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We present a method to evaluate the critical point of aluminum using a variational approach based on the ab
initio molecular-dynamics code CPMD. We found that the critical density, temperature, and pressure are equal to
0.44 g /cm3, 7963 K, and 0.35 GPa, respectively. At the critical point, the system is rarefied, coupled, and
degenerate. The shear-viscosity and the self-diffusion were estimated at the critical point. Using the Kubo-
Greenwood formula, we obtained the electrical conductivity, the absorption coefficient, the index of refraction,
and the reflectivity at the critical point. We followed Mott’s ideas to study the metal-nonmetal transition related
to the critical point. Our method can be useful to investigate phase transition and the critical point of metals.
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I. INTRODUCTION

Warm dense matter �WDM� is a form of strongly coupled
high energy density matter intermediate between condensed
matter and plasmas. These high-density ��0.1 to 10 g /cm3�
and moderate-temperature ��1 eV� states of matter are very
difficult to study analytically or by numerical simulations.
They prove to be challenging and fascinating to investigate
experimentally1–15 and are of key interest in astrophysics or
inertial fusion science.16

As far as metals are concerned, the liquid state covering
the temperature range from the melting point to the critical
temperature, which, for some metals, can exceed 10 000 K,
is excessively difficult to study experimentally and
theoretically.17–19 This challenging regime is closely related
to the metal-nonmetal transition.20,21 The description of criti-
cal point region from first principles is complicated. Using
the ab initio molecular-dynamics code CPMD,22–24 we pro-
pose a scheme based on a variational approach25 to investi-
gate the region close to the critical point of metals. This
method is applied to the evaluation of the critical point of
aluminum.

This paper is organized as follows. In Sec. II, we present
the method utilized to evaluate the critical point of alumi-
num. In Sec. III, we present results concerning the aluminum
critical point, transport coefficients, but also various spectral
quantities that can be derived from the Kubo-Greenwood
formula, such as absorption coefficient, index of refraction,
or reflectivity. We discuss the metal-nonmetal transition with
respect to Mott’s ideas. Sec. IV is the conclusion.

II. METHOD

Assuming that we could describe atoms in disordered
matter with a hard-sphere reference system, we placed Na
nuclei inside a cubic supercell with periodic boundary
conditions at given hard-sphere packing fraction � using
Monte Carlo simulations. This was performed for a single
element in thermodynamic equilibrium at given mass density
� and temperature T. For such an ionic configuration, we
calculated the electronic free energy Fe and the electrostatic

ionic energy UII with the CPMD code.26 We used a very good
analytic expression for the excess ionic entropy per ion
sexc

HS =− ��4−3��
�1−��2 . This semiempirical expression is known to

match molecular-dynamics simulations up to the hard-sphere
melting conditions.27 We selected Nc statistically indepen-
dent ionic configurations at given �. We then calculated the
average �Fe+UII� over the Nc configurations of �Fe+UII� to
obtain the reduced excess free energy fexc of the electron and
ion system,

fexc = ��Fe + UII�/Na − sexc
HS , �1�

where �=1 / �kBT�. kB is the Boltzmann constant. It can be
shown that fexc is an upper bound of the exact reduced excess
free energy of the electron and ion system.25 The effective
hard-sphere packing fraction �eff was found by minimizing
the right-hand side of Eq. �1�. For the thermodynamic con-
ditions encountered in this work, it has been found sufficient
to determine �eff with an accuracy of 0.01. Adding to fexc in
Eq. �1� the reduced free energy f0 of the ideal gas,28 we
obtained the best total reduced free energy f = f0+ fexc of the
electron and ion system in the sense of the Gibbs-
Bogolyubov inequality.25 From f , we could derive in a self-
consistent way the equation of state of the material.

This method known as HS-AIMD for hard-sphere ab ini-
tio molecular dynamics25 is faster than usual quantum
molecular-dynamics simulations since no dynamics simula-
tions are performed with the ab initio molecular-dynamics
code. The HS-AIMD is a logical follow-on to the work de-
veloped in the context of liquid metal29,30 and later adapted
and extended in the plasma physics field.31,32 The HS-AIMD
scheme has been compared successfully to quantum
molecular-dynamics simulations and to experimental
results25 for expanded Al.

