous magnetic
models.23,24

For magnetic vortices, the consideration of lowest pos-
sible topological charge �=1 is sufficient as the vortex en-
ergy grows with �, E�

vort��2. Because of that it is advanta-
geous for a vortex with ��1 to decay for � vortices with
�=1 and the vortices with �=2 can be stable in exceptional
cases only.25 The situation for skyrmions is not that simple.
The simplest continuous model for isotropic 2D ferromagnet
�FM�,

Wis =
Ja2S2

2
� ��m� �2d2x , �1�

admits the well-known Belvin-Polakov �BP� solution,21

which reads

tan
�

2
= �R

r
��

, � = �0 + �	 , �2�

where m� is normalized magnetization

m� = �sin � cos �;sin � sin �;cos �� , �3�

S is a spin value, a is a lattice constant of a 2D FM, J is its
exchange constant, r and 	 are polar coordinates in the XY
plane, and �0 is an arbitrary constant. Solution �2� has the
energy

E0� = �E0, E0 = 4�JS2, �4�

so that the state of BP skyrmions with ��1 merges or dis-
sociates into several other similar skyrmions with different
�’s �the only rule that in such process the topological charge
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should conserve� without their energy altering. Such exact
degeneration is related to very high hidden symmetry, stem-
ming from exact integrability of corresponding static model
�1� �see, e.g., Ref. 21�. This degeneration should certainly be
lifted if we go beyond the model �1�. The most important
characteristic here is the parameter E�, which is appropriate
to call the topological energy density,

E� =
E�

�
, �5�

where E� is the energy of a soliton with topological charge �.
If E� is a growing function of �, the most favorable state with
a given � comprises � solitons with unit topological charge;
otherwise such state is unstable. Latter question is especially
important for the investigation of general regularities of the
highly excited magnet state evolution, �see, e.g., Ref. 26 and
references therein� or for the analysis of essentially inhomo-
geneous magnet states under strong pumping.27 Latter states
can be generated by the ultrafast pulses of magnetic field, see
Refs. 28 and 29 for details. The preceding discussion dem-
onstrates that the problem of obtaining and investigation of
the stable skyrmions with higher topological charges is ex-
tremely important.30

The present work is devoted to the analysis of skyrmions
with higher �2 topological charges in 2D Heisenberg ferro-
magnet with uniaxial anisotropy �Eq. �6��. We show that
there exists a certain range of system parameters �exchange
and anisotropy constants� where stable precessional solitons
with topological charge ��1 exist. It turns out that, in wide
range of anisotropy constants, the topological energy density
E� of the textures with ��1 is lower than that of the textures
with �=1. On the other hand, the solitons with �=1 and �
�2 have monotonously growing phase boundary functions
E�,cr�N�,cr� while the case �=2 has peculiar nonmonotonous
behavior, determining the transition regime from low to high
topological charges. This means that the preferable values of
soliton topological charge are neither �=1 nor high charges
but rather �=2 or �=3.

II. MODEL DESCRIPTION AND SOLITON
CLASSIFICATION

We begin with the discrete model of a classical 2D FM
with uniaxial anisotropy, described by the following Hamil-
tonian

H = −
1

2�
n� ,a�

�JS�n� · S�n�+a� + 
Sn�
zSn�+a�

z � + K�
n�

��Sn�
x�2 + �Sn�

y�2� .

�6�

Here S� 	�Sx ,Sy ,Sz� is a classical spin vector with fixed
length S on the site n� of a 2D square lattice. The summations
run over all lattice sites n� and nearest-neighbors a� , J�0 is
the exchange integral, and the constant 
 describes the an-
isotropy of spin interaction. In subsequent discussion, we
refer to this type of anisotropy as exchange anisotropy �EA�.
Additionally, we took into account single-ion anisotropy
�SIA� with constant K. We consider z axis to be easy mag-
netization direction so that K�0 or 
�0.

