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Understanding the behavior of topologically ordered lattice systems at finite temperature is a way of assess-
ing their potential as fault-tolerant quantum memories. We compute the natural extension of the topological
entanglement entropy for T�0, namely, the subleading correction Itopo to the area law for mutual information.
Its dependence on T can be written, for Abelian Kitaev models, in terms of information-theoretical functions
and readily identifiable scaling behavior, from which the interplay between volume, temperature, and topo-
logical order, can be read. These arguments are extended to non-Abelian quantum double models, and numeri-
cal results are given for the D�S3� model, showing qualitative agreement with the Abelian case.
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The notion of topological order was first introduced in the
context of the fractional quantum Hall effect.1 It aims at
identifying phases that cannot be separated by local-order
parameters. Such phases can exhibit exotic phenomena such
as topologically protected ground-state degeneracy or quasi-
particle excitations, called anyons, with statistical behavior
that is different from bosons or fermions.2 Besides the fact
that they reveal unusual states of matter, topologically or-
dered systems are also interesting because they might allow
for intrinsically fault-tolerant quantum computation.3,4 In
such systems, the division of a quantum algorithm as initial-
ization, unitary evolution, and readout5 would translate into
creating anyons, braiding them and fusing them back to the
vacuum, respectively. While conceptually appealing, the ro-
bustness of this topological quantum computation against re-
alistic noise models is far from being fully assessed.

This paper is devoted to quantifying how temperature af-
fects a topologically ordered medium. For that, we will use
an entropic topological order parameter Itopo and focus on
lattice spin systems that are exactly solvable.3,6 We will show
that, at any fixed temperature, Itopo is nonzero only if the size
of the system is finite. Importantly, we will exhibit a scaling
relation describing how a given increase in the system size
can be compensated by a vanishing decrease in the tempera-
ture. After recalling some notions on the topological entropy,
we will provide a complete analysis for the simple toric code
model. Then, we will turn to more general models, show
how to compute entropic quantities, and provide numerical
evidence for scaling laws in the case of the simplest non-
Abelian quantum double model, the one based on D�S3�.3
Itopo has an information-theoretical meaning in terms of ther-
mal anyonic charge probability distributions and is therefore
probably relevant for topological quantum computation,4 as
will be argued in Ref. 7.

We start our discussion by briefly recalling the notion of
topological entropy.8,9 It will play a central role in the fol-
lowing. Let us consider a two-dimensional many-body quan-
tum system in a pure state of its ground subspace and let
R :Rc denote a bipartition of this system, with R being con-
nected. Let us further assume that our system satisfies an
“area” law. That is, the von Neumann entropy of region R

grows linearly with the size of its boundary, SR
=−tr �R ln �R=����R�−��+��R�, where �R denotes the re-
duced density matrix corresponding to region R, �� is a con-
stant, and where lim��R�→� ��R�=0. As first pointed out in
Ref. 10 and further analyzed in Refs. 8 and 9 a nonzero value
for the constant correction �� is typical of topologically or-
dered systems. Indeed, �� is a topological invariant of the
system and is related to the quantum dimension D of the
model at hand as ��=ln D.

Let us consider a system defined on a torus or on a sphere
and divide it into four regions A, B, C, and D �see Fig. 1�.
We will use

Itopo = IA + IB + IC − IAB − IAC − IBC + IABC �1�

as a topological order parameter. �IR=SR+SRc −SR�Rc denotes
the mutual information between a region R and its comple-
ment Rc.� This definition of Itopo amounts to replace von
Neumann entropies by mutual information in the definition
of topological entropy introduced in Ref. 9. At zero tempera-
ture, Itopo=−2��. Our choice is motivated by the fact that, at
finite temperature, the mutual information between a region
R is a measure of the correlations of this region with its
environment. The lattice systems we are going to study obey
an area law

IR = ���R� − � �2�

and have a finite correlation length �.11 Therefore, Itopo is a
quantity where correlations due to a finite � cancel out and
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FIG. 1. Division of a torus �or a sphere� into four regions.
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that reveals correlations due to topological order only, as the
topological entropy �� at zero temperature.8 Direct substitu-
tion of Eq. �2� into Eq. �1� shows that Itopo=�.12

