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In the insulating phase the cuprates exhibit long-ranged antiferromagnetic order which, however, breaks
down when they are doped to become metallic. Neutron scattering data show that upon doping the width w of
the magnetic structure factors S�q�� becomes broader and that their centers shift away from the antiferromag-
netic wave vector by an amount � which grows with increasing doping concentration. The spatial two-point
spin correlation can directly be determined from S�q��. Using the information available from the position and
width of S�q�� and assuming random spin phase distributions, we calculated the spin arrangement s�m in direct
space. s�m exhibits patterns of vertical and horizontal stripes of finite length such as a two-dimensional nematic
fluid. The finite length depends on the width w whereas the distance between two neighboring stripes is
proportional to �. Furthermore, the differences between experimental results obtained by neutron scattering and
by nuclear magnetic resonance are discussed.
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I. INTRODUCTION

The parent compounds of perovskite cuprate supercon-
ductors are insulators and exhibit quasi two-dimensional an-
tiferromagnetic �AFM� order in the CuO2 planes with weak
couplings to adjacent planes. The spins reside mainly on the
copper ions. Only by doping with holes, e.g., substituting
La3+ by Sr2+ in La2−xSrxCuO4 �LASCO� or adding oxygen in
YBa2Cu3O6+y �YBCO�, electric conduction is established.
For very small concentrations of dopant atoms these systems
remain antiferromagnetic insulators with the spin arrange-
ment in the planes described by

s�m = s�0�− 1�mx+my , �1�

where mx and my are the x and y components of the copper
site m. Upon further doping the antiferromagnetic order pa-
rameter vanishes and spin-glass-like states occur. This means
that the antiferromagnetic long-range spin correlation breaks
down and only a short-range correlation with changing ar-
rangements of spins lying in different domains exists,

s�m = s�0�− 1�mx+mypm. �2�

pm can take the values 1 or −1, depending on the particular
domain. Coppers between two domains �in domain walls�
can have no magnetic moment and are denoted by pm=0.
Increasing doping transforms the system from an insulator
into an electric conductor which at temperatures below the
transition temperature Tc exhibits superconductivity. Tc be-
comes larger with increasing doping, reaches a maximum,
and then declines for even larger doping.

The picture of the spin arrangement is thus very simple in
the undoped parent compounds. For doped systems, how-
ever, it becomes rather complicated and it leads to controver-
sies by comparing1 the results from nuclear quadrupole reso-
nance �NQR� and nuclear magnetic resonance �NMR�
experiments2 with those from magnetic neutron scattering.3–6

Of particular interest is the formation of stripes that oc-
curs in a certain range of doping concentration. In the sim-
plest version of a stripe arrangement doped holes are con-
fined by antiferromagnetic domain wall lines. Theoretically,

stripes were predicted by Zaanen and Gunnarsson7 who
treated a three-band Hubbard model in the Hartree-Fock ap-
proximation. Later studies which went beyond the simple
mean-field treatment of Ref. 7 showed that the phenomenon
of stripes is rather robust. Experimentally, stripes were first
found by neutron scattering in nickelates.8 Later, stripelike
features were also observed in cuprates �For a review, see
Ref. 1�.

For the undoped insulating materials, the magnetic struc-
ture factors S�q�� are peaked at the antiferromagnetic wave

vector Q� = �� /a ,� /a�, where a is the CuO2 plane lattice con-
stant. In the doped materials, however, the measured peaks

are located at Q� c,j, which are shifted from Q� by �0, �� /a�,
��� /a ,0�, and j=1, . . . ,4. The shifts � increase with in-
creasing doping concentrations, and the half-widths of the
peaks grow.

From the measured S�q�� the two-point spin correlation
function in the direct space can be determined. Due to the
lack of information on the phases of the spin values observed
in neutron scattering, however, a reconstruction of the spin
arrangement in direct space is not possible.

In the present work we assume that the phases are uncor-
related and determine spin arrangements in direct space. The
structure factors calculated from these theoretical direct
space spin distributions are in good agreement with the mea-
sured S�q��. In Sec. II the impact of holes on the spin and
charge distribution of the CuO2 plane is summarized. In Sec.
III spin distributions and Fourier spectra are discussed. Sec.
IV contains the summary and conclusions.