The analysis of real magnetic systems with discreet spins
can be performed only numerically. In principle, it can be
done by the same method as was described in Ref. 31 but it
is not easy to extract necessary information from the set of
numerical data. On the other hand, if we neglect the specific
effects of discreteness �which appear at strong anisotropy
only, K , 
�J�, such as the presence of pure collinear
structures,31 the consideration can be simplified using the
continuous approximation and classical Landau-Lifshitz
equations. In this approximation we can introduce the

smooth function S��x ,y , t� instead of discreet variable S�n�t�.
In this case, the classical magnetic energy functional W�S��
can be constructed expanding the discrete Hamiltonian �6� in
power series of magnetization gradients, yielding

E� = W2 + W4 + ¯ , �7�

where W2 contains zeroth and second-order contributions to
magnetic energy, see Eq. �1�, and W4 contains the fourth
powers of gradients. The explicit expressions for W2 and W4
read

W2 =� d2x
Keff

a2 �S2 − Sz
2� +

J

2
��S��2 +




2
��Sz�2� , �8a�

W4 = −
a4

24
� d2x
J�� �2S�

�x2�2

+ � �2S�

�y2�2
+ 
�� �2Sz

�x2 �2

+ � �2Sz

�y2 �2� , �8b�

where � is a 2D gradient of the function S��r� , t�. Here, we
used integrations by parts with respect to the fact that our
soliton texture is spatially localized. Also, we introduce the
effective anisotropy constant

Keff = K + 2
 . �9�

We note here that single-ion anisotropy enters only W2 but
not W4 and higher terms while exchange anisotropy enters
every term of the expansion �7�. In the angular variables �3�
the expression for the classical magnetic energy �7� assumes
the form

E��,�� = W2 + W4,W2

= S2� d2x
Keff

a2 sin2 � +
1

2
�����2�J + 
 sin2 ��

+ J����2sin2 ��� ,

W4 = −
1

24
a2S2� d2x���2��2�J + 
 sin2 �� + ����4�J

+ 
 cos2 �� + J sin2 �����2�����2 + 2����2�

+ 2 sin � cos ���2���
����2 − J����2�� . �10�

For isotropic case K=0 and 
=0, W2 coincides with the
energy of the isotropic continuous model �1� bearing BP soli-
ton solutions of the form �2� with degenerate �with respect to
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topological charge� topological energy density �5�, see also
Eq. �4�. A simple accounting of magnetic anisotropy in W2
generates a model, which is typical example of the models
governed by Hobart-Derrick theorem—it does not admit
static stable soliton solutions. In the model with W=W2 only,
the size of any texture such as domain wall, soliton, etc. �see,
e.g., Ref. 31 for details� is given by the characteristic length
l0

l0
2 =

a2J

2Keff
. �11�

In the case of weak anisotropy, Keff�J, the length scale l0
a so that the magnetization varies slowly in a space.

Now we consider generalized model �7�, including higher
powers of gradients. Here we note that the entire expansion
of the energy E� in powers of magnetization gradients will be
sign alternating with a negative sign of the coefficient before
fourth order derivatives �Eq. �8��. Formally, a continuum
theory like this is unstable because the system can minimize
the energy infinitely by creating more and more magnetiza-
tion gradients. Below we will demonstrate that such instabil-
ity does not occur in our model since it would take place for
regimes l0�a where the gradient expansion is not valid. In
other words, the inequality l0�a corresponds to the case of
strong magnetization inhomogeneities at distances smaller
than lattice spacing a, where phenomenological description
is invalid.