The HS-AIMD method is well suited to describe thermo-
dynamical properties of expanded material for temperature
above the melting temperature. As an illustration, we have
chosen to evaluate the critical point of aluminum. We have
performed HS-AIMD calculations for � between 0.1 and
1.4 g /cm3 and T between 6000 and 9000 K. Initially, we
were looking for a critical density around 0.7–0.8 g /cm3
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and a critical temperature between 6000 and 8000 K.33 We
used Na=32 and Nc=30. The interaction between ions and
valence electrons has been modeled using a norm-conserving
pseudopotential with s and p nonlocalities.34 The electronic
orbitals were expanded in plane waves with a cutoff of 16
Ry. This aluminum pseudopotential has been carefully tested
and successfully used in quantum molecular dynamics
�QMD� simulations of solid and molten aluminum at the
melting point35 and to study metal-insulator transition in
dense aluminum.26 Since the CPMD code has been used suc-
cessfully for aluminum from liquid-metal conditions to ex-
panded regime,25,26,33 we have kept the same CPMD param-
eters to consider the region close to the aluminum critical
point to calculate Fe in Eq. �1� and to determine the effective
hard-sphere packing-fraction �eff. For densities between 0.7
and 1.4 g /cm3 we used 320 electronic states, for �=0.6 and
0.7 g /cm3 400 electronic states, for �=0.4 g /cm3 600 elec-
tronic states, for �=0.3 g /cm3 800 electronic states, for �
=0.2 g /cm3 1000 electronic states, and for �=0.1 g /cm3

1200 electronic states. In density, calculations were done ev-
ery 0.1 g /cm3 between 0.1 and 1.4 g /cm3. In temperature,
calculations were first performed for T=6000, 7000, 8000,
and 9000 K, i.e., for a rough mesh in temperature. At fixed
temperature, we have fitted the reduced excess free energy
fexc in Eq. �1� by a cubic polynomial in density. At fixed
density, we have used a cubic spline interpolation36 in tem-
perature of the coefficients of the cubic polynomial in den-
sity. This allowed us to estimate fexc anywhere in the density-
temperature plane with 0.1���1.4 g /cm3 and 6000�T
�9000 K. From fexc we had access to pressure P and to its
first �P

�� �T and second �2P
��2 �T derivatives with respect to density.

We have then searched by iterations the isotherm �
→P�� ,T� that had an inflexion point with a tangent parallel
to the density axis. The density �c and temperature Tc for
which we had simultaneously �P

�� �Tc
��c�=0 and �2P

��2 �Tc
��c�=0

determined the critical point. From the equation of state
P�� ,T� we have obtained the pressure at the critical point.
With the initial mesh in temperature, the critical temperature
was found to be close to 8000 K. We then launched calcula-
tions for temperatures equal to 7200, 7400, 7600, 7800,
8200, 8400, 8600, and 8800 K. This represents a total of 168
�� ,T� points in the density-temperature plane. The � point
was used to sample the Brillouin zone of the supercell to
obtain these 168 �� , T� points.

III. RESULTS AND DISCUSSION

In the present situation, we have found for aluminum �c
=0.44 g /cm3, Tc=7963 K, and Pc=0.35 GPa. We plot in
Fig. 1 the critical curve obtained with the HS-AIMD ap-
proach with two other isotherms, one above Tc�T=9000 K�
and one below Tc�T=7000 K�. We have used the Maxwell
construction37,38 to obtain the isotherm T=7000 K. We have
extrapolated to zero density the various isotherms using a
cubic interpolation between 0 and 0.1 g /cm3. We have used
the values of P, �P

�� and �2P
��2 at �=0.1 g /cm3 to do so. This

extrapolation has only been used to produced Fig. 1 since we
needed values of pressure below 0.1 g /cm3 for the Maxwell

construction. The critical density is a little bit lower that
what we initially expected. The critical temperature is very
close to the upper bound of the expected initial interval, i.e.,
8000 K. In Table I we compare our results with other theo-
retical calculations. The critical compressibility factor Zc