II. IMPACT OF HOLES

Because the copper oxides have to be doped to become
electric conductors or superconductors, metallic ions with
different valences �e.g., Sr or Ba instead of La� have to be
substituted or further oxygen atoms have to be added. In the
commonly adopted ionic picture, the copper atoms are in the
3d9 state, thus carrying a single intrinsic hole with spin 1/2.
In the antiferromagnetically ordered system the four Cu
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neighbors then deliver an energy gain of four times the ex-
change energy.

Additional holes �or electrons� change the spin arrange-
ments. Zhang and Rice9 put forward a model where one ex-
trinsic hole occupies the diamond-shaped tetragon between
four oxygen atoms in the CuO2 plane and alters simulta-
neously the total copper and oxygen charge and spin. The
particular copper spin at site m is either compensated or
shielded into the so-called Zhang-Rice singlet9 and acts like
a spin with value zero, and thus pj in Eq. �2� becomes zero.
The corresponding loss in antiferromagnetic exchange en-
ergy may be compensated by gains in kinetic energy or by
gains due to the formation of stripes.

The basic reasons for the formation of stripes in the frame
of the Hubbard or t-J model are given in Ref. 1 �see, e.g.,
Fig. 2.6�. An array of holes is energetically disadvantageous
due to the Coulomb repulsion. Holes on a domain wall, how-
ever, can move unimpeded by the spin system. In contradic-
tion to one-dimensional stripe structures10 the two-
dimensional stripe arrangements are in accordance with
recent neutron scattering measurements6 on nearly fully un-
twinned YBa2Cu3O6+x crystals.

III. SPIN DISTRIBUTIONS AND FOURIER SPECTRA

The magnetic scattering function measured with neutrons
can be written as11

S�q� ,�� = �
�,�

���,� − q�q�/q2�S���q,�� , �3�

where

S���q,�� =
1

2�
� dte−i�t�

m�
eiq�r�m� �s0

��0�sm�
��t�� . �4�

Here sm�
��t� denotes the � component of the atomic spin at

lattice site r�m� at time t. In the following we focus on the
equal time two-point spin correlation function:

gm�
�� = �s0

�sm�
�� �� d3qeiq�r�m� S���q�� , �5�

where the angle brackets denote an average over configura-
tions. In experiments, different scattering geometries and
mostly nonpolarized neutrons are used. For inelastic scatter-
ing S�q� ,�� is proportional to the imaginary part of the spin
susceptibility 	��q� ,��. Therefore, we consider the main
component of the diagonal part of the tensor quantity gm�

��

which we denote simply by gm� ,

gm� = �s0
zsm�

z � �� d3qeiq�r�m� S�q�� . �6�

Note, however, that this z component does not refer to the
crystallographic z direction but rather lies in the xy plane
depending on the particular experimental situation.

In first approximation, the structure factor3–5 measured for
La2−xSrxCuO4 or for YBa2Cu3O7 can be described by the
sum of four delta functions12

S�q�� � �
j

��q� − Q� c,j� , �7�

where Q� c,j denote the centers of the four peaks �j
=1, . . . ,4�. These delta functions are broadened due to lim-
ited instrumental resolution13 as well as due to physical prop-
erties of the investigated material. In the following it is as-
sumed that the instrumental resolution has already been
taken into account and that the broadening is related only to
deviations of the spin distributions from perfect alignment.

The broadening is described by a Gaussian distribution,

S�q�� � �
j

exp	− �
G�q� − Q� c,j��2
 . �8�

It is well known that static structure factors can well be
modeled by Gaussian distributions. On the other hand for
dynamic structure factors Lorentzian-shaped distributions are
often more appropriate. Since the neutron scattering data3–5

have been obtained from inelastic measurements for low en-
ergy transfers ��� is in the order of a few meV�, we have
applied for the further investigations a combination of
Gaussian and Lorentzian distributions as follows:

S�q�� � �
j

exp	− �
G�q� − Q� c,j��2


1 + �
L�q� − Q� c,j��2
. �9�

Defining 
�1 /w by


2 = 
G
2 + 
L

2 , �10�

with w the half-widths of the peaks, the broadening is

e−
2�q� − Q� c,j�
2

for 
2�q� −Q� c,j�2�1.
We note that this combination of Gaussian and Lorentzian

distributions is not essential for the discussion of the physical
nature of the spin arrangements. It has, however, some tech-
nical advantages as will be seen later.