In the expansion �7�, we limit ourselves to the terms of
fourth order only as they are playing a decisive role in soli-
ton stabilization, see Refs. 32 and 33 for details. The sim-
plest possible generalized model with account for W4 only
can in principle admit the above static stable solitons.2

Simple scaling arguments can demonstrate that. Namely, if a
skyrmion texture has localization radius R, the simple esti-
mations yield the dependence of the energy E� on R in the
form

E� = − A�

l0
2

R2 + B� + C�

R2

l0
2 , �12�

where the first term comes from W4 and the rest come from
W2. If E��R� had a minimum �this occurs if A��0�, this
would mean the existence of a stable static skyrmion. Unfor-
tunately, for the real model of magnet �Eq. �6�� A��0 so that
the first term is negative and the dependence E��R� does not
have a minimum. We note also that the expansion �7� and the
above scale arguments are valid for any symmetry of initial
2D discrete lattice. The only difference is in the coefficients
before gradient powers. Although these coefficients influence
the soliton properties, the main feature of these expansions,
consisting of the fact that in Eq. �12� A��0 remains the
same. In other words, we did not find any symmetry of 2D
FM with nearest-neighbor ferromagnetic interaction, where
E��R� has a minimum so that stable static soliton can exist.34

In the absence of static two-dimensional solitons, it is
possible to construct stable soliton states with stationary dy-
namics due to the presence of additional integrals of motion
for magnetization fields. The purely uniaxial model �6� pos-
sesses the exact symmetry with respect to the spin rotation

around z axis so that the energy functional E��� ,�� does not
depend explicitly on the variable �. This leads to the appear-
ance of an additional integral of motion: z projection of total
spin. This integral of motion can be conveniently param-
etrized via integer N defining a number of bound magnons in
a soliton N, see Ref. 5 for details. In continuous approxima-
tion it can be written as

N =
S

a2� d2x�1 − cos �� . �13�

Conservation of N leads to the presence of so-called preces-
sional solitons characterized by time-independent projection
of magnetization onto the easy z axis and with the precession
of the magnetization vector m� at constant frequency �
around the z axis,

� = ��r�,� = �t + �	 + �0, �14�

which holds instead of Eq. �2� in this case. The analogs of
such precessional solitons are known to occur in different
field-theoretical models; it is enough to note the nontopologi-
cal Coleman’s Q balls,35 which do not have topological prop-
erties as well as �2 topological Q lumps,36 see Ref. 2 for
details.

Stable dynamical solutions with nonzero � correspond to
conditional �for fixed N value� minimum of the energy func-
tional E�. Namely, we may look for an extremum of the
expression

L = E� − ��N , �15�

where � is an internal soliton precession frequency, which in
this case can be regarded as Lagrange multiplier. Note that
functional �15� is nothing but the Lagrangian of 2D FM mag-
netization field calculated with respect to specific time de-
pendence �14�. This condition leads to the relation5 ��
=dE� /dN, which determines the microscopic origin of the
precessional frequency �. Namely, an addition of one extra
spin deviation �bound magnon� to a soliton changes its en-
ergy by ��. Thus, the dependencies E��N� and ��N� are very
important for the problem of a soliton stability.

III. STRUCTURE AND STABILITY OF SKYRMIONS
AND CRITICAL ENERGY

Further analysis of above continuous model consists of
the solution of differential equations for soliton structure,
which is equivalent to the minimization of the functional �7�.
As these equations can barely be solved analytically, here we
analyze the soliton properties by direct variational method.
As we have shown earlier by comparison of variational ap-
proach and direct numerical minimization of initial discreet
energy on a lattice,31 the variational approach gives fairly
good results for weak anisotropies Keff�0.5J, where the
generalized continuous description is valid.