=
APc

N�ckBTc
, where A and N are the molar mass of the element

and the Avogadro number, respectively. The critical com-
pressibility factor found in Table I is always lower than one.
This means that the thermodynamic conditions in the vicinity
of the critical point are not those of an ideal gas. We can see
that there are large discrepancies between various calcula-
tions. There are nearly a factor 3, 1.5, and 3 between the
extreme values of �c, Tc, and Pc, respectively. If we calculate
the averages and the standard deviations corresponding to
the values presented in Table I, we found 7620 and 1190 K
for the critical temperature, 0.52 and 0.19 g /cm3 for the
critical density, and 0.39 and 0.14 GPa for the critical pres-
sure, respectively. The values found with the HS-AIMD ap-

TABLE I. Critical density �c, temperature �c, and pressure Pc of
aluminum obtained by Young and Alder �Ref. 43�, Likalter �Ref.
44�, Hess �Ref. 45�, Singh et al. �Ref. 46�, Ray et al. �Ref. 47�,
Lomonosov �Ref. 48�, and the HS-AIMD approach. �c is in g /cm3,
Tc in kelvin, and Pc in GPa. Zc is the critical compressibility factor.

�c Tc Pc Zc

Young and Alder �Ref. 43� 0.69 7151 0.5458 0.36

Likalter �Ref. 44� 0.28 8860 0.468 0.61

Hess �Ref. 45� 0.43 8944 0.4726 0.40

Singh et al. �Ref. 46� 0.785 8472 0.5094 0.25

Ray et al. �Ref. 47� 0.32 5700 0.187 0.33

Lomonosov �Ref. 48� 0.703 6250 0.197 0.15

HS-AIMD 0.44 7963 0.35 0.32
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FIG. 1. Critical curve of aluminum obtained with the HS-AIMD
approach. The critical point is located at �c=0.44 g /cm3 and
Tc=7963 K for which Pc=0.35 GPa. Two isotherms below and
above Tc are also shown.
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proach are quite close to these average values. Results pre-
sented in Table I indicate that any measurement with an
uncertainty lower that 20% is already sufficient to discrimi-
nate between the theoretical approaches.43–46,48

The aluminum critical point has been estimated using full
QMD simulations by Desjarlais. Critical parameters �c, Tc,
and Pc estimated by Desjarlais are close to Lomonosov48

calculations. They are different from our results. Desjarlais’
calculations indicate a critical temperature of 6250 K and a
critical pressure close to 0.2 GPa. It is said in Ref. 48 that
“the density of the critical point is also very close to the
QMD result.” If we look carefully at Fig. 14 of Ref. 48, we
can see that the QMD isotherm at 6250 K is flat between 0.5
and 0.7 g /cm3. This illustrates the fact that it is difficult to
estimate the critical density with full QMD simulations.
What is surprising is the fact that full QMD simulations pre-
dict an aluminum critical temperature of 6250 K whereas
HS-AIMD simulations give 7963 K. There is a difference of
1713 K between the full QMD and HS-AIMD simulations.
The difference in pressure is also noticeable since the rela-
tive error between the two calculations nearly reaches 50%.
There are many causes that could explain these differences,
i.e., the QMD codes, the role of higher points sets for evalu-
ating the Brillouin zone, the use of hard-sphere reference
system, or the thermodynamic limit. The explanation of this
discrepancy deserves a particular study. We know that the
thermodynamic limit is very important to describe the criti-
cal point domain.39,40 Using periodic boundary conditions is
an artificial way to mimic the thermodynamic limit. This
means that one has to check how results depend on Na and to
try to find the results at the thermodynamic limit.41,42 How-
ever, at present it is not possible to study how the critical
pressure, density, and temperature change with Na, to deter-
mine their thermodynamic values, and to compare HS-
AIMD calculations with full QMD simulations if no break-
through occurs to increase the efficiency of the numerics.