A. One-dimensional case

In this subsection, only one-dimensional distributions in q
are investigated. As an example, S�q� is shown in Fig. 1 with
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FIG. 1. Fourier spectrum of the spin distribution in one dimen-
sion. �Qc,j −� /a�=1 /8� /a, 
G=8a, 
L=2a, and 
=8.246a.
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two peaks located at �Qc,j −� /a�=1 /8� /a with 
G=8a,

L=2a, and 
=8.246a. This corresponds to a hole doping
concentration of 1/8. Note that within the model a change in
hole concentration will change these parameter values. The
associated two-point correlation is displayed in Fig. 2.

A reconstruction of the direct space spin distribution sm
from S�q� is not possible since the structure factor is propor-
tional to the absolute square of s�q�,

S�q� � �s�q��2, �11�

and no information on the phases ��q�,

s�q� = �s�q��exp�i��q�� , �12�

is available from the experiments. We assume that the phases
��q� and ��q�� are uncorrelated for q�q�. According to the
spin-wave approximation, the eigenfrequencies of S�q� are
different from that of S�q��. Thus s�q� is proportional to

s�q� � �S�q�exp�i��q�� , �13�

and by Fourier back transformation one obtains

sm �� dq exp�− iqrm�s�q� . �14�

Using Eq. �14� the spin distributions are reconstructed by
assuming that all spins are either +1 or −1 as follows:

�m = sign�sm� . �15�

The spin distribution, which corresponds to the spectrum
shown in Fig. 1 and determined by assuming uncorrelated
phases, is displayed in Fig. 3�a�. It is seen that most nearest
neighbors are antiferromagnetically aligned but some
�marked by gray areas� are ferromagnetically aligned. These
energetically unfavorable arrangements at sites m and m+1
are now replaced by assigning a spin 0 to the site m. The
resulting modified spin distribution is denoted by �̃m and is
shown in Fig. 3�b�.

The motivation for modification of the distribution �m
into �̃m follows the arguments given by Brom and Zaanen.1

The singlet states introduced by the extrinsic holes no longer
interact magnetically with the neighbor copper spins plotted
in Fig. 2.6 of Ref. 1. Therefore, a spin to the left part of the
gray areas in Fig. 3�a� is replaced by a spin with value of 0.
Then, as shown in Fig. 3�b�, the neighboring spins of the
hole are now antiparallel arranged, leading to lower energies.

From this modified spin distribution a modified two-point
spin correlation,

g̃m = ��̃0�̃m� , �16�

is calculated and shown in Fig. 4. The corresponding Fourier
spectrum,

�̃�q� �� dr exp�iqrm�g̃m, �17�

is shown in Fig. 5.
The average distance between two holes accounts here for

eight lattice constants in accordance with the locations of the
peak maxima at Qc,j and �Qc,j −� /a�=1 /8� /a. Assumed
fluctuations of these distances are the reason for the finite
widths of the peaks in S�q�.

The spectrum �̃�q� shown in Fig. 5 which has been evalu-
ated from the modified spin distribution �plotted in Fig. 3�b��
can now be compared with the original Fourier spectrum
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FIG. 2. Two-point correlation of the spin distribution in one
dimension. The black lines denote gm obtained by Fourier transfor-
mation �Eq. �6�� of the spectrum S�q� shown in Fig. 1. �Qc,j

