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Temporal evolution of characteristic length and fractal dimension for a non-Euclidean system
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In order to understand some yet incomprehensible experimental observations on temporal evolution of
characteristic length and fractal dimension of a dynamical system, a model simulation has been attempted. It
has been shown that the present simulation corroborates well with the trend of the experimentally observed
temporal evolutions of fractal dimension and characteristic length during light water hydration of calcium
silicates (C3S and C,S) and ordinary Portland cement. The dynamical scaling of the scattering functions was
found to be valid during hydration, particularly in intermediate and in late stages of hydration process.
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I. INTRODUCTION

Temporal evolution of mesoscopic structures in con-
densed systems has received a considerable attention in re-
cent years altogether from experimental, computational, and
theoretical points of view. This is due to the relevance of this
phenomenon in a wide variety of materials including techno-
logically important materials such as cements,'= alloys,*~13
ceramics, %! xerogels,!® polymer,2*2 glasses,?0=37 liquid
mixture,?-* etc. The new phase formation is an example of
first-order phenomenon. This is a highly nonlinear process
far from equilibrium. The second phase starts growing in
size, after formation, with time and is influenced by several
thermodynamical parameters. Most commonly in the limit #
—, phase-forming systems exhibit a self-similar/self-
affined growth pattern with dilation symmetry and a scaling
phenomenon, i.e., the morphological pattern of the domains
at earlier times looks statistically similar to the pattern at
later times apart from the global change in scale implied by
the growth of the characteristic length scale L(r)—a measure
of the time-dependent domain size of the new phase.

For a non-Euclidean system,* such as hydrating cement
paste, understanding the growth of the second phase consti-
tutes an important area of research because porosity, micro-
structure, interconnectivity, etc., are important properties of
the final cement product.

A non-Euclidean object is quantitatively described by its
fractal dimension (Dy) and its cutoff lengths. The density-
density correlation function C(r)=N"'Z,.p(+)p(r+7) follows
a power-law relation, C(r) r~%, where a=dg—D,. Here, dj
is the embedding Euclidean dimension. Hydrated cement
paste has been known to possess non-Euclidean geometry
over a wide length scale. Hydration reaction on a fractal
network of cement grains eventually gives rise to space-
filling effect and interlocking between the cement grains.
During the hydration reaction, Calcium silicates, the main
constituent of cements, react with water and produce calcium
silicate hydrate (C-S-H) gel and calcium hydroxide. The gel
constitutes about 60%—70% of the fully hydrated cement
paste and is responsible for most of the properties of cement-
based materials. The gel, formed during hydration reaction,
starts filling the space around and between the cement par-
ticles locking the mass together. By this dynamical process
of hydration, the fractal morphology of the hydrated mass
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evolves with time and domains with non-Euclidean geometry
gradually get modified toward a consolidated Euclidean
mass. The hydration kinetics determines the rate of dynami-
cal evolution of the fractal dimension and the overall char-
acteristic length scale. The kinetics depends on the cement
ingredients, cement-to-water ratio, humidity, etc.

New phase formation is a diffusion-controlled process but
aspects such as diffusion or random walk in non-Euclidean
geometry are not satisfactorily comprehensible yet and need
special attention. In Euclidean geometry, it is established that
the curvilinear distance \(r*(f)) covered in time ¢ by a
random-walk process is proportional to ¢'’? and the exponent
% is independent of dimensionality. If it is conjectured that
the curvilinear distance covered for a random walk in fractal
geometry also behaves as a power law given by #'/?”, the
exact dependence of v on the fractal geometry is also yet to
be established. To understand new phase formation and the
evolution of the new phase in non-Euclidean systems, in re-
cent past small-angle neutron-scattering experiments have
been performed on cementatious materials.'=