We now want to compute Itopo at finite temperature for the
toric code.3 Consider a torus T tiled into L	L square
plaquettes. Let us associate a two-level system �“spin”� with
each edge of this tiling and let us assume that these spins
interact through the Hamiltonian

H = − �
p

Bp − �
s

As, �3�

where the index p �s� runs over all plaquettes �vertices� of
the tiling. The operators Bp and As are defined as Bp
=�i�p
i

z and As=�i�s
i
x. The Hamiltonian H is made of lo-

cal terms, all commuting with each other and, as it turns out,
its eigenstates can have arbitrary values for the operators Bp
and As up to the constraint �pBp=�sAs=1. Therefore, these
eigenstates are labeled by a triple of quantum numbers:
�� ,c ,w�. A pattern � denotes the position of all plaquette or
“flux-type” excitations, a pattern c indicates the position of
all vertex or “charge-type” excitations, and w indexes the
topological degeneracy of the state for a fixed configuration
of defects. The latter quantum number is made of two bits
�w1 and w2� that label the values of the integrals of motion of
z operators around noncontractible loops on the torus �Wil-
son loops�.3 We have

H��,c,w� = �E0 + 2��� + 2�c����,c,w� , �4�

where E0=−2L2 is the ground-state energy and ��� ��c�� de-
notes the number of flux excitations �charge excitations� of
the pattern � �c�. If Pi denotes the projector onto the sector
of energy Ei=E0+4i and di=tr Pi denotes its dimension, we
have that di=4�n�,nc�L2/2�n�+nc=i�

L2

2n�
�� L2

2nc
�.

We now compute all the thermodynamical quantities
we need, assuming that our system is at thermal equilibrium
at inverse temperature . Some details of our calculations
will be presented elsewhere.7 The partition function reads

Z� ,L� = tr e−H = �i=0
L2

e−Eidi = ��2 cosh �L2
+ �2 sinh �L2

�2

and the von Neumann entropy of the state �=e−H /Z� ,L�
of the whole torus is derived from the identity

Stot = ln Z − �/Z� � Z/� . �5�

In order to compute the von Neumann entropy of a region R,
and eventually Itopo, we first observe that �R�� ,c ,w�
=trRc

�� ,c ,w�	� ,c ,w� �Rc=T \R� depends on w only if R con-
tains noncontractible loops �w cannot be measured locally�.
Also, up to total charge conservation, �R�� ,c ,w� will only
depend on the excitations located on plaquettes and crosses
inside R. Therefore, we distinguish between three types of
flux excitations: those located on plaquettes with support on
R, �R, those located on plaquettes with support on Rc, �Rc

,
and those located on plaquettes with support partially on R
and partially on Rc, ��R. Similarly, we divide the charge
excitations into cR, cRc

, and c�R. The crucial observation that
helps to compute �R=trRc

e−H /Z� ,L� and eventually S��R�
is that �R fluxes and �R charges can be driven inside Rc by
application of Pauli operators acting on links of Rc; that is,
�� ,c ,w� is of the form URc

��R ,�Rc
,cR ,cRc

,w� for some uni-

tary operator URc
. To lighten the notations, let us denote by

qR and qRc
the patterns of excitations �both flux and charge�

in R and in Rc, respectively. All excitations in R �Rc� can be
fused into a single excitation qR

1 �qRc

1 � through a unitary op-
erator UR��qR ,qR

1� � URc
� �qRc

,qRc

1 � that relates �qR ,qRc
,w� and

a state �qR
1 ,qRc

1 ,w�, such that R and Rc contain at most one
excited plaquette �vertex�. As in Ref. 3, we will call site a
plaquette and an adjacent vertex. The possibly excited
plaquette and the possibly excited vertex within R �Rc� can
always be chosen to form a site. The state �qR

1 ,qRc

1 ,w� can be
obtained, from a ground state �� ,w�, by a product of unitary
operators along a string connecting the site where qR

