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We present ab initio spin-density functional calculations of the electronic and magnetic properties of Fe and
Ni nanostructures with a geometry varying between a straight linear wire and a three-dimensional nanorod.
With decreasing tension along the axis of the nanostructure we find a series of transitions first from dimerized
to periodic and zigzag wires, then to a planar triangular stripe, and further to a nanorod consisting of a periodic
stacking of triangular antiprims. In all nanostructures atoms are in a high-moment state, with magnetic mo-
ments of about 3.1�B for Fe and about 1�B for Ni. A transition to a low-spin or nonmagnetic state is initiated
at a fixed critical value of the interatomic distance, independent of dimension and coordination number. The
analysis of the electronic structure shows that already for the one-dimensional nanostructures the ratio between
exchange splitting and magnetic moment is close to the universal value I=� /M �1 eV /�B established for
bulk itinerant magnets.
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I. INTRODUCTION

The magnetism of nanostructured materials is an exciting
and timely field of research, stimulated by the interest in
novel fundamental physics and by many potential applica-
tions. Much effort has been spent on the investigation of the
influence of the dimensionality on the magnetic properties of
nanostructures. The properties of one-dimensional �1D� �or
quasi-one-dimensional� systems are particularly interesting.
On one hand, it is well known that the reduced coordination
of magnetic atoms in nanostructures leads to the formation of
strongly enhanced magnetic moments, on the other hand the
analysis of the properties of an isotropic Heisenberg model
has demonstrated that a strictly one-dimensional chain of
magnetic atoms does not order at any finite temperature.1

However, even straight monoatomic chains suspended in
space are not strictly one dimension due to the lateral exten-
sion of the electronic orbitals and the magnetic shape aniso-
tropy. In practice, arrays of magnetic monoatomic nanowires
may be produced by adsorbing atoms along the step edges of
vicinal surfaces of nonmagnetic substrates.2 In this case the
weak coupling between wires mediated by the support and
the magnetic anisotropy lead to an essentially two-
dimensional �2D� characteristics of the magnetic ordering
transition. For example, for arrays of monoatomic wires of
Fe atoms supported at the step edges of vicinal Cu surfaces,
it has been shown that the critical behavior is consistent with
that of a two-dimensional anisotropic XY ferromagnet.3 Both
the strength of the interwire coupling and the anisotropy pro-
mote magnetic ordering at finite temperature.

Short nanowires have also been prepared by driving the
tip of a scanning tunneling microscope �STM� into a metallic
substrate and extrusion of a small number of atoms from
either tip or surface upon retraction4–6 or in mechanical
break junctions.7–10 Depending on the strain on the wire, the
atoms will assume different configurations ranging from lin-
ear chains over zigzag chains to two-dimensional stripes and

three-dimensional �3D� rods. Electrochemical methods can
be used to prepare nanostructures of different shapes and
diameters varying between nanowires and nanotubes.11,12

Nanowires have also been produced by encapsulation in car-
bon nanotubes.13,14

Most theoretical investigations of the magnetic properties
of nanowires have been restricted to straight linear
chains.3,15–18 Studies allowing also for a zigzag geometry
were first performed by Sanchez-Portal et al.19 For Au wires
it was shown that the ground-state configuration consists of a
planar stripe of nearly equilateral triangles, in agreement
with the experiments of Onishi et al.4 and Yanson et al.5 on
wires drawn between two Au STM tips. Zigzag equilibrium
configurations were also established for nanowires consisting
of Cu atoms, simple metals �K, Ca, and Al�,19–21 and transi-
tion metals �Pd, Rh, and Ru,21 Zr,22 and Ti �Ref. 23��. Re-
cently Tung and Guo24 performed a comparative investiga-
tion of linear and zigzag nanowires of all 3d metals in
nonmagnetic, ferromagnetic, and antiferromagnetic states. It
was shown that for most metals, magnetism favors a zigzag
equilibrium configuration. The structural energy difference is
large �up to 1 eV/atom� for the ferromagnetic 3d-metals Fe,
Co, and Ni but much smaller for the antiferromagnetic met-
als Cr and Mn. For a zigzag Mn chain, ferromagnetic and
antiferromagnetic states are energetically almost degenerate.
For Ti and V the ground state is ferromagnetic for a linear
but nonmagnetic for a zigzag chain. This demonstrates a
strong correlation between the geometric and magnetic struc-
tures of nanowires. Very similar studies of periodic and finite
chains and stripes of transition metals have also been pub-
lished by Ataca et al.25

Magnetic nanowires formed by Fe, Co, and Ni encapsu-
lated in single-wall nanotubes have very recently been stud-
ied by Jo and Lee.26 For the nanowire a square profile with
zigzag Fe chains on each of the faces has been assumed, with
a periodicity along the axis matching that of the nanotube.
The magnetic moment of the wire is found to depend on the
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diameter of the nanotube; it is lower than in freestanding
wires for a wire tightly wrapped in a tube with small diam-
eter but may be even enhanced in loosely wrapped wires.