We plot in Fig. 2 the effective hard-sphere packing frac-
tion �eff found with the HS-AIMD approach as a function of
density for all the temperatures inside the density-
temperature plane selected to determine the critical point. We
see that �eff is nearly linear with density and depends very
little on temperature. A simple linear regression shows that

�eff = 0.3�/�0 �2�

inside the present density-temperature plane, where �0
=2.7 g /cm3 is the aluminum solid density. In Eq. �2�, � is in
g /cm3. We thus find that the hard-sphere packing fraction �c
at the critical point is close to 0.05. This result for �c is lower
than the one predicted by Young and Alder,43 i.e., 0.130 44.
In any case, the hard-sphere reference system is rather rar-
efied at the critical point. This does not mean of course that
the system is close to an ideal rarefied gas. There is a com-
plex role played by the three-dimensional �3D� coupling be-
tween electronic and ionic structures, not to mention the ex-
change and correlation effects. If we use the correspondence
between the one-component plasma and the hard-sphere sys-
tems based on the Gibbs-Bogolyubov inequality,31 we find
that an effective hard-sphere packing-fraction close to 0.05
corresponds to an effective plasma coupling parameter �eff

close to one. At the critical point, the plasmalike system is
coupled.

Once determined the critical density and temperature, we
can estimate transport coefficients using the transport coeffi-
cients of the effective hard-sphere reference system25 at the
effective hard-sphere packing-fraction �c=0.05. As an illus-
tration, we found for self-diffusion and shear viscosity
68.30 Å2 /ps and 0.31 GPa ps, respectively. The values
should be compared to what can be estimated at melting
conditions ��=2.37 g /cm3 and T=933 K�, i.e., 0.77 Å2 /ps
and 1.14 GPa ps, respectively. If the shear viscosity at the
critical point is nearly four times lower than the one at melt-
ing, there is a huge difference between the self-diffusion co-
efficient values at melting and at the critical point. Using the
Stokes-Einstein relation with slip boundary condition28 to
determine the shear viscosity from the self-diffusion coeffi-
cient, we found that the shear viscosity at the critical point is
equal to 0.12 GPa ps, compared to 0.31 GPa ps. The ther-
modynamic conditions at the critical point are far from being
those for which the Stokes-Einstein relation with slip bound-
ary condition is valid. The situation with the Stokes-Einstein
relation with stick boundary conditions28 is worse.

Using the Kubo-Greenwood formula,26,33 we can calcu-
late the ac and dc electronic electrical conductivities at the
critical point. Many properties follow directly from the
knowledge of the frequency-dependent real part of the
conductivity.49 Calculations have been performed with a 8 k
point sampling of the Brillouin zone according to the pre-
scription of Monkhorst and Pack.50 Using a cubic fit of the ac
electrical conductivity between 0.1 and 0.9 eV and extrapo-
lating to zero frequency the fit, we found a dc electrical
conductivity equal to 1.056�105 �−1 m−1. This gives us an
electrical resistivity equal to 9.47 �� m. This value is con-
sistent with the measurements obtained by Korobenko et al.7

at 0.5 g /cm3 and between 6000 and 10 000 K. For instance,
at 0.5 g /cm3 and 8446 K, Korobenko et al.7 measured an
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FIG. 2. Effective hard-sphere packing fraction �eff found with
the HS-AIMD approach as a function of density � for all the tem-
peratures inside the density-temperature plane selected to determine
the critical point. We plot the linear regression curve of the data
�eff=0.3� /�0, where �0=2.7 g /cm3 is the aluminum solid density.
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electrical resistivity equal to 11.49 �� m. At melting, i.e.,
for �=2.37 g /cm3 and T=933 K, the experimental electri-
cal resistivity is equal to 0.242 �� m.29 There is a factor
around 40 between the values at the critical point and at
melting.

It is well known that the critical point of metals cannot be
analyzed without considering its relation to the metal-
nonmetal transition.20 Following Hess et al.18 and the inspec-
tion of the ac electronic electrical conductivity as a function
of frequency, one can say that the system still presents a
plasmalike character at the critical point although it really
becomes difficult to assume a Drude law at low frequency.
To characterize the metal-nonmetal transition, we can use
Mott’s ideas.

