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Odd-frequency pairing mechanism of superconductivity has been investigated for several decades. Never-
theless, its properties, including the thermodynamic stability, have remained unclear. In particular, it has been
argued that the odd-frequency state is thermodynamically unstable, has an unphysical �anti-�Meissner effect,
and thus cannot exist as a homogeneous equilibrium phase. We argue that this conclusion is incorrect because
it implicitly relies on the inappropriate assumption that the odd-frequency superconductor can be described by
an effective Hamiltonian that breaks the particle conservation symmetry. We demonstrate that the odd-
frequency state can be properly described within the functional-integral approach using nonlocal-in-time ef-
fective action. Within the saddle-point approximation, we find that this phase is thermodynamically stable,
exhibits ordinary Meissner effect, and therefore can be realized as an equilibrium homogenous state of matter.
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Odd-frequency pairing mechanism was introduced by
Berezinskii1 in an attempt to describe the A phase of super-
fluid 3He. Although, it was later found that in the case of
superfluid 3He the pairing is odd in space �p wave� rather
than in time, the question of whether the same-spin fermions
can develop anomalous correlations that are odd in fre-
quency �“p wave” along the time direction� remained open.
The interest in this pairing mechanism was revived almost
two decades later in the context of high-temperature super-
conductors by Balatsky and Abrahams,2 who generalized it
to the case of opposite spin pairing. At the same time it has
been argued that the odd-frequency superconducting order
parameter does not correspond to a thermodynamically
stable phase,3,4 and thus may not be realized as a homog-
enous equilibrium state of matter.5,6 On the other hand, the
phase can be stabilized within path-integral approach7—no
resolution to this contradiction has been known so far. Re-
cently, odd-frequency pairing mechanism has been investi-
gated in the context of anomalous proximity effect in
superconductor-ferromagnetic junction,8,9 where supercon-
ducting penetration length is believed to be significantly
enhanced due to the formation of the triplet component
from the standard s-wave singlet condensate at the
superconductor-ferromagnet interface.10

In this Brief Report we demonstrate that homogeneous
odd-frequency superconductor is thermodynamically stable
in the bulk and exhibits ordinary Meissner effect. We intro-
duce the order parameter within path-integral framework and
analyze the relations between anomalous correlation func-
tions for the same-spin fermions �omitting the spin indexes
for clarity�.11 To explain the origin of the contradiction out-
lined above, we will compare these relations for conven-
tional even-frequency pairing �e.g., s-wave singlet or p-wave
triplet� to those taking place in the odd-frequency pairing
case �e.g., s-wave triplet or p-wave singlet�.

The argument on instability of the odd-frequency super-
conductor can be summarized as follows.3,12 Thermody-
namic stability is determined by the change in free energy in
the ordered phase, relative to the disordered one. Near the
second-order transition point it can be written as3,13
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and an identical relation for F+ and �+. Here D�� ,q� is
irreducible interaction between quasiparticles with energies
�q �we assume that D is real and even in both � and q�, and
� is the inverse temperature.

The sign of �� can be determined by analyzing the rela-
tion between ��� ,q� and �+�� ,q�. The nonzero averages
�T�cq���c−q�0�� and �T�c−q
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they are taken with respect to a state with broken U�1� sym-
metry �particle number conservation�. If an appropriate
broken-symmetry mean-field Hamiltonian HMF exists, then

F��,q� =
1

Z
Tr�e−�HMFT�e

�HMFcqe−�HMFc−q	 ,

F+��,q� =
1

Z
Tr�e−�HMFT�e

�HMFc−q
† e−�HMFcq

†	 , �3�

where Z=Tr�e−�HMF	. A straightforward comparison shows
that the two Green’s functions are related as

F���,q� = F+��,q� or F���,q� = F+�− �,q� . �4�

As a consequence of Eq. �2� the functions ��� ,q� and
�+�� ,q� obey identical relation and therefore the product
��� ,q��+�� ,q� in Eq. �1� is negative definite for the odd-
frequency functions producing ���0. As the result, one is
forced to conclude that the odd-frequency superconducting
phase is thermodynamically unstable.3 This conclusion can
also be reached if one uses the Green’s functions obtained in
original work by Berezinskii.1 As a related issue, one also
finds an unphysical Meissner effect �i.e., with the negative
Meissner kernel�.12 Later it was suggested that the odd-
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frequency state might exist as an inhomogeneous phase,
where the order parameter is modulated at the microscopic
level,4–6 or might be a manifestation of some composite
�even-frequency� order parameter.14

In what follows, we show that relation �4� holds only for
the even-frequency anomalous Green’s function. Odd-
frequency superconducting state changes this relation, and
Eq. �4� is modified to F��� ,q�=−F+�� ,q�. The problem with
the reasoning outlined above is that it assumed existence of a
mean-field Hamiltonian HMF. However, to account for the
retardation effects, which are essential in the case of the
odd-frequency state, effective Hamiltonian language, e.g.,
Eq. �3�, is inappropriate. In other words, HMF for odd-
frequency superconductivity does not exist. Instead, one
should consider an effective action that is essentially nonlo-
cal in time.