However, a consistent picture of the variation in the mag-
netic properties with a geometry changing gradually from
one to three dimensions is missing. The present work is de-
voted to ab initio density functional investigations of the
magnetic properties in low-dimensional nanostructures of Fe
and Ni, ranging from monoatomic wires over two-
dimensional stripes to three-dimensional rods.

II. COMPUTATIONAL SETUP

The quantum-mechanical framework of our investigations
is spin-density functional theory within the semilocal
generalized-gradient approximation �GGA�. We have used
the Vienna ab-initio simulation package �VASP� �Ref. 27�
which performs an iterative solution of the Kohn-Sham
equations for periodic boundary conditions in a plane-wave
basis. The basis set contained plane waves with kinetic en-
ergies up to 280 eV. The electron-ion interaction was de-
scribed by projector-augmented wave �PAW� potentials.28,29

The PAW approach shares the computational efficiency of
the pseudopotential approach but is an all-electron technique
avoiding the problems related to the linearization of the core-
valence exchange interaction �this is particularly important
for magnetic calculations�. We use the gradient-corrected
exchange-correlation functional proposed by Perdew, Burke,
and Ernzerhof �PBE�.30 The use of the generalized-gradient
approximation is essential for a correct description of the
structural and magnetic ground state of Fe.31 Using the PBE
functional we calculate for body-centered-cubic �bcc� ferro-
magnetic Fe a lattice parameter of abcc=2.832 Å �atomic
volume �=11.362 Å3�, a bulk modulus of B=1.66 Mbar,

and a magnetic moment of M =2.20�B. The corresponding
experimental values are abcc=2.867 Å, B=1.68 Mbar, and
M =2.22�B.32 For fcc Ni the calculated values are afcc
=3.522 Å, B=1.96 Mbar, and M =0.63�B, to be compared
with afcc=3.524 Å, B=1.86 Mbar, and M =0.61�B from
experiment.32

Nanostructures are modeled by an ensemble of six atoms
in a periodically repeated tetragonal cells with lateral dimen-
sions along the x and y axes of 17 Å. The axis of the nano-
structures �wire, stripe, or rod� is oriented along the z direc-
tion; tension or compression on the nanostructure was
simulated by changing the height of the cell. Relaxation of
the atomic structure was performed via a conjugate-gradient
method using the exact Hellmann-Feynman forces acting on
the atoms. Integration over the Brillouin zone was based on
12 special k� points. Convergence with respect to the number
of k points has been tested and it was found that a set of 12
special points leads already to well-converged results. A
straight monoatomic wire was produced by restricting relax-
ation to changes in the z coordinates of the atoms. Two-
dimensional stripes are generated by permitting relaxation in
a plane passing through the axis of the wire, while either
imposing equal interatomic distances along z �“xy relaxed”�
or allowing a full independent relaxation of five atoms in
three directions, imposing only the periodic boundary condi-
tions fixed by the cell size. The position of the sixth atom is
fixed in the center of the basis of the cell. Figure 1 shows
schematically the change in the atomic geometry of the
nanostructures as a function of the length of the unit cell for
two- and three-dimensional relaxations. If the atoms are con-
strained to remain within a plane, we observe with decreas-
ing tension a transition from a straight to a zigzag wire, the
formation of stripes based on triangular motifs, and finally
under compressive strain the disintegration into separated

FIG. 1. Variation in the geometric structures as a function of the length of the unit cell under �a� two- and �b� three-dimensional
relaxations. The �c� prismatic and �d� antiprismatic rods considered for comparison are also shown.
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parallel wires. If relaxation in all three Cartesian directions is
permitted, a transition to nanorods is observed. For compari-
son we include also nanorods formed by a periodic stacking
of trigonal prisms or antiprisms which are not spontaneously
formed upon compression of the cell. These two structures
are relaxed only in a plane perpendicular to the axis, while
the distance between the triangular base and top is fixed by
the periodic boundary conditions.