−� /a�=1 /8� /a, 
G=8a, 
L=2a, and 
=8.246a.
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FIG. 3. Spin arrangement in one dimension. The gray areas in
�a� show those neighboring spins which point in the same direction
leading to higher energy state. In �b� the modified spin polarization
distribution is shown where some copper sites have spin zero
�marked by 0�.
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S�q� that is depicted in Fig. 1. The former spectrum shows at
qa /�=0.625 and qa /�=1.375 small additional peaks. These
peaks correspond to higher harmonics because it has been
assumed that all spins of s̃m can only have the values +1, −1,
or 0. The phases of the excitations at qa /�=0.625 and 1.375
are therefore correlated with those at qa /�=0.875 and 1.125.
Applying a Gaussian with 
L=2 �Eq. �9�� the artifacts due to
the absence of the correlation by purely random phases can

almost be fully suppressed. Both spectra, �̃�q� �Fig. 5� with

G=8 and 
L=2 and S�q� �Fig. 1� with 
G=8.246 and 
L=0
differ only by a very small amount in the height of the main
peak maxima and the occurrence of the small higher harmon-

ics at qa /�=0.625 and 1.375 in S̃�q�.
Therefore, also the two-point correlations gm= �s0sm� �see

Fig. 2� do not differ very much from g̃m= ��̃0�̃m� in Fig. 4.
Both correlation functions are nearly identical, particularly
the nearest-neighbor �m=1� correlation. Both g4 and g12 van-
ish. This corresponds to the occurrence of the peak maxima
at Qc,j and �Qc,j −� /a�=1 /8� /a. The finite peak widths in
Fig. 5 characterized by finite 
G and 
L appear also in an
exponential or Gaussian fast decrease in gm and g̃m for larger
m and can be traced back to fluctuations of the distances
between succeeding holes in Fig. 3�b�.

B. Two-dimensional case

In neutron scattering data4,5 with all scattering vectors ly-
ing in the CuO2 plane, the maxima of S�q�� are located at

Q� c,j = �Qc ,0�, �−Qc ,0�, �0,Qc�, and �0,−Qc�. Using a similar
formalism as in one dimension the quantities s�q��, sm, �m,
and �̃m can be determined by using Eqs. �13�–�15� and the
relations given by Eqs. �16� and �17�. In Fig. 6 the spins are
arrayed in direct space with p= +1 of Eq. �2� �white clusters�
and with p=−1 �black clusters�. These clusters are separated
by gray �green� borders where p=0. White and black regions
form finite horizontal and vertical stripelike patches. Because

�Q� c,j − �� /a ,� /a��=1 /8� /a the average distance between
two patches with the same color is 16 a. From these spin

distributions also �̃�q�� and g̃m= ��̃0�̃m� are calculated �see
Fig. 8�.

Our patch distribution shown in Fig. 6 answers the ques-
tion asked in Ref. 1 of how the regions that have either
horizontal or vertical arranged stripes can be separated. The
energy is lower for very long stripes. On the other hand, the
entropy term in the free energy favors small stripe length.
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FIG. 4. Correlation of the modified spin distribution in one di-
mension. The black lines denote g̃m �Eq. �16�� with 
=8.246a and
�Qc,j −� /a�=1 /8� /a.
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FIG. 5. Fourier spectrum of the spin distribution �̃�q� in one
dimension according Eq. �17� with 
=8.246a and �Qc,j −� /a�
=1 /8� /a.
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FIG. 6. �Color online� Two-dimensional spin arrangement cal-
culated in direct space. �a� Large system. �b� Zoom of a part of �a�.
White regions denote �̃mx,my

with p= +1 of Eq. �2� and black re-
gions with p=−1. They are separated by gray �green� borders with

p=0. �Q� c,j − �� /a ,� /a��=1 /8� /a, 
G=15a, and 
L=0a.
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This balancing is mapped in the neutron scattering data by
the width of the peaks in the q� space.

From the two-dimensional spin arrangement displayed in

Fig. 6 the structure factor �̃�q�� is recalculated �see Fig. 7�.
This �̃�q�� can now be compared with the peaks measured by
magnetic neutron scattering.4,5 The agreement is excellent.
The spatial arrangement of the calculated peaks in q space
corresponds to the two-point correlation function g̃m in direct
space shown in Fig. 8 which exhibits large squares turned by
45°.

As shown in the one-dimensional case in Fig. 4, the two-
point correlation reaches its maximum for x=0 and y=0.
Then for x=8a and y=0 a gray color appears denoting no
correlation. This correlationless band is continued through
the hole picture in �45° directions and is continued for x
=24a and y=0. Furthermore, the correlation maxima become
weaker with increasing distance from the coordinate origin.
As in one dimension this is due to the distance fluctuations

between black-and-white-dot-like spots in Fig. 6�b� and cor-
responds to the finite peaks widths in Fig. 7.