The continuous models such as Eqs. �1� and �7� are usu-
ally parametrized by angular variable �3� so that the energy
E� becomes a functional of these variables, E�

	E��� ,�� ,� ,���. Having energy functional E�, we can
write the corresponding Landau-Lifshitz equations and La-
grangian �15�.
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To apply direct variational method for minimization of the
energy E�=W2+W4, we use the trial function

tan
�

2
=

21−���R��

�� − 1�!
K���r� , �16�

where K��x� is the McDonald function with index �.37 Note
that trial function �16� is based on the interpolative solution,
constructed in Ref. 38. The trial function �16� gives correct
asymptotics both for r→0 �corresponding to BP soliton� and
for r→� �exponential decay with some characteristic scale
1 /��, see Refs. 5, 32, and 38 for details. Latter exponential
asymptotics is absent for solitons in isotropic 2D FM, e.g.,
for BP soliton �Eq. �2��. It can be shown that the exponential
asymptotics occurs for anisotropic models, where the length
of decay is proportional to l0 �Eq. �11��. It had been demon-
strated that, due to power-law asymptotics of ��r� for isotro-
pic magnet, the integrals defining soliton energy and number
of bound magnons �see below Eq. �21�� are divergent for �
=1.5,32,38 To avoid this divergency in anisotropic models such
as Eq. �6�, the interpolative �between BP asymptotics at r
→0 and exponential one at r→�� solution had been put
forward in Ref. 38. Our analysis of continuous model �7�
shows that at �=1 the above divergence can be cutoff by the
exponential asymptotics only. For �=2 the power-law as-
ymptotics is sufficient for convergence of corresponding in-
tegrals while their derivatives with respect to parameter �
are divergent. In this case, the divergences in derivatives are
also eliminated by exponential asymptotics. At ��2 all in-
tegrals and their derivatives �with respect to �� are conver-
gent. This means that the behavior of solitons with �=1 and
2 on one side, and those with ��2 on the other side is
different, being determined by the interplay between effects
of anisotropy and higher spatial derivatives.

In our minimization method, the parameter � is varia-
tional while the parameter R is kept constant as it is related
to N, N�R2, see, e.g. Ref. 5. In other words, we minimize
the energy E with trial function �16� over � for constant R.
This approach has the advantage that it also permits investi-
gating of the stability of obtained soliton texture. Namely, a
soliton is stable if it corresponds to the conditional minimum
of the energy at fixed N, and it is unstable otherwise.

To proceed further, we introduce following dimensionless
variables

x = �r, � = a�, z = �R , �17�

and express trial function �16� in terms of them. We have

tan
�

2
=

21−�z�

�� − 1�!
K��x� . �18�

Then using Eq. �13�, we can calculate the number of bound
magnons in the soliton

N

S
=

2�

�2 �
0

�

�1 − cos ��xdx 	
2�

�2 ��z� . �19�

In variables �17� the soliton energy assumes the form

E�

2�JS2 =
Keff

�2 �0�z� + �2�z� −
1

24
�2�4�z� , �20�

where

�0�z� = �
0

�

sin2 �xdx,

�2�z� =
1

2
�

0

�

xdx���2�1 + 
 sin2 �� +
�2 sin2 �

x2  ,

�4�z� = �
0

�

xdx
��x��2�1 + 
 sin2 �� + ��4�1 + 
 cos2 ��

+
�2 sin2 �

x2 ��2

x2 + 2��2� + �x� sin 2��
��2 −
�2

x2��,

�� =
d�

dx
, �x� =

d2�

dx2 +
1

x

d�

dx
. �21�

Thus, we express the energy and the number of magnons via
two parameters, � and z. It turns out that initial dimensional
variables � and R enter the problem only in the form of their
product z. The dependence of N and E� on z enters the prob-
lem via a few complicated functions �, �0, �2, and �4, which
can be written only implicitly in the form of integral �21�.
However, in terms of these functions, the dependence on �
�Eq. �20�� turns out to be quite simple. This permits refor-
mulation of the initial variational problem in terms of vari-
ables z and N only. Namely, we express

�2 =
2�

�N/S�
��z� , �22�

and substitute this expression into the dimensionless energy
�Eq. �20��. This gives us the expression for the energy of a
soliton with given N, as a function of variational parameter z.
Then we can find a minimum of E� with respect to z, keeping
N constant.