The analysis of the magnetic structures has concentrated
on collinear ferromagnetic configurations. For Ni this is in
no way a restriction, but for Fe this requires some comment.
bcc Fe is ferromagnetic, but for fcc Fe the magnetic ground
state is known to be an incommensurate spin spiral which is
slightly different from that defining a layered antiferromag-
netic structure.33,34 This raises the question whether for the
Fe nanostructures noncollinear magnetic structures have to
be taken into consideration. The magnetic order in Fe
monowires has been investigated by Spišák and Hafner.3 A
large magnetic energy difference of 0.35 eV/atom favoring a
collinear ferromagnetic relative to an antiferromagnetic state
has been found. For ultrathin Fe layers epitaxially grown on
Cu�100� substrate, Qian et al.35 discussed the possible for-
mation of a spin-density wave. A detailed investigation of
possible noncollinear magnetic ordering in this system has
been performed by Spišák and Hafner.36 It was shown that
up to a thickness of 4 monolayers, the Fe films are collinear
ferromagnetic. On the basis of this evidence, the present
study has concentrated on ferromagnetic Fe nanostructures.

III. IRON NANOSTRUCTURES

The binding energies �defined relative to the isolated at-
oms�, nearest-neighbor distances, and average magnetic mo-
ments for the local equilibrium configurations of nanostruc-
ture in one to three dimensions �from monoatomic wires to
antiprismatic nanorods� shown in Fig. 1 have been compiled
in Table I. These results already display some interesting
trends. Under increasing compression, the atomic configura-
tion changes in such a way that the nearest-neighbor distance
remains approximately constant �d�2.31�0.05 Å�, i.e.,
considerably lower than in bulk bcc Fe �d=2.45 Å�. All
nanostructures are in a high-moment state, the average mag-
netic moment decreasing slowly with increasing dimension-
ality �increasing coordination�, from 3.13�B for a monowire
to 2.75�B in an antiprismatic nanorod. These values span the
same range as the magnetic moments calculated for the open
Fe�100� �M =3.05�B� and the close-packed Fe�110� �M
=2.74�B� surfaces of bcc Fe.37 In the following paragraphs
we will discuss details of the structural, magnetic, and elec-
tronic properties of the nanostructures and of the transforma-
tions between the various configurations.

A. Wires and stripes

We start our simulations from a 1D monoatomic chain
with equal interatomic distances. Minimization of the total
energy with respect to the height c of the cell yields an
equilibrium bond length of d=2.269 Å �c=13.611 Å�, in
good agreement with the previously published results.3 This

value is somewhat smaller than the theoretical equilibrium
nearest-neighbor distance in bcc iron of 2.453 Å. At the
equilibrium distance the magnetic moment of the atoms in
the chain is 3.13�B, i.e., substantially larger than the mag-
netic moment of bcc iron �2.20�B�, due to the reduced coor-
dination number in the linear chain.

Figure 2�a� shows the total energy of one- and two-
dimensional Fe nanostructures as a function of the height of
the periodically repeated cell; Fig. 2�b� shows the corre-
sponding variations in the magnetic moments. Under tensile
strain, a dimerization of the chain, introducing alternating
short and long distances, is energetically favorable. A careful
analysis shows that already at average distances only slightly
larger than the equilibrium spacing of the straight monowire
�d=2.311 Å�, a dimerization with short and long bonds of
�1�0.117��d leads to a slight reduction in the energy by
about 19 meV/atom. Under increasing tension, dimerization
becomes increasingly preferred, and the difference between
short and long bonds increases. The length of the short bonds
approaches the equilibrium bond length in a free Fe2 dimer
�theory: 2.02 Å; experiment: 2.03 Å, as reported by Moroni
et al.31�. Due to the short distances in the Fe2 pairs, this leads
to a slight reduction in the magnetic moments. Compressive
strain leads to a rapid increase in the total energy and a
strong reduction in magnetism; for the straight monowire a
high-spin to low-spin transition starts at c�12.5 Å
�d=2.08 Å�.