To study the superconducting phase, we represent the par-
tition function of the system as a functional integral15

Z =
 D	̄D	D��D�e−S�	̄,	,��,��, �5�

with

S =
 dx1	̄�x1���� + �̂		�x1� +
 dx1dx2
���x1,x2��2

D�x1 − x2�

+
 dx1dx2����x1,x2�	�x2�	�x1� + ��x1,x2�	̄�x1�	̄�x2�	 ,

�6�

where 	̄�x� and 	�x� are conjugate Grassmann variables cor-
responding to the fermionic fields 	†�r�=�qe−iqrcq

† and
	�r�=�qeiqrcq, with x labeling both spatial r and �Matsub-

ara� time � coordinates, and �̂ is the kinetic-energy operator,

�̂=−�r
2 / �2m�−
. In Eqs. �5� and �6� we have introduced the

pairing field ��x1 ,x2� via the standard Hubbard-Stratonovich
transformation15 by decoupling the interaction term

�dx1dx2D�x1−x2�	̄�x1�	̄�x2�	�x2�	�x1�. Note that up to this
point, no approximation has been made.

As pointed out earlier, the anomalous Green’s functions
can be defined only with respect to a state with the broken
U�1� symmetry. Indeed it is easy to see that the quantity


 D	̄D	D��D�	�x�	�x��e−S�	̄,	,��,�� �7�

is identically zero: after integration over the � fields we av-
erage 	�x�	�x�� with respect to the action containing only

products 	̄	 of Grassmann variables. This average is nothing
but F�x ,x�� defined earlier in terms of the time-ordered av-
erage, which is indeed zero in normal phase. While in the
normal phase the partition function Z of Eq. �5� is dominated
by the vicinity of �=0, below certain temperature the situa-
tion changes: the primary contribution to Z comes from
���x1 ,x2���0, which signals spontaneous U�1� symmetry
breaking. In addition, for spinless electrons, the supercon-
ducting state breaks either spatial parity �e.g., p-wave super-
conductor� or time-reversal symmetry �odd-frequency super-

conductor�. In the ordered state, one can expand the action in
the vicinity of the nonzero saddle-point value of the order
parameter �MF�x1−x2�, with mean-field approximation cor-
responding to further neglecting the fluctuations around the
saddle point. At the mean-field level, the anomalous correla-
tion functions �F and F+� can be expressed as

F
��� − ��;r − r�� = ZMF
−1 
 D	̄D		
�r,��	��r�,���e−SMF,
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where

SMF =
 dx1	̄�x1���� + �̂		�x1�

+
 dx1dx2�MF
� �x1 − x2�	�x2�	�x1�

+
 dx1dx2�MF�x1 − x2�	̄�x1�	̄�x2� , �10�

and �MF�x1−x2� is again defined by the self-consistency con-
dition �Eq. �2�	.

Now we are ready to determine the relation between F
and F+. Due to the long history of the problem, and since we
believe that this relation is the root of the divergent claims
about the fate of the odd-frequency superconductivity, we
present here all technical details. First, let us take the com-
plex conjugate of F:

F��� − ��;r − r�� = ZMF
−1 
 D	̄D		̄�r�,���	̄�r,��e−SMF

�

,

�11�

where

SMF
� =
 dx���	̄�x�	�x� + �̂	̄�x�	�x�

+
 dx1dx2��MF�x1 − x2�	̄�x1�	̄�x2�

+ �MF
� �x1 − x2�	�x2�	�x1�	 . �12�

Integrating the first two terms in Eq. �12� by parts we obtain

�dx	̄�x��−��+ �̂		�x�. Then defining the new variables ac-

cording to �̄�r ,��= 	̄�r ,−�� and ��r ,��=	�r ,−��, and
changing �→−� in every integral in Eq. �12�, we obtain

F��� − ��;r − r�� = ZMF
−1 
 D�̄D��̄�r�,− ����̄�r,− ��e−S̃MF,

�13�

with
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S̃MF =
 dx�̄�x���� + �̂	��x�

+
 dx1dx2��MF
� ��2 − �1,r1 − r2���x2���x1�

+ �MF��2 − �1,r1 − r2��̄�x1��̄�x2�	 . �14�

For even-in-� ��� ,r� �e.g., p wave for a single spin spe-

cies case�, we have S̃MF=SMF and therefore comparing Eqs.
�13� and �14� with Eqs. �9� and �10� we recover Eq. �4�.