The result of such numerical minimization in the form of
the dependence E��N� is shown in Fig. 1 for a magnet with
purely exchange anisotropy 
=0.05. The curves for higher 

are qualitatively the same. To justify the applicability of our

FIG. 1. �Color online� Dependence of a soliton topological en-
ergy density E��N� for skyrmions with different �’s and exchange
anisotropy only, 
=0.05J �Keff=0.1J�. Dashed lines show E�,cr���
and N�,cr for �=1.
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direct variational approach, earlier we have shown31 that for
�=1 the dependencies E��N� found by variational and nu-
merical minimizations of the energy are identical at small
enough anisotropy, Keff�0.5J.

Our analysis shows �see also Fig. 1� that topological
energy density grows slowly as function of N. We note here
that this property holds for all anisotropy constants and
topological charges. Even more interesting is the fact that
all curves E��N� have threshold points E�,cr=E��N�,cr� so
that solitons exist only at E��E�,cr and N��N�,cr. These
threshold values determine the minimal soliton energy,
which is most important characteristic of soliton contri-
bution into magnet thermodynamics and can be observed
experimentally.19 For instance �see Fig. 1�, at �=1 and 

=0.05J E�,cr�18JS2, which is substantially higher than that
expected from Eq. �4� 4�JS2�12.56JS2.

Figure 1 demonstrates one more unexpected soliton prop-
erty, namely, that at 
=0.05J the energy density E��N� de-
creases with increase in � and fixed N value. As we will
show below, such behavior occurs for many values of Keff
although there can be exceptions. The most important fea-
ture, however, is the existence of above threshold energy and
bound magnon number values. The behavior of these values
at variation in anisotropy constants is quite nontrivial. For
example, at 
=0.05J �the value chosen for Fig. 1� Ncr��
=1��Ncr��=2� but Ncr��=3��Ncr��=1�. At the same time,
the corresponding threshold energies behave monotonically
Ecr��=1��Ecr��=2��Ecr��=3�. Our extensive analysis of
numerical curves E��N� for different anisotropies has shown
that their overall behavior is dictated primarily by the thresh-
old values: if E�,cr�E��,cr, then the entire curve E��N� lies
above corresponding curve E���N� in wide interval of N’s.
This shows the importance of the above threshold values for
the properties of solitons. The information about these values
can be conveniently represented in the form of so-called soli-
ton phase diagram, i.e., the dependence of Ecr and Ncr on Keff.

IV. SOLITON PHASE DIAGRAM

To obtain the phase diagram, we should pay attention to
the details of above minimization procedure. Namely, to ob-
tain truly stable soliton texture we should demand that the
conditional extremum of the energy E� is a minimum. So, we
keep track not only to the first derivative dE� /dz to be zero
but also to the second derivative to be positive �correspond-
ing to a minimum� at the point zmin, where dE� /dz=0. When
a soliton approaches the limit of its stability, the modulus of

second derivative diminishes, becoming zero at the stability
limit zcr, corresponding to above values E�	E�,cr and N
=N�,cr. Thus the above soliton phase diagram is indeed de-
termined by the instability point zcr �as a function of ratio
Keff /J� where both first and second derivatives of the energy
are zero.

The shape of the above phase diagram is determined by
the character of anisotropy and � value, and is reported on
Fig. 2 for exchange anisotropy. First of all, one can see that
the dependence Ecr��� is quite complicated and its character
changes twice, at Keff�0.07 and at Keff�0.29. It is seen
from Fig. 2�a� that, while there is a quite large region of Keff
values, where E2 and E3 are smaller than E1, the region where
E3�E2 is approximately three times smaller. We have shown
that E4 is always larger than E3 although still smaller than E1.
The energy Ecr��� is growing with � at Keff�0.29J only.

Figure 2�b� demonstrates the divergence of Ncr at small
Keff as �=1 and 2. This is related to the fact that in BP
soliton the integral describing N diverges logarithmically as
r→� for �=1, see also above.