In the range 7.0 Å�c�13.5 Å the formation of a zigzag
chain, gradually transforming to triangular stripes, allows to
lower the total energy. The energy minimum for a periodic
triangular stripe is found at c=7.594 Å. The interatomic dis-
tance along the z direction is 2.532 Å, the distances in the
oblique directions are slightly contracted to 2.235 Å, and the

TABLE I. Binding energy EB �eV/atom�, cell height c �Å�,
nearest-neighbor distances d �Å�, and average magnetic moment M̄
��B� of Fe and Ni nanostructures calculated at local equilibrium.

EB c d M̄

Fe

Monoatomic wire −1.869 13.611 2.269 3.13

Triangular stripe −2.857 7.594 2.235 2.92

Hexagonal stripe −3.072 4.730 2.365 2.84

Prismatic rod −3.063 4.963 2.268 2.91

Tetrahedral rod −3.261 4.863 2.275 2.87

Antiprismatic rod −3.578 3.864 2.310 2.75

Bulk bcc Fe 2.45 2.20

Ni

Monoatomic wire −2.027 13.086 2.181 1.11

Triangular stripe −2.778 6.916 2.305 0.92

Hexagonal stripe −3.108 4.702 2.317 0.88

Prismatic rod −3.124 4.567 2.232 0.80

Tetrahedral rod −3.211 4.675 2.266 0.80

Antiprismatic rod −3.322 4.076 2.223 0.85

Bulk fcc Ni 2.49 0.63
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angle in this isosceles triangle is 69°. The magnetic moment
at equilibrium is 2.92�B. If the constraint of equal inter-
atomic spacing along the z direction is lifted, we find that the
transition from straight to zigzag wires does not occur via a
homogeneous deformation: the formation of a triangular ar-
rangement starts in the central part of the wire and at
c�11 Å clustering is favored �see Figs. 1 and 2�a��. Upon
further contraction of the cell, the repeated clusters recon-
nect, but it is evident that the formation of a triangular pat-
tern starts from the central part of the cell.

If the cell height is compressed below 7.5 Å, the triangu-
lar stripe is under compressive strain and for c�6.5 Å a
transition to a stripe consisting of centered hexagons is ini-
tiated. Local equilibrium is achieved at c=4.730 Å—at this
point the interatomic distance along the z direction is
2.365 Å and the distance in the oblique directions is slightly
elongated to 2.411 Å, which is only slightly smaller than in
bcc Fe. The magnetic moment is higher for the atoms at the
outer edge of the stripe �2.92�B� than for the central atoms
�2.67�B�. The total energy is still higher by about 0.51 eV/
atom than in a three-dimensional configuration �see below�.
Upon compression beyond the local equilibrium state, both
the triangular and hexagonal stripes disintegrate to form
separated parallel wires. The transition to a nonmagnetic

state is initiated at c�6 Å for the triangular and at
c�4.5 Å for the hexagonal stripe.

B. Nanorods

The total energies and magnetic moments of the three-
dimensional nanostructures are displayed in Fig. 3. Forma-
tion of a nanorod is most easily initiated by twisting a trian-
gular stripe �forming the “transitional” structure shown in
Figs. 1 and 3�, leading to the formation of a rod formed by
distorted tetrahedra and square pyramids. The energy mini-
mum for this arrangement is reached at c=4.863 Å; the en-
ergy is lower by about 0.20 eV/atom than in the energetically
most favorable planar stripe. Close to this point, an arrange-
ment in the form of trigonal antiprisms is energetically de-
generate, but in contrast to the tetrahedral structure it allows
a further compression to c=3.864 Å. Alternatively, this
structure may also be viewed as a stacking of slightly dis-
torted octahedra sharing a triangular facet perpendicular to
the direction of the nanorod. At equilibrium �which defines
the reference energy for all nanostructures� Fe-Fe distances
in the isosceles triangle layers perpendicular to the z direc-
tion are 2.310 and 2.761 Å and Fe-Fe distances between
these layers are 2.480 and 2.384 Å. We have also tested a

FIG. 2. Variation �a� in the total energy and �b� in the magnetic moment in one- and two-dimensional Fe nanostructures with the height
of the repeat cell. Energies are measured relative to the lowest-energy configuration found for a 3D nanorod �cf. text�.