Mott proposed51,52 that the metal-nonmetal transition oc-
curred when

Ne
1/3	


2

mee
2 � 0.2, �3�

where Ne is the electron density, 	 the static relative permit-
tivity, 
 the reduced Planck constant, me the electron mass,
and e the elementary charge. In literature, we can find53,54

0.25 instead of 0.2. Equation �3� is understood to be a useful
way to localize the metal-nonmetal transition. 	 can be ob-
tained from the ac electronic electrical conductivities using
Kramers-Kronig relations.49 At the critical point, we found
that 	=12.37. The problem is now to determine Ne. We can
write Ne=�ZeffN /A, where Zeff is the effective number of
free electrons per atom. We cannot estimate the number Zeff
of atomiclike free electrons per atom from the electrical con-
ductivity using the Kubo-Greenwood formula since we do
not have any Drude-type behavior at low frequency. Indeed,
there are many possibilities to estimate Zeff. We can simply
take Zeff=3. We can deduce Zeff from the effective plasma
coupling parameter �eff�1. Taking T=7963 K and �
=0.44 g /cm3, we find that Zeff=0.37. We can also estimate
Zeff from the marked minimum in the index of refraction55

which corresponds to the plasma frequency at this density.
We plot in Fig. 3 the index of refraction as a function of
photon energy. The minimum is close to 7.13 eV. From the
plasma frequency formula,

�p = 	4�e2ZeffNi/me, �4�

where Ni=�N /A is the ion density, we find that Zeff=3.75.
The three evaluations of Zeff are quite different. They corre-
spond to three different methods to estimate Zeff in an ab
initio code. In any case, we find that the left-hand side of Eq.
�3� is greater than 0.2 or 0.25. Following Mott and Eq. �3�,
we are metallic at the critical point. One can note that Mott
criterion �3� should be used with caution in ab initio codes.
This is due to the fact that we have many possibilities to
estimate the electron density Ne appearing in Eq. �3�. More-
over, Eq. �3� appears sometimes with me replaced by an ef-
fective mass meff.

56

There is another possibility to study the metal-nonmetal
transition. It is based on the concept of minimum conductiv-
ity enhanced by Mott.52,57,58 When the scattering becomes

strong enough for the mean free path to be comparable with
the interatomic distance,7,11,58–60 the smallest conductivity
we can have is52,57

min �
e2

3
a
. �5�

When the conductivity is above this value, we are in a me-
tallic state. When it is below, we have an insulator.61 Equa-
tion �5� can be helpful to analyze a metal-nonmetal transi-
tion. Using Eq. �2�, we can estimate the average nearest-
neighbor interatomic distance a appearing in Eq. �5� using
the nearest-neighbor distribution functions and their related
quantities for the hard-sphere system.62,63 By means of the
Carnahan-Starling approximation,27 we find63

a = 2aWS�eff
1/3
1 + �

1

�

EP�x�dx� , �6�

where aWS= �4�Ni /3�−1/3 is the Wigner-Seitz radius,

EP�x� = exp− �eff�8e��eff��x3 − 1� + 12f��eff��x2 − 1�

+ 24g��eff��x − 1��� �7�

for x�1 with

e��eff� =
1 + �eff

�1 − �eff�3 , �8�

f��eff� =
− �eff�3 + �eff�

2�1 − �eff�3 , �9�

g��eff� =
�eff

2

2�1 − �eff�3 . �10�

At �=0.44 g /cm3, we find that �min=1 /min=3.39 �� m
that should be compared to 9.47 �� m. This means that we
are insulator at the critical density using the minimum con-
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FIG. 3. Aluminum index of refraction at the critical point
�c=0.44 g /cm3 and Tc=7963 K.
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ductivity idea based on Eq. �5�. From Ref. 64, we can as-
sume that the dc conductivity scales as �7/3. We can thus
estimate the metal-nonmetal density �mnm when min in Eq.
�5� is equal to the DC conductivity using the scaling and the
value of 9.47 �� m at �=0.44 g /cm3. We find �mnm
=0.686 g /cm3. If these calculations are correct and if alumi-
num is metallic at the critical density, the critical density may
be rather close to 0.7 g /cm3. This seems to indicate that we
underestimate the critical density using HS-AIMD.