At this point it is appropriate to discuss the difference of
experimental results obtained by neutron scattering and by
NMR or muon spin rotation spectroscopy ��SR�. NMR and
�SR are local probes and sensitive to fluctuations with char-
acteristic frequencies in the order of GHz or lower. Neutrons,
on the other hand, are a global probe, and the data3–5 dis-
cussed above have been obtained from dynamic measure-
ments in the scale of THz.

We first comment on the local versus global probe as-
pects. In view of Fig. 6 the neutrons see the periodic arrays
of the stripes. Thus the shifts of the spin-fluctuation peaks
away from the AFM wave vector reflect rather the appear-
ance of discommensuration14 than incommensuration. Within
a particular domain where the local probes measure, the
short-range AFM correlation is still present. For an oxygen
nucleus, in particular, the spin-lattice relaxation rate depends
on the magnetic moments located on its two nearest-
neighbor copper ions which are antiferromagnetically corre-
lated.

As this concerns the dynamics, we note that the patterns
depicted in Fig. 6 correspond to a snapshot taken on the time
scale of 10−12 s. For longer times, it is expected that the
stripelike patterns change and meander in the CuO2 plane.
For NMR and �SR experiments most of the dynamics of
these patches are averaged out. The nearest-neighbor AFM
correlation survives the longest but most likely with a re-
duced absolute value. The correlations between a spin and its
second and third neighbors, which affect the copper spin-
lattice relaxation, decay earlier. Generally, the spatial AFM
correlation length observed with NMR and �SR is likely
appreciably shorter than that determined from neutron scat-
tering.

It should be noted that other experiments also show
space-modulated structures, in particular, resonant x-ray
scattering and scanning tunneling spectroscopy.15–17 These
measurements, however, are sensitive to the surface of the
sample. The influence of the time scale, which has been men-
tioned above, is also important for interpretation of these
measurements but out of the scope of the present investiga-
tion.

IV. SUMMARY AND CONCLUSIONS

The spin-fluctuation spectrum in La2−xSrxCuO4 measured
with magnetic neutron diffraction shows at low temperatures

four peaks centered at Q� c,j. The distance of each Q� c,j from
the antiferromagnetic wave vector increases with Sr
doping.18 This implies the occurrence of antiferromagnetism
modified by incommensurable spin arrangements. We have
shown how such spectra can be simulated by using the val-

ues of Q� c,j and the width of the measured peaks as param-
eters. Furthermore, uncorrelated random phases have been
applied to reconstruct the complex spin distribution s�q�� in
the q� space. In the direct space, however, the spin distribu-
tion s̃m is modified since the introduction of holes leads to
the formation of Zhang-Rice9 singlets which locally destroy
the AFM order. The resulting spin arrangement s̃m yields
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(0.5,1.5) (1.5,1.5)

qya/π

qxa/π

FIG. 7. Fourier spectrum �̃�q�� of a spin distribution �̃mx,my
in

two dimensions. The darkest part of the peaks is 1 /8� /a apart

from the antiferromagnetic point �� /a ,� /a�. �Q� c,j − �� /a ,� /a��
=1 /8� /a, 
G=15a, and 
L=0a.
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x

FIG. 8. Spin-spin correlation in two dimensions. Positive corre-
lations are white or bright, and negative correlations are black or

dark. Grey squares denote correlations close to zero. �Q� c,j

− �� /a ,� /a��=1 /8� /a, 
G=15a, and 
L=0a.
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regions containing spins ordered with p= +1 of Eq. �2� and
with p=−1 which are separated by horizontal and vertical
stripes with p=0 as they are predicted by application of the
t-J model.1 The reduction in the exchange energy given by
the parameter J can overcompensate the energy increase by
the Coulomb repulsion of the holes in the chaines.1 Our two-
dimensional stripe arrangements are supported by recent
neutron scattering data.6 Finally, the two-point correlation

functions g̃m and the spin-fluctuation spectrum �̃�q�� have
been recalculated und discussed.
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