FIG. 3. Variation �a� in the total energy and �b� in the magnetic moment in two- and three-dimensional Fe nanostructures with the height
of the repeat cell. Energies are measured relative to the lowest-energy configuration found for a 3D nanorod �cf. text�.
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structure formed by triangular prisms, but we find it to be the
energetically least favorable structure among all 3D nano-
rods �see Fig. 3�. It is important to emphasize that the pris-
matic and antiprismatic rods are not formed spontaneously
upon compression of the 2D nanostructures. The antipris-
matic structure is energetically degenerate with the transi-
tional structure at c�5 Å, but to adopt this configuration,
bonds must be broken and reformed, and this is possible only
by overcoming a certain potential-energy barrier. Uncon-

strained relaxation of highly compressed structures would
lead to the formation of nearly planar arrangement of the six
atoms in the repeat cell—but to explore realistic structures in
this regime would require considerably larger models.

At equilibrium or under slight tension, the magnetic mo-
ments of the Fe atoms in the 3D nanorod range between
2.75�B and 3.0�B; due to the distortion from the ideal refer-
ence geometry slight differences appear between inequiva-
lent sites in the tetrahedral and antiprismatic clusters. Under

FIG. 4. Total and partial spin-polarized electronic DOSs of various Fe nanostructures in one, two, and three dimensions �see captions of
the different panels�, compared with the DOS of bcc Fe �cf. text�.
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compression a transition to a low-spin state is predicted for
prismatic and tetrahedral configurations at c�4.5 Å, while
in the antiprismatic configuration the magnetic moment de-
creases only slowly.

C. Electronic structure and binding

The changing dimensionality of the nanostructures is re-
flected in their electronic properties. Figure 4 shows the total
and partial spin-polarized electronic densities of states
�DOSs� for one-, two-, and three-dimensional arrangements.
For the straight linear nanowire the DOS consists of a super-
position of subbands of marked one-dimensional character
with a smeared van Hove singularity at the band edges �in a
strictly one-dimensional system the DOS varies as
1 /��E−Eb� close to the band edge at Eb�. The width of the
subband is largest for the dd	 bands formed by dz2 states
extended along the axis of the wire �and hybridizing with the
ss	 band�, lower for the dd
 bands formed by the dxz and dyz
states, and lowest for the dd� band formed by dxy and dx2−y2

states. In the spin-polarized DOS the Fermi level falls right
at the lower edge of the empty dd� band of the minority
states and approximately at the center of the minority dd

band, resulting in three spin-uncompensated electrons and a
magnetic moment of �3�B. The exchange splitting �mea-
sured by the difference in the center of gravity of the band� is
slightly larger for the dd� ����3.5 eV� than for the dd

band ��
�3 eV�. The ratio I=� /M �1 eV /�B between
exchange splitting and magnetic moment is close to the uni-
versal value of the Stoner parameter I characteristic for bulk
itinerant ferromagnets.38,39 The analysis of the difference-
electron density �defined as the difference between the self-
consistent electron density of the nanostructure and a super-
position of the electron densities of free atoms arranged in
the same structure� illustrates the accumulation of electrons
in the 	 and 
 bonds �see Fig. 5�.

The partial DOSs for planar geometries have been calcu-
lated for stripes lying in the x ,z plane. In a triangular stripe
the strongest contribution to the bonds parallel to the axis of

the wire comes from dd	 bonds between dz2 and dd
 bonds
between dyz states, while dd	 bonds between dxz states form
the main contribution to the transverse nearest-neighbor
bonds. Again the states extending perpendicularly to the axis
of the stripe form a narrow dd� band overlapping with the
antibonding component of the dd	 bands. The Fermi level
falls into the deep DOS minimum of the minority states
formed by the bonding-antibonding splitting. Hybridization
of all in-plane orbitals is rather strong—in the difference-
electron densities this results in a charge redistribution which
shows, in addition to the strong dxz−dxz �dFe-Fe=2.235 Å�
and weaker dz2 −dz2 �dFe-Fe=2.532 Å� two-electron 	 bonds,
the incipient formation of three-center bonds. The three-
center bonds are most pronounced in the clusters formed at
c�11 Å upon unconstrained relaxation. In a regular trian-
gular stripe bonding is based on strong oblique two-center
and three-center bonds, while the bonds parallel to the edges
of the stripe are comparatively weak �see Fig. 5�.

Hybridization between all in-plane d orbitals is strong in
hexagonal atomic stripes. Here one has to differentiate be-
tween atoms located at the outer edge and in the central
atomic row of the stripe—for the latter the bonding-
antibonding splitting is much more pronounced. The stability
of this geometry is reflected by the position of the Fermi
level in a deep minimum of the DOS of the minority bands.
The difference-electron density shows that bonding is based
on the formation of three-center bonds in the basic Fe tri-
angles. The transition from two- to three-center bonds is also
illustrated in the transition structure between the triangular
and hexagonal stripes �see Fig. 5�.