Small-angle scattering is a well-established technique
to probe mesoscopic density fluctuations in condensed mat-
ter. Previously small-angle scattering has been used to inves-
tigate the mesoscopic structures of cements'>484% and
ceramics.*2 It is one of the few tools to obtain the quanti-
tative results on fractal objects in a statistical sense.
Ultrasmall-angle scattering (USANS) pertains to the mea-
surement of scattering signal at very small wave-vector
transfer (¢) and deals with density fluctuations at larger
length scales (>10 nm; as exists in ceramics and cements).
In recent past, real-time USANS investigations'™ [using
triple-bounce channel-cut crystal-based instrument S-18 at
Institut Laue-Langevin (ILL), Grenoble, France] on hydrated
paste of tricalcium silicate (3CaO-SiO,=C,S), dicalcium
silicate (2Ca0-Si0,=C,S), ordinary Portland cement
(OPC), and calcium sulphates were performed. It is worthy
to mention that these studies indicated nonuniqueness in the
trend of dynamical evolution in these systems. It was
shown'? that in case of hydration reaction of calcium sili-
cates (C3S and C,S) and OPC with normal light water, the
fractal dimension starts increasing just after the onset of the
hydration reaction and gradually reaches a plateau. Further,
temporal evolution of the square of the characteristic length
(L) of the system mimics the trend of evolution of the fractal
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FIG. 1. (Color online) (a). Evolution of fractal dimension and
square of the characteristic length with hydration time as observed
from the USANS experiments (Ref. 1). We have taken only a typi-
cal figure for present presentation. (b). Evolution of USANS inten-
sity at ¢~0 with hydration time (Ref. 1). We have taken only a
typical figure for the present presentation.

dimension (Df) and the same reaches a plateau also and al-
most at the same time [Fig. 1(a) for C5S with water-to-
cement ratio of 30%]. It is interesting to note that these ob-
servations indicate that two physical quantities, characteristic
length and fractal dimension, having different dimensionali-
ties (as fractal dimension is a dimensionless quantity while
characteristic length has a dimension of length) reach a pla-
teau almost at the similar time and almost in a similar fash-
ion. What remains to be understood is whether the similarity
of temporal evolution of altogether two different physical
quantities an accidental one. But repeated measurements,’
varying over wide range of compositions, brought out this
phenomenal accidental similarity.

In fact, such incomprehensible observation prompted us
to understand the evolution in detail by performing a model
simulation. Further, the scattering intensity at the minimum
accessible wave-vector transfer [g=4 sin(6)/\, where 26 is
the scattering angle and A is the wavelength of the probing
neutron] also showed a similar trend [Fig. 1(b)], i.e., it
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FIG. 2. (Color online) The initial fractal cluster generated using
DLA model just at the onset of the hydration.

reaches a plateau after a transient time as shown by fractal
dimension and characteristic length. The scattering intensity
function showed some kind of scaling behavior with respect
to the characteristic length scale L(r). However, in case of the
hydration of calcium sulphates,® a contrasting behavior was
observed. Although the scattering intensity at g ~ 0 increases
with hydration time and reaches a plateau after some tran-
sient time, the fractal dimension and the characteristic length
do not show the trend those were observed in the cases of
hydration of C;S, C,S, or OPC but showed some sinusoidal
nature of temporal evolution (see Fig. 2 of Ref. 3). These
observations remain quite incomprehensible yet on the basis
of linear and nonlinear theories on dynamics of new phase
formation for mesoscopic structures in non-Euclidean geom-
etry.

In the present paper, a model simulation has been at-
tempted in order to understand some of the above ultrasmall-
angle neutron-scattering experimental observations on dy-
namical evolution of mesoscopic structure during cement
hydration.

II. COMPUTER MODEL AND THE RESULTS ON
STRUCTURE EVOLUTION DURING CEMENT
HYDRATION

It is well established that during hydration reaction ce-
ment particles and C-S-H gel system constitute a non-
Euclidean fractal morphology.!¢~'83 For such a system,
various physical parameters follow a power-law relation with
some other parameters over a wide length scale. The volume
V(r) of such an object varies over a wide range of length
scale as r?f, where Dy< 3. For a normal Euclidean object in
three dimensions, the fractal dimension D, equals to its Eu-
clidean dimension of 3.