Overall, Fig. 2 demonstrates the complicated behavior of
soliton phase diagram, which is needed to be understood. To
understand better the above complex behavior, it is instruc-
tive to obtain the phase diagram analytically. Without loss of
generality, we shall do so for the case of uniaxial anisotropy
only. Such analytical treatment is possible since the aniso-
tropy constant K in this case enters the problem only via
coefficient in the first term of Eq. �20�. This permits obtain-
ing of the analytic dependencies E�,cr�K� and N�,cr�K� in the
inverse form K�E ,N�. Note that the structure of Eq. �21�
suggests that the above analytical procedure is applicable for
both exchange and uniaxial anisotropies. Our analysis shows
that this does not change the situation qualitatively. More-
over, the quantitative results are close to each other, compare
Figs. 2 and 4.

As it was shown above, the soliton phase diagram is de-
termined by the instability point zcr. To obtain an equation
for latter point, we rewrite Eq. �20� in the form

E�

2�JS2 = a�z�y + b�z� −
c�z�

y
,

y =
N

S
, a�z� =

K�0�z�
2�J��z�

,

b�z� = �2�z�, c�z� =
�

12
�4�z���z� , �23�

FIG. 2. Soliton phase diagram. �a� Threshold
topological energy density �dashed line at small
Keff is described by Eq. �27��, �b� Threshold mag-
non number. Solitons exist at E�Ecr and N

�Ncr. For small 
 the value of Ncr is divergent as
1 /�Keff at �=1 and 2, and is constant at ��3.
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�function ��z� is defined by Eq. �19�� and equate to zero the
first and second derivatives of E� with respect to z. This gives
the equation for the dependence y�zcr� in the form

ycr 	 y�zcr� = −
b��zcr�c��zcr� − c��zcr�b��zcr�
a��zcr�c��zcr� − c��zcr�a��zcr�

, �24�

where primes mean corresponding derivatives. Then, the
equation for zcr can be obtained by substitution of above ycr
into one of the equations determining zero for first or second
energy derivatives with respect to z. It turns out that this
equation always has real solutions if we formally admit the
existence of negative K.

Dependence �24� permits obtaining of the equation for the
phase diagram in the implicit form K�zcr�, which reads

K�zcr� =
J

c��zcr�
�q��zcr�

�
ycr

2 + b��zcr�ycr ,

q�z� =
�0�z�
2��z�

. �25�

The dependence zcr�K�, obtained by inversion of Eq. �25�,
is reported on Fig. 3. It is seen that, while the entire curves
zcr�K� at �=1 and 2 lie at K�0, the curves for ��2 lie in
this range only partially. Since for uniaxial anisotropy K can
be only positive, only those parts of the curves with ��2,
where K�0 correspond to physically realizable case. This
clarifies the reason why the dependence Ncr�K /J� for skyr-
mions with ��2 begins from finite N values, see Fig. 2�b�.
This different behavior is related to the different kinds of

convergence of corresponding integrals at �=1 and 2 as well
as for ��2, see discussion above.

The dependence zcr�K /J� can be easily recalculated to the
soliton phase diagram Ecr��K /J� and Ncr�K /J�. This diagram
is shown on Figs. 4�a� and 4�b�. It is seen as the qualitative
coincidence with the numerical curves from Figs. 2�a� and
2�b�. The details of behavior can now be better seen than
from above numerical curves.

Our analysis shows that aforementioned different charac-
ter of convergence of integrals influences asymptotics of the
phase diagram curves at small anisotropies. This influence
can be seen from Figs. 2�a� and 4, where the dependence
E�,cr�K /J� at �=1 and 2 is nonanalytical at �K /J�→0 while
for ��2 it is analytical. The reason for such behavior can be
seen from Fig. 3, showing that small K /J correspond to
small z for �=1 and 2, while for ��2 all values of K /J
including limiting case K /J→0 correspond to finite z. This
means that at ��2 the asymptotic analysis of the curves
E�,cr�K /J� can be done simply by Taylor expansion at small
K /J, which yields simple monotonic behavior of E�,cr and
N�,cr.