We clearly need experimental data to cross-check these
results. We can use experimental data obtained by Ko-
robenko et al.7,11 They found a change of slope for the elec-
trical resistivity with temperature as we go from 1.4 to
0.1 g /cm3. This change of slope was associated with a
metal-nonmetal transition.11 Using the data7,65 of electrical
resistivity as a function of temperature for �=0.1, 0.3, 0.5,
0.675, 1, and 1.4 g /cm3, we can fit them with a linear re-
gression and obtain the slope as a function of density. This
slope is negative at low density and positive at high density.
Using cubic interpolation, we find that the slope is zero at
�=0.73 g /cm3, i.e., between 0.675 and 1 g /cm3. If alumi-
num is metallic at the critical point and if the metal-nonmetal
is mostly driven by density, this means that the aluminum
critical density should be greater than 0.73 g /cm3. Indeed, if
we plot the logarithm of the resistivity as a function of 1 /T1/4

for the data of Korobenko et al.,7 we find a characteristic
behavior similar to Fig. 5 of Mott,57 indicating again a metal/
insulator transition lying somewhere between 0.675 and
1 g /cm3. If we consider the new data of Korobenko et al.11

that are better than the old ones,11,65 the resistivity slope
changes with its sign at a density that is about three times
less than the standard solid density, i.e., 0.9 g /cm3. Indeed,
the derivative turns to zero somewhere between 0.9 and
1 g /cm3, but most likely65 closer to 1 g /cm3. If this behav-
ior is the onset of a metal-nonmetal transition and if alumi-
num is metallic at the critical point, the new data11 tend to
indicate that there is no theoretical approach presented in
Table I that predicts a critical density between 0.9 and
1 g /cm3.

Using the index of refraction to estimate the plasma fre-
quency was underlined by Mazevet et al.55 These authors
present various index of refraction at T=10 000 K of alumi-
num for �=0.025, 0.1, 0.3, 0.5, 1, and 2 g /cm3 in Fig. 5 of
Ref. 55. Our results presented in Fig. 3 are consistent with
their results shown in Fig. 5 of Ref. 55, though our plateau
between 2 and 4 eV is more pronounced. What is interesting
is to extract Zeff from the marked minimum associated with
plasma frequency. Using Eq. �4�, the plasma frequency at
2 g /cm3 corresponding to an ionization fraction Zeff=3 is
13.52 eV, i.e., in fair agreement with the minimum of the
index of refraction shown in Fig. 5 of Ref. 55. This is what is
expected from cold dense aluminum. From Fig. 5 of Ref. 55,
the minima at 1, 0.5, and 0.3 g /cm3 are close to 9, 7.25, and
6.5 eV, respectively. With Zeff=3, the plasma frequencies are
9.61, 6.79, and 5.26 eV, respectively. There are some differ-
ences. If we use the energies corresponding to the minima
and Eq. �4�, we find that Zeff=2.63, 3.42, and 4.58 at 1, 0.5,
and 0.3 g /cm3, respectively. We are below 3 at 1 g /cm3 but
clearly above 3 at 0.3 and 0.5 g /cm3. Combining Eq. �4� and
the energy minima can lead to questionable results concern-

ing the effective number of free electrons per atom Zeff when
the ac electrical conductivity is not Drude type.33,64 Not sur-
prisingly, if we use Zeff=3.75 at T=7963 K and �
=0.44 g /cm3, we find an effective plasma coupling param-
eter of 102 that is very different from �eff�1. The value of
102 is consistent with what can be extracted from Fig. 5 of
Ref. 55. �c�0.05 is found with the HS-AIMD approach
based on the Gibbs-Bogolyubov inequality using the CPMD

code.25 We then used a correspondence between the one-
component plasma and the hard-sphere systems using again
the Gibbs-Bogolyubov inequality31 to get �eff�1. This value
for �eff derives from a clear thermodynamic approach. The
value 102 comes from a less firm theoretical basis.