1 is lo-
cated to the site where qRc

1 is located. In summary, �qw� can
be written as UR�qR� � URc

�qRc
,q�R��� ,w� for some unitary

operators UR�qR� and URc
�qRc

,q�R�. �q�R refers to the charges
which are neither fully in R nor fully in Rc.�

We are now in a position to compute SR. The thermal state
of the toric code reads

� = �
w,q

e−�E0+�E�q��

Z�,L�
�q,w�	q,w� , �6�

where �E=2 is the energy associated with a single excitation
and where q=qR�qRc

�q�R. Therefore the reduced density
matrix of the system R reads �R

=�w�qR,qRc
,q�R

e−�E0+�E�q��

Z�,L� trRc
�UR�qR��� ,w�	� ,w�UR�qR�†�. To

simplify further this expression, we observe that two reduced
states �R�� ,c ,w� and �R��� ,c� ,w�� are orthogonal whenever
��R ,cR�� ��R� ,cR��. Indeed two such states can be perfectly
distinguished through a measurement of As or Bp operators
having support on R. Therefore, the sum �qR

is actually a
direct sum. If we assume that R is contractible in neither of
both directions on the torus, then the values of the Wilson
loops w can be revealed by measurements having support
fully on R and the sum �w also turns to be a direct sum. So,
�R can be written as

�R = �
w,qR

C�qR�trRc
UR�qR,x���,w�	�,w�UR

†�qR,x� , �7�

where 4C�qR�= 4e−2�qR�

Z�,L� �q�R,qRc
e−�E0+2�q�R�+2�qRc

�� is the mar-

ginal probability of a configuration of defects qR. It is de-
composition �7� that allows us to compute SR exactly. From
it, we find that SR separates into a ground-state area contri-
bution and a finite  contribution

SR = SR
gs + V„,Np�R�,L… + V„,N��R�,L… , �8�

where SR
gs=S�trRc

�� ,w�	� ,w��= ���R�−1�ln 2 �Ref. 10� and
where Np�R� (N��R�) denotes the number of plaquettes
�crosses� fully contained in R. The function V can be com-
puted exactly using elementary combinatorial identities.7

When �R is fully contractible, the direct sum over w appear-
ing in Eq. �7� should be replaced with a simple sum. As a
result, the expression for SR picks a −ln 4 additive correction.

We have used Eq. �8� to compute Itopo. We have found that
at any finite , Itopo vanishes in the limit where L→�, a
result that is consistent with those of Ref. 13 and indicates
that �i� the toric code exhibits no temperature-driven phase
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transition for Itopo and that �ii� the toric code is likely not a
scalable quantum memory in the strictest sense5 as far as
temperature-induced errors are considered.14 Our computa-
tions also reveal that the mutual information between a re-
gion R and its complement satisfies an area law of the form
Eq. �2�. Computing Itopo from it in the limit L→� and con-
sidering ��R�=4�L, with ��1, we have found a remarkably
simple expression

Itopo = 2 ln 2 − h2�pp
even� − h2�p�

even� , �9�

where h2�x�=−x ln�x�− �1−x�ln�1−x� denotes the Shannon
entropy of a binary outcome random variables, pp

even
 p�
even


�1+��2L2
��1+��1−�2�L2

� /2�1+�L2
� is the probability that re-

gion R contains an even number of excited plaquettes
�crosses�, with �=tanh . Equation �9� allows us to under-
stand simply why Itopo vanishes at finite temperature when
L→�; in this limit, pp

even
 p�
even
1 /2. This equation also

reveals a scaling law: at fixed value of �, Itopo only depends
on  and L through the parameter t=�L2

. In particular, a fixed
value of t �and thus a fixed value of the topological mutual
information� corresponds to the following relations between
size and temperature:

�t,L� = ln L −
1

2
ln�1

2
ln

1

t
� + O�L−2� , �10�

�T�t,L�
�L

=
− 1

Lln L −
1

2
ln�1

2
ln

1

t
� + O�L−2��2 + O�L−3� .

�11�

This last relation tells us how an increase in the size of the
system should be compensated by a decrease in temperature
in order to maintain a fixed value of the topological entropy.
We understand it as an important nuance over the fact that
Itopo vanishes when L→� at finite temperature. In particular,
it shows that the rate at which the temperature should be
decreased, in order to maintain a fixed value of �, decreases
with the size of the system.