A fractal object that is generated using a particular math-
ematical rule is strictly self-similar and nonrandom in nature.
However, for many natural and synthetic objects, the fractals
are self-affined (nonidentical scaling constants for various
directions) and random in nature. In the last two decades,
various computer models have been developed to simulate
random fractal objects originated from the agglomeration of
the smaller particles. Some of these models are diffusion-
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FIG. 3. (Color online) The evolution of fractal dimension (case
I) with Monte Carlo steps.
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limited aggregation (DLA
tunable dimension cluster-cluster aggregation, and
reaction-limited cluster-cluster aggregation.”® DLA model,*
one of the first models of these kinds, considers a single seed
particle at the origin of a lattice. A second particle is added
from a long distance from the origin and undergoes a random
walk on the lattice until it reaches a site adjacent to the seed
and becomes a part of the growing cluster. Next particle is
then introduced at a random distant point and undergoes a
random walk until it becomes a part of the growing cluster.
The procedure repeats until the desired cluster size is ob-
tained. In this model, a fractal structure can develop during
the diffusion-controlled growth and thus provides the moti-
vation toward the choice of this model in many situations.
This model has been recognized to be quite well appropriate
to describe many dendritic agglomerated structures.

From the real-time USANS experiments, the value of
fractal dimension just after the onset of hydration reaction is
estimated to be ~2.3. This value of the estimated Dy
prompted us to consider the DLA as an initial cluster in order
to understand the dynamical evolution of structure. However,
to establish that the conclusions of this study do not depend
much on this particular choice of morphology, results from a
non-DLA cluster will also be presented in the latter portion
of this paper. For limitation of available computational re-
sources, the simulation has been restricted in two dimensions
only while modeling the evolution of structure during hydra-
tion. Figure 2 depicts the initial structure (consisting of 3000
lattice points) obtained with DLA approach. It is noteworthy
to mention that the Fractal dimension for a two-dimensional
(2D) DLA cluster is ~1.67 and the corresponding Euclidean
dimension is 2. Any lattice site for which all nearest-
neighbor sites are filled is denoted as a saturated site while a
site with unfilled neighbors is denoted as an unsaturated site.
In the next step, the evolution of this structure has been
investigated in the light of cement hydration.

The initial DLA structure gets modified because of the
onset of the hydration reaction at the available sites. As the
time proceeds, the gel fills the available space and, gradually,
the structure tends to be a consolidated one. However, the

cluster-cluster aggregation,
57,58
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FIG. 4. (Color online) The evolution of characteristic length
(case I) with Monte Carlo steps.

speed of the smoothening process depends on the rate of the
reaction kinetics. The present simulation proceeds in the fol-
lowing way. A lattice site on the cluster is chosen at random.
The probability for an incoming gel particle to be a part of
the existing cluster is considered to be p. If the site is an
unsaturated one, then one of the available sites is selected
according to the given probability p. In this simulation, the
available sites were restricted within a zone of maximum
linear extent of the initial cluster. This restriction arises be-
cause of the fact that another cluster adjacent to this present
cluster will not allow the growth beyond the zone of maxi-
mum linear extent of the former cluster. However, for a very
diluted system, a growth can occur beyond the maximum
extent of a cluster and such situations will be dealt with in
the latter part. Once hydration reaction is initiated at one
unsaturated site, the new site gets bonded and becomes a part
of the existing cluster. The fractal dimension at various in-
stances of the evolving cluster is calculated using box count-
ing method. The evolution of fractal dimension with Monte
Carlo steps for different p values is plotted in Fig. 3. It is
seen that the fractal dimension increases initially and reaches
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FIG. 5. (Color online) Evolution of the fractal dimension and
square of the characteristic length (case I) with Monte Carlo steps.
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FIG. 6. (Color online) Morphology of the evolving cluster (case
1) at different Monte Carlo steps for p=1.

a plateau at some time which depends on the deposition
probability.