For odd-in-� ��� ,r� �e.g., s wave with a single spin spe-
cies�, we see that by changing �→−� a minus sign is gener-
ated in the last two terms in the right-hand side of Eq. �14� as
compared to Eq. �12�. This difference can be removed by
another change of variables ��r ,��→ i��r ,��, �̄�r ,��→
−i�̄�r ,��, which is a simple gauge transformation. We obtain

again S̃MF=SMF. However, an additional factor �−1� now
appears before the entire path integrals owning to the fact
that the quantity �̄�̄ transforms into �−�̄�̄� as a result of the
last gauge transformation. Therefore comparing Eqs. �13�
and �14� with Eqs. �9� and �10�, we finally obtain that in the
odd-frequency case we have the relation

F��� − ��,r − r�� = − F+�� − ��,r� − r� �15�

or

F���,q� = F+��,q� . �16�

Obviously Eq. �16� holds for the even-frequency case as
well—in which case F+�−� ,q� in Eq. �4� can be replaced by
F+�� ,q� for even-frequency F. As a result, contrary to the
conclusion of Refs. 3–6, the product ��� ,q��+�� ,q� in Eq.
�1� is positive definite both for odd- and even-frequency pair-
ings and therefore ��0. The same conclusion can be
reached by directly analyzing the mean-field free energy,
given by Eqs. �5� and �6�, as the system undergoes the phase
transition. Thus we conclude that the odd-frequency super-
conducting phase has free energy lower than that of the nor-
mal phase.

The magnitude of the order parameter has to be deter-
mined from the self-consistency condition �Eqs. �2�, �8�, and
�9�	, and is nonzero below the superconducting transition
temperature and above certain critical coupling �as can be
easily verified numerically for various model interactions us-
ing well-established numerical procedure; see, e.g., Ref. 16�.
Some analysis of self-consistency equation for odd-
frequency anomalous correlation function has been already
done in the literature.17 The detailed analysis of the solution
as well as the properties of such superconducting state re-
quires separate investigation. Below we briefly discuss one
of these properties—the Meissner effect.

It can be verified that due to relation �16� odd-frequency
superconducting phase has a positive Meissner kernel and
therefore a physically meaningful Meissner effect. The su-
percurrent and the vector potential are related as j�k�=
−K�k�A�k�, where the �Meissner� kernel K is expressed13 as

K�k� =
Ne2

m
+

2e2

m2�
�
�

 dp

�2��3p2�G��,p+�G��,p−�

+ F��,p+�F+��,p−�	 . �17�

Here p�=p�k /2. The Green’s functions can be easily ob-
tained from Eqs. �8�–�10�. We have

F��,q� =
2�MF��,q�

�2 + �q
2 + �2�MF��,q��2

, �18�

F+��,q� =
2�MF

� ��,q�
�2 + �q

2 + �2�MF��,q��2
, �19�

G��,q� =
i� + �q

�2 + �q
2 + �2�MF��,q��2

. �20�

Note that the form of Eqs. �18� and �19� is consistent with
Eq. �16�, not with Eq. �4�. Had we used Eq. �4�, we would
have obtained �MF

� �−� ,q� in Eq. �19� as well as
−��MF�� ,q��2 in the denominators of Eqs. �18�–�20�.

As usual Eq. �17� is divergent and we regularize it by
subtracting K�k� for �MF�� ,q�=0 �obviously K�k�=0 in
normal phase	.13 In the long-wavelength limit and for
�MF�� ,q� independent of q �i.e., for pairing in s-wave chan-
nel�, we obtain

K�k → 0� =
�Ne2

m�
�
�

�2�MF����2

��2 + �2�MF����2	3/2 . �21�

This equation obviously is positive definite. Note that if
we had used Eq. �4� �which is invalid as we argue
above�, we would have obtained �MF

+ �� ,q��MF�� ,q�
=�MF

� �−� ,q��MF�� ,q� in the numerator in the right-hand
side of Eq. �21� and thus negative Meissner kernel for the
odd-frequency case.

While possessing similar electromagnetic properties �i.e.,
the Meissner effect� to its familiar even-frequency counter-
part, the odd-frequency superconductor is expected to differ
from the even-frequency one in several important aspects.
Here we mention just some of them qualitatively. The equal
spin pairing considered above, leads to a gapless supercon-
ductor, with an isotropic �s-wave� electronic spectral func-
tion. The only other known example where this can happen
is the s-wave superconductor with a relatively high concen-
tration of magnetic impurities; however, for odd-frequency
superconductor this would occur even in the clean case.
The odd-frequency anisotropic s-wave superconductor can
readily exceed the Pauli paramagnetic limit, and can exhibit
very little change in magnetic susceptibility �Knight shift�
across the superconducting transition. These and other prop-
erties, in particular the manifestations of the time-reversal
symmetry breaking in such superconductors, are attractive
directions for future detailed theoretical investigations.
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