We now turn to a family of non-Abelian models, those
based on a quantum double. From now on, we will consider
systems defined on an oriented lattice with the geometry of a
sphere. A quantum degree of freedom with basis states la-
beled by the elements of a finite group G is associated with
each link of this lattice. These links interact through a Hamil-
tonian of the form �3�, with vertex operators As and plaquette
operators Bp that still commute. One could write down their
form explicitly,3 but it will not be necessary here. A natural
way to deal with such models would be to start by providing
a description of the complete set of eigenstates of H similar
to the one we have used for the toric code. However, when G
is non-Abelian, diagonalizing H seems to be a difficult prob-
lem. Yet, we can argue that we actually do not need to as far
as we are only interested in the topological mutual informa-
tion. The elementary excitations of H live on sites �a site is a
combination of a vertex and an adjacent plaquette�. We will
restrict to that part of the spectrum of H such that excitations
are elementary and pinned at fixed nonadjacent sites. This

restriction can be thought of as additional error correction,
where some plaquettes and vertices are overprotected, so that
they never get excited by thermal fluctuations �or only with
vanishing probability�. Therefore, we believe that Itopo for
this modified model can only be larger than for the full spec-
trum.

The space of n excitations pinned at fixed sites has the
structure3

H�n� = �
q1,. . .,qn

Hq1,. . .,qn
, �12�

where each index qi runs over all possible quasiparticle types
for site i. Equation �12� simply means that different excita-
tion patterns lead to orthogonal states. Each space Hq1,. . .,qn
splits as

Hq1,. . .,qn
= Kq1

� ¯ � Kqn
� Mq1,. . .,qn

,

where the spaces Kqi
correspond to the local degrees of free-

dom of the quasiparticles.3 The fusion space Mq1,. . .,qn
is

what makes non-Abelian anyonic systems so special. For
Abelian models, for which the fusion rules are trivial, the
dimension of the fusion space is equal to 1. A nontrivial
fusion space appears when fusing two anyons can yield dif-
ferent quasiparticles,5

qa 	 qb = �
c

Nab
c qc. �13�

The system has to fulfill some neutrality conditions, i.e., its
state should be such that fusing all the particles yields the
trivial particle denoted1 with certainty.15 The dimension of
Mq1,. . .,qn

depends on the tensor N��
� as follows:5

dim Mq1,. . .,qn
=�b1,. . .,bn−2

Nq1q2

b1 Nb1q3

b2
¯Nbn−2qn

1 . We observe
that computing this quantity amounts to contracting a �qua-
si�translationally invariant matrix product state.16 Likewise
dim H�n� can be computed efficiently, as well as the parti-
tion function of the model,

Z�,n� = �
q1

¯ �
qn

�
i=1

n

d�qi�dim Mq1,. . .,qn
e−E�q1,. . .,qn�,

where E�q1 , . . . ,qn� is the energy associated with a defect
configuration q1 , . . . ,qn and where d�qi� is the dimension of
the space Kqi

.
To compute Itopo, we consider a situation where a pair of

anyons �qq̄� is created in such a way that anyon q lies in
some region R and its antiquasiparticle q̄ lies in the comple-
mentary region. The von Neumann entropy of region R then
reads9

S��R� = S��R
gs� + ln dq. �14�

The entropy of a region when the system is in a thermal
state can be computed once we are able to calculate the en-
tropy of a region when the system is an arbitrary defect con-
figuration. In turn, just as for the toric code, the latter entropy
reduces to computing the entropy when there are only two
anyons in the system and one lies inside the region we are
interested in. Let nR and nRc

denote the number of sites con-
tained in regions R and Rc, respectively �nR+nRc

�n�. Let
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qR=q1 , . . . ,qnR
label the configurations of types of anyons

living on the sites contained in region R. The total fusion
space splits as

MqR,qRc
� = �

b
MqR

b
� MqRc

�
b̄

� M
b,b̄

1
, �15�

where MqR

b denotes the fusion space associated with event
where all qR quasiparticles fuse to an anyon of type b.