Effective characteristic length was estimated from the
square root of the total area of the evolving cluster at any
particular instance. It is worthy to mention here that, experi-
mentally, characteristic length L(¢) is normally measured us-
ing scattering measurements. The scaling hypothesis as-
sumes the existence of a single characteristic length scale
L(z) such that the domain sizes and their spatial correlation
are time invariant when lengths are scaled by L(r). If there is
a signature of interparticle correlation peak in scattering data
at a particular wave-vector transfer (¢=g,,), then character-
istic length is considered to be 7/q,,. However, for a poly-
disperse system there is no universal form for L(z). In some
cases,0 813156061 gealing phenomenon has been observed
with L(¢) as reciprocal of the first moment of ¢, i.e., L(¢)
_ (lallg.)dg\ 1 1-3 .
=( 1.0 dq) . In some other cases, — scaling phenomenon
has been observed with characteristic length, which is square
root of the curvature (k) of the scattering profile at the vi-
cinity of ¢~0, i.e.,

|?[1(q,0)/1(0,1))/dg’|
qHO(I +{d[1(q,1)/1(0,0)J/dg}*)¥*

k(t) =L*(t) =

The evolution of the characteristic length L, as obtained from
the present simulation, has been depicted in Fig. 4. Similar to
the evolution of the fractal dimension Dy, the characteristic
length also increases initially and then reaches a plateau de-
pending on the deposition probability.

The functionalities of the evolution of the fractal dimen-
sion and the characteristic length are compared in Fig. 5 for
p=1. Interestingly, it is seen that Dy and L reach plateau at
same time. The shapes of the evolving cluster for different
Monte Carlo steps for p=1 are depicted in Fig. 6. From the
figure it is evident that the structure gets more compact with
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FIG. 7. (Color online) Evolution of the simulated scattering pro-
files with Monte Carlo steps.

time and also the branching in the initial structure gets
smeared out with increase in deposition of gel.

In order to examine the dynamical scaling, the small-
angle scattering intensity profile I(¢) for the evolving cluster
was calculated by the following formula:

I(g,1) = CP(¢q)S(q.1), (1)

where C is a scale factor and independent of g; for simplicity
P(g) was taken as a form factor of a sphere with radius r,

[sin(gro) — gro cos(gqro)]?
(gr 0)6

P(q) = ’ )

and S(g) was taken as that for a mass fractal®>¢3
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FIG. 8. (Color online) Evolution of simulated scattering inten-
sity at g ~0.
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FIG. 9. (a) Normalized scaled structure function for initial stage and (b) scaled structure function for intermediate and late stages.
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where ¢ is the upper cutoff of the fractal and has been taken
same as the characteristic length scale as mentioned above.

The simulated scattering profiles are depicted in Fig. 7. The
evolution of the scattering intensity at ¢~0 has been de-

picted in Fig. 8. The normalized function F{¢L(t)] was cal-
culated from the following equation:'=3

- [L(n]™1(q,1)
FlqL()]= 4
k! 2 4% (q.08q @

and plotted in Fig. 9.

In the next step, a situation is considered where the depo-
sition is possible beyond the maximum extent of the initial
cluster. Such a situation is expected to occur where the sys-
tem is diluted enough and the intercluster distance is much
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FIG. 10. (Color online) Evolution of D, and L? for case II (see
text).

larger than the size of each cluster. The evolution of L? and
Dy in this situation (case II) is depicted in Fig. 10. The evo-
lution of these two parameters both in cases I and II are
compared in Figs. 11 and 12, respectively. It is evident that
Dy and L? evolve quite differently for case II in comparison
to case 1. The shape of the evolving cluster after long enough
time is depicted in Fig. 13. From the figures, it is evident that
the evolution of D, and L? and the shape of the evolving
cluster differ significantly in case II in comparison to case I.
In this case, it is seen that still at large Monte Carlo step
(~40 000), there exist sites which are vacant well within the
cluster and some sort of branching appears at the periphery.