For the three-dimensional nanorods we show the DOS
only for the antiprismatic configuration. The preference for
the antiprismatic rods is reflected in a stronger bonding-
antibonding splitting than for the other geometries and by the
location of the Fermi level in a broad and deep DOS mini-
mum of the minority-spin states. The isosurface difference-
electron density distributions are shown for the “tetrahedral,”
prismatic, and antiprismatic configurations. The difference-
electron densities for the antiprismatic rod show charge ac-

0.1500

0.1125

0.0750

0.0375

0.0000

(a)

15 Å

(b) (c) (d)

11 Å 8 Å 6 Å 5 Å 4 Å13 Å

FIG. 5. �a� Contour plot of planar cuts through the difference-electron densities illustrating the chemical bonding in one- and two-
dimensional nanostructures. Parts �b�–�d� show isosurfaces of the difference-electron densities in �b� prismatic, �c� tetrahedral, and �d�
antiprismatic nanorods. Isosurfaces correspond to values of the difference-electron density of 0.075 e /Å3 �cf. text�.
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cumulation in the midpoints of two-center bonds, reaching
into the center of all triangular facets. In the prismatic ar-
rangement the bonding is distinctly stronger within the trian-
gular facets than along the all edges. Also in tetrahedral rod
the highest difference-electron densities are accumulated
along the nearest-neighbor bonds �perpendicular to the z
axis� and reaching into the center of each tetrahedron.

IV. Ni NANOSTRUCTURES

A. Geometric structures under varying tension

The binding energies, nearest-neighbor distances, and
magnetic moments of Ni nanostructures in local equilibrium
are gain compiled in Table I. The nearest-neighbor distances
are significantly smaller than in fcc bulk Ni, the magnetic
moments are strongly enhanced to up to 1.11�B, for the
three-dimensional nanostructures the values approach those
calculated for the more open Ni�100� and Ni�110� surfaces
�M =0.76�B�.40

The variation in the geometric structures of the Ni nano-
structures follows essentially the same pattern as described
above for Fe, albeit with some significant differences �see
Fig. 6�. For a straight monowire, the equilibrium interatomic
distance is 2.181 Å �c=13.086 Å�. The magnetic moment is
1.11�B �compared to 0.61�B in bulk fcc�. Under even a

slight tensile strain, the wire breaks up, forming Ni2 dimers
with a Ni-Ni distance of 2.10 Å and a magnetic moment of
1.10�B /Ni atom, which is in good agreement with the pre-
viously published results for Ni dimers.41 Even in the equi-
librium configuration, a straight linear chain is energetically
slightly less favorable �by about 66 meV/atom� than a zigzag
chain. Relaxation in two dimensions under the constraint of
equal distances along the z direction leads to the formation of
a triangular stripe reaching an energy minimum at c
=6.916 Å �with Ni-Ni distances of 2.305 and 2.317 Å, re-
spectively, and a bond angle of 60°�. In this state the mag-
netic moment is slightly reduced to 0.92�B. As for Fe, the
transition from a wire to a stripe does not occur by a homo-
geneous deformation, clustering is energetically favored at
intermediate cell height �see Fig. 6�. A modest compression
of the triangular stripe induces a transition to a broader stripe
with the Ni atoms forming centered hexagons. Equilibrium is
reached at c=4.702 Å, with a magnetic moment of 0.88�B.
Both one-dimensional wires and two-dimensional stripes un-
dergo an abrupt transition to a nonmagnetic state upon mod-
est compression. The critical value of the interatomic dis-
tance is d�1.9–2.0 Å for both wires and stripes.

The transition to a three-dimensional rod is illustrated in
Fig. 7. If a full relaxation of all coordinates is admitted, the
planar triangular stripe is found to be instable against the
formation of a transition configuration consisting of alternat-

FIG. 6. Variation �a� in the total energy and �b� in the magnetic moment in one- and two-dimensional Ni nanostructures with the height
of the repeat cell. Energies are measured relative to the lowest-energy configuration found for a 3D nanorod �cf. text�.