Knowing the electron density, one can estimate the
degree of degeneracy of the thermodynamic system at the
critical point. From Zeff=0.37 we find a degeneracy factor
�=T /TF=0.80 where TF is the Fermi temperature.28 If
we use Zeff=3 and Zeff=3.75, we find that �=0.20 and
�=0.17, respectively. In any case, the system at the critical
point is degenerate.

We plot in Fig. 4 the mass absorption coefficient at the
critical point conditions as a function of photon energy. We
see a prominent feature below located around 5.5 eV. This
feature is characteristic of the 3s→3p transition for an iso-
lated aluminum atom,64 which is also present in the metal-
nonmetal transition of aluminum at 10 000 K.33 If we take
Zeff=3 electrons per atom as atomiclike free electrons, we
find a plasma frequency equal to 6.4 eV. However, in this
range of temperature and density, there is a significant num-
ber of atomiclike electrons that cannot be considered as free
but rather localized, as shown by the characteristic feature
located around 5.5 eV. From the marked minimum in the
index of refraction, one obtained a plasma frequency close to
7.13 eV. However, if we take Zeff=0.37, we obtain a plasma
frequency equal to 2.24 eV. Aluminum atoms near the criti-
cal point are nearly neutral but the plasma frequency de-
duced from the index of refraction is not very far from the
one obtained using Zeff=3. The plasma frequency is signifi-
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FIG. 4. Aluminum mass absorption coefficient at the critical
point �c=0.44 g /cm3 and Tc=7963 K.
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cantly reduced from the former estimations if we take Zeff
=0.37. This underlines that standard textbook formulas
should be used with caution in such a complicated thermo-
dynamic regime. The characteristic feature of the 3s→3p
transition for an isolated aluminum atom, which is estimated
to be below the plasma frequency if we use Zeff=3 or the
index of refraction, appears to be above the plasma fre-
quency derived using Zeff=0.37 and Eq. �4�. This is very
important from an experimental point of view if we want to
measure this characteristic feature around 5.5 eV.

We know that the Rosseland weighting factor has a maxi-
mum at four times the temperature, i.e., the domain of pho-
ton energies that brings a significant contribution in the en-
ergy transfer process.66 At the critical point, we find that the
Rosseland weighting factor is maximum at 2.74 eV. This
Rosseland weighting factor is close to the characteristic fea-
ture of the 3s→3p transition for an isolated aluminum atom.
The maximum Rosseland weighting factor is above the
plasma frequency obtained using Zeff=0.37 but below both
the ones obtained using either Zeff=3 or the index of refrac-
tion.

We plot in Fig. 5 the reflectivity at the critical conditions
as a function of photon energy. We see that the reflectivity
drops rapidly at low frequencies. The reflectivity goes
through a minimum between 2 and 4 eV, while the index of
refraction is constant in Fig. 3 in this spectral range. Whereas
the index of refraction then shows a marked minimum near
7.13 eV before increasing again to tend to one, the reflectiv-
ity shows a marked maximum close to both the marked mini-
mum of the index of refraction in Fig. 3 and the characteris-
tic of the 3s→3p transition for an isolated aluminum atom
visible on the mass absorption coefficient in Fig. 4 in this
spectral region.

IV. CONCLUSION

We have evaluated the critical point of aluminum using
the variational approach HS-AIMD based on the ab initio
molecular-dynamics code CPMD. We found that the critical
density, temperature, and pressure are equal to 0.44 g /cm3,
7963 K, and 0.35 GPa, respectively. At the critical point, the

system is rarefied, coupled, and degenerate. Using the Kubo-
Greenwood formula, we obtained the electrical conductivity,
the absorption coefficient, the refraction index, and the re-
flectivity at the critical point. We used Mott’s ideas to study
the metal-nonmetal transition, which is strongly related to
the critical point. The critical point of aluminum is challeng-
ing from a theoretical and an experimental point of view,
although it is not easy to analyze it in an unambiguous way.
This clearly illustrates the fact that it is difficult to describe a
WDM state, such as the aluminum critical point, from a
solid-sate physics or a plasma physics perspective. This is
characteristic of the WDM regime, and this should motivate
experimentalists to measure data inside the WDM regime
near the critical point of metals.
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