So far our discussions have been based on evolution con-
sidering a DLA-like cluster. However, to establish that the
conclusions obtained from the discussions as presented
above do not depend much on this particular choice of mor-
phology, simulation has also been performed for an initial
non-DLA cluster which is generated by random deposition
process on lattice and is somewhat similar to the ballistic
deposition® %> method. Results from this simulation are pre-
sented in Fig. 14.
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FIG. 11. (Color online) Evolutions of L2 in cases I and II are
compared.
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FIG. 12. (Color online) Evolutions of D, in cases I and II are
compared.

The initial structure and the structure after large time
(Monte Carlo steps of ~40 000) are depicted in the inset. It
is evident from the figure that even in this case, Dy and L2
reach a plateau at the same instance of time.

III. DISCUSSIONS

From Figs. 3 and 4, it is evident that the onset of hydra-
tion reaction in case I leads to a more compact structure and
hence enhancement in fractal dimension (Df) follows. By the
deposition of gel, the effective area, vis-a-vis, the character-
istic length scale (L) of the cluster increases as well. Both Dy
and L increase initially till they reach their corresponding
plateau when all the available sites are filled within the clus-
ter.

From Fig. 5, it is evident that the nature of the evolution
for Dy and L? is almost similar, i.e., both of the parameters
initially increase and then reach a plateau at same instance.
This corroborates with the trends observed from the USANS
experiments on normal light water hydration of C;S, C,S,
and OPC. Instead of possessing different dimensionalities,
two physical quantities, fractal dimension (dimensionless
quantity) and characteristic length (having a dimension of
length) reach a plateau almost at the same time and almost at
same fashion. This may be explained by the fact that the
increase in the fractal dimension by the space filling gel oc-
curs within the zone of maximum linear extent (in case I) of
a cluster due to the spatial constraint of the adjacent cluster
and hence the modification in the fractal dimension is asso-
ciated with the similar type of modification in characteristic
length scale. The evolution of the scattering intensity at g
~0 also shows the similar trends and reaches a plateau al-
most at the same value of Monte Carlo steps as shown by Dy
and L. The scattering intensity at zero wave-vector transfer
(¢g=0) is the product of scattering contrast and the square of
the particle volume, i.e, I(g~0)=(p,—p,)*V?, where p, and
p,, are the scattering length densities of the particle and the
matrix, respectively. At r— o, when the characteristic length

PHYSICAL REVIEW B 79, 134207 (2009)

FIG. 13. (Color online) Shape of the evolving cluster in case II
after Monte Carlo steps of 40 000.

scale reaches a plateau, I(g ~ 0) also reaches a constant level
for a particular contrast value. However, it should be men-
tioned that in reality the modification in the scattering con-
trast due to hydration also somewhat modifies the scattering
intensity which has not been taken into account in the
present simulation.

From Fig. 9(b), it is evident that the present simulation
shows that a dynamical scaling behavior of the scattering
function holds good in the intermediate and in the late stages
as evident from the overlapping of the normalized scaled
scattering function for Monte Carlo steps beyond 11 000.
However, the dynamical scaling of the scattering function at
the initial stage is not as pronounced [Fig. 9(a)] as that has
been observed for intermediate and for late stages [Fig. 9(b)].

The results from case II, where deposition proceeds be-
yond the maximum extent of the initial cluster, will be dis-
cussed now. From Figs. 10-12, it has been found that the
square of the characteristic length and the fractal dimension
in this case behave in different fashion unlike case 1. In case
II, L? keeps on growing (Figs. 10 and 11) because the sites
for deposition are always available at least at the boundary of
the growing cluster. The growth of the fractal dimension D,
gets somewhat sluggish (Fig. 12) compared to the trend ob-
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FIG. 14. (Color online) Evolution of Dy and L? for a non-DLA