FIG. 7. Variation �a� in the total energy and �b� in the magnetic moment in two- and three-dimensional Ni nanostructures with the height
of the repeat cell. Energies are measured relative to the lowest-energy configuration found for a 3D nanorod �cf. text�.
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ing edge- and corner-sharing triangles leading to a structure
consisting of face-sharing tetrahedra and square pyramids
�“3D tetrahedral”�. This arrangement may also be viewed a
resulting from a shearing of the two triangular faces of a
prism. Rotation of the two triangles finally leads to the most
stable antiprismatic �or octahedral� arrangement of the Ni
atoms in the nanorod. In contrast to Fe at equilibrium �c
=4.076 Å� the antiprismatic structure consists of equilateral
triangles perpendicular to the axis of the rod, with Ni-Ni
distances of 2.223 Å. The distance between Ni atoms in dif-
ferent triangles is 2.416 Å. The structural energy differences
relative to the tetrahedral and prismatic rods are about a fac-
tor of 2 smaller than for Fe. At equilibrium, the magnetic
moments in all 3D configurations are about 0.85�B. Even a

modest compression causes the collapse of the magnetic mo-
ments in the prismatic and tetrahedral structures starting at
c�4 Å �d�2 Å�, while in the antiprismatic configuration
the magnetic moment decreases only gradually.

B. Electronic structure and binding

Our results for the spin-polarized partial DOSs of the Ni
nanostructures are compiled in Fig. 8. While the general
trends are similar as for the Fe nanostructures discussed
above, we also observe some characteristic differences. For
the linear chain the narrow dd� band is up shifted relative to
the broader subbands; the Fermi level falls in the region of
the highest DOS of the minority states. In both Fe and Ni

FIG. 8. Total and partial spin-polarized electronic DOSs of various Ni nanostructures in one, two, and three dimensions �see captions of
the different panels�, compared with the DOS of bcc Ni �cf. text�.
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nanowires the states at the Fermi edge are nearly completely
spin polarized. In the Ni wire, the exchange splitting is re-
duced to about 1.1 eV such that the value of the Stoner
parameter is again close to the universal value of I=� /M
�1 eV /�B. The electronic DOSs of both triangular and hex-
agonal stripes are characterized by a three-peaked structure
associated with the 	 bonds formed by dz2 and dxz orbitals, 

bonds formed by dyz orbitals, and � bonds formed by the dxy
and dx2−y2 states. Especially for the minority states this struc-
ture is more pronounced than for the Fe stripes. A strongly
structured DOS is also calculated for the 3D nanorods. The
energetic preference for the antiprismatic rod is evidently
promoted by the location of the Fermi level in a deep DOS
minimum of the minority DOS. Note that for both metals,
the DOS of the antiprismatic nanorod already approaches the
spectrum of the bulk metals: for Fe we observe a strong
bonding-antibonding splitting of the band like in the bcc
metal. For Ni, the splitting is strongly reduced, and the DOS
approaches the antisymmetric shape characteristic for a fcc
metal.

V. CONCLUSIONS

We have presented detailed spin-density functional stud-
ies of the magnetic properties in low-dimensional nanostruc-
tures of Fe and Ni, ranging from straight linear wires over
planar stripes to three-dimensional nanorods. With decreas-
ing tension on the system, the configuration changes from a
dimerized to a periodic linear chain over a zigzag chain first
to a planar triangular stripe and further to a three-
dimensional rod. These rods consist first of twisted arrange-

ment of corner- and face-sharing triangles and finally of a
periodic stacking of antiprismatic units. Ni nanostructures
tend to assume slightly more regular geometries. For ex-
ample, the triangular facets of the Ni antiprisms are equilat-
eral triangles, while the Fe antiprisms are formed by isosce-
les triangles.

In all nanostructures, Fe and Ni atoms are in a high-spin
state with almost constant magnetic moments of
3.0�B→3.1�B for Fe and 0.9�B→1.0�B for Ni. Indepen-
dently of the dimensionality of the nanostructure and the
coordination number, a transition from this high-spin to a
low-spin or nonmagnetic state is initiated at a critical inter-
atomic distances of 2.1→2.2 Å for Fe and 1.9→2.0 Å for
Ni. Note, however, that at these critical distances the low-
dimensional structures are already energetically less favor-
able than a structure with a higher dimension. The analysis
of the electronic densities of states shows that the ratio be-
tween the exchange splitting �as measured by the difference
in the positions of the center of gravity of the spin-up and
spin-down bands� and the magnetic moment is independent
of the dimensionality of the nanostructure and equals the
universal value I=� /M �1 eV /�B derived for bulk itiner-
ant magnets.
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