Due to total anyonic charge conservation, dim M
b,b̄

1
=1.

Decomposition �15� induces the following representation of
the thermal state of H:

�th = �

qR,qRc
� ,b,�1,�2,sR,sRc

e−�E�qR�+E�qRc
� ��

Z�,n�
,

P�qR → b,�1,sR;qRc
� → b̄,�2,sRc

� , �16�

where the projector P�qR→b ,�1 ,sR ;qRc
� → b̄ ,�2 ,sRc

� refers
to a pure state where all qR �qRc

� � quasiparticles contained in

R �Rc� fuse to b �b̄� through the channel �1 ,1��1

�dim MqR

b ��2 ,1��2�dim MqRc
�

b̄ �. E�qR�=� j=1
nR E�qj� de-

notes the energy associated with the configuration qR and sR
is a collective index for the internal degrees of freedom of
the quasiparticles contained in region R; 1�sR�d�qR�
=� j=1

nR d�qj�. E�qRc
� � and sRc

are defined likewise for the region
Rc. Note that the ground-state energy is now made equal to
zero, upon shifting the Hamiltonian by a multiple of the
identity.3

The von Neumann entropy of the reduced state of the
region R now reads

S��R� = �
b

�ZR�,b�ZRc
�, b̄�

Z�,n�
�SR

gs + ln db − ln ZRc
�, b̄���

+ �
b

YR�,b�ZRc
�, b̄�

Z�,n�
+ ln Z�,n� , �17�

where ZR� ,b�=�qR
d�qR�e−E�qR� dim MqR

b and where

YR� ,b�= �
�ZR� ,b�. The von Neumann entropy of the

whole sphere is given by Eq. �5�, while the ground-state
entropy reads7 SR

gs= ln�G����R�−1�.
Equation �17� has allowed us to study numerically how

the topological mutual information behaves as a function of
 for G=S3, the smallest non-Abelian finite group. Our re-
sults are shown in Fig. 2. The systems we have considered
are four tiled spheres, all with 96	96 plaquettes. The first
sphere contains n=64 sites, the second 144, the third 256,
and the fourth 576. Although these systems are small, they
are large enough to show that non-Abelian systems are af-
fected by temperature in the same way as the toric code. �i�
For a fixed number of sites, there exists a finite width topo-

logical phase. �ii� Itopo tends to zero for small values of ,
and to −3.583 52=−2 ln 6 for sufficiently large values of ,
as expected since the order of S3 is 6. �iii� The larger the
number of sites, the larger the value of  where the topologi-
cal mutual information vanishes. Finally, we have observed
that when Itopo is plotted as a function of ne−2, the curves
collapse when n becomes large. We take this observation as
strong evidence that the behavior of Itopo for the D�S3� model
is governed by the same scaling variable as the toric code.
Indeed, ln��L2

�
L2e−2 in the limit where  and L are large
�n�L2 for the toric code�. We therefore believe that the dis-
cussion held after Eq. �9� also holds in this case and more
generally for any quantum double model.

In conclusion, we have shown that the interplay between
thermal effects, lattice size, and topological order �as mea-
sured in the subleading correction to the area law� is encoded
in well-defined scaling relations �10� and �11�. In particular,
the rate with which the temperature should be decreased to
fight the effect of thermal fluctuations vanishes in the limit of
large lattices. These relations seem to hold for both Abelian
and non-Abelian systems. As a byproduct, we have derived a
formula for the entropy of a region for non-Abelian quantum
double models defined on a lattice. This formula depends on
the model only through the fusion tensor N��

� and through the
energy associated with each quasiparticle. It is therefore
tempting to believe that it holds in a more general context.
Finally, it is appealing to try to give an operational meaning
to Itopo by connecting its value with the possibility of using a
topologically ordered medium as a robust quantum memory.
But to the best of our knowledge, such a connection is still
an open problem, even at zero temperature. Equation �9�
might contribute to establishing it.
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FIG. 2. �Color online� Topological quantum mutual information
as a function of the inverse temperature  for the D�S3� model.
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