At �=1 and 2 the situation is not so simple and requires
more complicated analysis. Such analysis can be performed
on the base of Eqs. �24� and �25�, and is quite cumbersome.
The main idea is that functions a�z�, b�z�, and c�z� in Eq.
�23� at small z can be represented via exponential integral
functions,37 which, in turn, may be expanded in asymptotic
series. This procedure for �=1 gives following parametric
dependence

K

J
=

18

ln 3
z4 ln6 z,

Ecr

4�JS2 = 1 +
4

ln 3
z2 ln4 z ,

Ncr

S
=

4�

9

1

z2 ln2 z
. �26�

Asymptotics �26� is shown by dashed line on Fig. 4�a�. In
the main logarithmic approximation this gives simple rela-
tions

E1,cr = 4�JS2�1 + C1
�K/J� , �27�

N1,cr =
SC2

�K/J
, �28�

which coincide with the results obtained in Ref. 31 by direct
numerical modeling of the discreet model, giving C1�1.87
and C2�5.65.

FIG. 3. �Color online� Dependence zcr�K /J�. Numbers near the
curves correspond to � values.

FIG. 4. �Color online� Soliton phase diagram
for the model with uniaxial anisotropy only. �a�
Threshold topological energy density �dashed line
at small K /J is asymptotics �26��. The inset ex-
pands the encircled area on the main panel and
shows the behavior of E2,cr at small K /J. �b�
Threshold magnon number. The ranges where
solitons exist are similar to those on Fig. 2. Num-
bers near curves correspond to � values.
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These expressions give us an idea about behavior of en-
ergy and bound magnons number at small K. Namely, we see
that the energy has the �approximate� square-root singularity
while magnon number N obeys inverse square-root law.
Asymptotics �27� is shown on Fig. 4�a� by dashed line.

For �=2 the same approximation gives

K

J
=

0.006 648 2

ln2 z
+

0.013 220 7z

ln2 z
,

Ncr

S
= − 187.047 ln z − 108.007,

Ecr

4�JS2 = 1 +
0.027 62

ln z
+

0.015 95

ln2 z
. �29�

This also yields the divergent N2,cr�K� and square-root pecu-
liarity in the energy E2,cr�K�. However, the coefficient before
�K /J in the energy is much smaller than that at �=1, which
makes it almost invisible in the scale of Fig. 4. The details of
this behavior are reported on the inset of Fig. 4�a�.

This shows the similarities and differences between cases
�=1 and �=2, which can also be seen from Fig. 4. Namely,
if the topological energy densities for skyrmions with �=1
and 2 have both square-root nonanalyticity, for �=2 this
nonanalyticity reveals only as a small cusp in a close vicinity
of K=0. Other peculiarity of �=2 case is nonmonotonous
behavior of Ecr2 �decreasing at K�0.1J with subsequent in-
crease�. Our analysis shows that the above peculiarities of
the skyrmion with �=2 are due to interplay between expo-
nential asymptotics of ��r�, necessary to cut off the diver-
gence at �=1 and 2 as well as power-law asymptotics, which
is sufficient for the convergence at ��2.

V. DISCUSSION AND CONCLUDING REMARKS

In this paper we present a comprehensive theoretical
study of the localized topological solitons �skyrmions�, sta-
bilized by precessional spin dynamics, for the classical 2D
ferromagnet with easy-axial anisotropy on a square lattice.
Our efforts were directed primarily toward the study of the
role of higher �2 topological charges ��1 on the above
soliton properties. Our main conclusion is that the interplay
between high topological charges, effects of lattice discrete-
ness �in the form of higher powers of magnetization gradi-
ents�, and uniaxial magnetic anisotropy makes many unex-
pected peculiarities into soliton properties as compared to
those in the simplest isotropic continuous model with W4
=0, containing BP solitons.