cluster for p=1. Inset shows the initial and final morphologies of
the evolving cluster.
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served in case I. This is because of the fact that in such a
situation, there is a finite probability of deposition beyond
the maximum extent of the initial cluster, which does not
give rise to compaction of overall structure unlike case I.
However, as the ratio of number of lattices within the maxi-
mum extent of initial cluster to the number of available sites
for deposition beyond the maximum extent of the initial clus-
ter remains much greater than unity, the rate of compaction,
vis-a-vis, the rate of increase in Dy remains somewhat faster
initially but growth of D, slows down gradually as the cluster
grows at later stage. It is quite clear that although the rate of
increase in Dy decreases with the growth of cluster size, it
does not reach a true plateau ever. At this point it is notewor-
thy to mention that the formation of new phase, i.e., gel,
during hydration reaction makes the system to be a noncon-
served one. For such system, the modification in fractal di-
mension depends on the spatial distribution of the new
phase. If the spatial constraint of the adjacent clusters exists
then it leads to a more compact structure as time passes.
However, it is expected that in the absence of spatial con-
straint, the compaction must depend on the nature of depo-
sition, i.e., whether the deposition is random (like in case II)
or a site preferential one where it gives rise to a new branch-
ing structure.

It is important to note that the USANS experiments men-
tioned above were performed on hydrated paste of tricalcium
silicate (C;S) for water-to-cement ratio of 0.3. This ratio of
water to cement corresponds to a situation where the cement
particles constitute a dense assembly in cement-water matrix.
For such a dense system, the available sites for gel deposi-
tion during a hydration reaction are bound to be restricted
within zone of maximum linear extent of the initial cluster
because of the spatial constraints imposed by adjacent clus-
ters. The model described in case I corresponds to such a
situation and agrees with the results from USANS experi-
ments. However, for a very diluted system (i.e., when water
to cement ratio is very high), growth is not expected to be
restricted and is allowed even beyond the maximum extent
of a cluster and the model described in case II corresponds to
such a situation. It will be worth investigating experimen-
tally, by scattering techniques, whether the D, and the L?
reach plateau at different times in case of a very diluted
system where the gel deposition is not hindered beyond the
maximum extent of the cluster.

It is emphasized that the results presented above do not
depend much on this particular choice of morphology of ini-
tial cluster. From Fig. 14, it is clear that when the initial
cluster is considered different than a DLA cluster and the
deposition is allowed within the maximum extent of the ini-
tial cluster (similar to case I), Dy and L? reach a plateau at the
same instance of time.
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It is noteworthy that although the above model explains
the trend of several experimental observations on hydration
of C3S, C,S, and OPC, the sinusoidal evolution of the char-
acteristic length and fractal dimension in case of hydration
reaction of calcium sulphates is yet to be explained. How-
ever, even for the case of hydration of sulphates,’ the growth
of scattering intensity at ¢~ 0 follows a trend that corrobo-
rates with the present simulation.

IV. CONCLUSIONS

Monte Carlo based model simulation showed that the
temporal evolution of the fractal dimension of non-Euclidean
cluster of hydrated cement paste proceeds by space-filling
effect of the C-S-H gel during hydration reaction. The model
corroborates well with the temporal of evolution of the frac-
tal dimension and the characteristic length as observed by
USANS measurements on calcium silicates (C3S and C,S)
and OPC. Further, it also supports the appearance of plateau
for the above physical quantities nearly at the same time
during hydration when the gel deposition is spatially con-
strained within the maximum extent of the initial cluster. The
dynamical scaling of the scattering functions is more pro-
nounced at intermediate and in late stages of hydration reac-
tion than that at initial stage. It would be nice to verify ex-
perimentally by scattering techniques whether the fractal
dimension and the square of the characteristic length reach
plateau at different times in case of a very diluted system
where the gel deposition is not hindered beyond the maxi-
mum extent of the cluster (as predicted in case II of this
paper). Although the present simulation deals with a two-
dimensional network, in the next step in the near future,
consideration of the three-dimensional network will be at-
tempted within limited computational limitations. More ex-
perimental investigations on dynamical evolution of the me-
soscopic structure in a non-Euclidean system and the scaling
behavior of the scattering functions during hydration reaction
are also called for. The present study indicates that the me-
soscopic structural kinetics and the phenomenon of dynami-
cal scaling in non-Euclidean systems should be brought into
closer scrutiny for various systems in future in order to ap-
proach a unique evolution model for dynamical growth of
non-Euclidean systems in general and also for the under-
standing of hydration dynamics in cements in particular.
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