Similar to previous studies, it turns out that the presence
of even weak anisotropy makes solitons dynamic, i.e., those
with nonzero precession frequency for any number N of
bound magnons. The minimal consideration of discreteness
�via higher degrees of gradients of magnetization� yields the
existence of some threshold value of both soliton energy �to-
pological energy density �5�, which is more appropriate char-
acteristic for solitons with ��1� and the number of bound

magnons. Similar to the problem of cone state vortices,33 the
instability is related to the joint action of discreteness and
anisotropy.

As a result, the critical values of bound magnons N�,cr and
soliton energy E�,cr is present, and nonanalytic dependencies
of above threshold values on the anisotropy constant appear
at �=1 and �=2. It was shown earlier31 that the variational
minimization of W2 �i.e., energy, incorporating only squares
of magnetization gradients� gives no threshold for soliton
existence, i.e., the soliton exists everywhere up to N=0. This
means that mapping of the initial discrete model even for
small anisotropy Keff�J on the simplest continuum model
�Eq. �1�� is wrong, and to get the correct description of soli-
tons in 2D FM we have to consider at least fourth powers of
magnetization gradients. This seemingly paradoxical result is
actually due to the fact that the terms with ��m� �2 are scale
invariant �so that the corresponding energy has a saddle
point� while the �stable� soliton size is determined by the
fourth derivatives as well as by a magnetic anisotropy. Our
analysis shows that higher �than fourth� powers of magneti-
zation gradients do not change the situation qualitatively,
rather, in the range of above-studied Keff these terms make
only a small quantitative contribution to the soliton phase
diagram. This means that solitons with �=1 can be well stud-
ied within the model �7�. Earlier,32,39 this model had been
applied to study the dynamics and stability of skyrmions in
thin magnetic films. In the paper,39 the dynamics of skyrmion
is studied by means of Landau-Lifshitz equations with Hil-
bert relaxation term. Both papers32,39 consider the influence
of higher powers of magnetization gradients �due to effects
of lattice discreteness� and anisotropy on the skyrmion tex-
ture stability.

In summary, we have shown the existence of stable topo-
logical �2 solitons �skyrmions� in the 2D ferromagnet with
uniaxial anisotropy on a square lattice. Since for any 2D
lattice symmetry the structure of corresponding energy func-
tional �12� is the same, we may speculate that such textures
exist in any 2D magnet with uniaxial anisotropy. The main
nontrivial and unexpected result of the paper is that, while
the solitons with �=1 and ��2 have monotonously growing
phase boundary functions E�,cr�N�,cr�, the case �=2 has pe-
culiar nonmonotonous behavior, determining the transition
regime from low to high topological charges. This means
that the designated value of soliton topological charge, which
is expected for highly excited state of FM, is neither �=1 nor
high charges but rather �=2 or �=3. We show that the reason
for above nontrivial behavior is a different character of the
energy and magnon number integral convergence at ��2
and ��2. Namely, at �=1 the isotropic BP solution �Eq. �2��
yields the divergent integrals. In this case, the convergence is
ensured by the anisotropy-generated exponential asymptotics
of the function ��r� with the characteristic decay length l0
�Eq. �11��. On the contrary, for ��2 the genuine BP power-
law asymptotics is sufficient for integrals to be convergent.
Latter asymptotics is also peculiar to the generalized con-
tinuous model with account for higher powers of magnetiza-
tion gradients, see Eq. �12�. This means that at higher topo-
logical charges the soliton is stabilized by the higher-order
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derivative terms while at �=1 the stabilization occurs by the
anisotropy. Our analysis shows that at �=2 and �=3 the
integral convergence is determined more or less equally by
exponential �anisotropy-generated� and power-law �that is to
say, higher-order derivative generated� asymptotics. This
demonstrates the designated role of the cases �=2 and �=3
in soliton stabilization.
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