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Thermodynamical stability of odd-frequency superconducting state
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Odd-frequency pairing mechanism of superconductivity has been investigated for several decades. Never-
theless, its properties, including the thermodynamic stability, have remained unclear. In particular, it has been
argued that the odd-frequency state is thermodynamically unstable, has an unphysical (anti-)Meissner effect,
and thus cannot exist as a homogeneous equilibrium phase. We argue that this conclusion is incorrect because
it implicitly relies on the inappropriate assumption that the odd-frequency superconductor can be described by
an effective Hamiltonian that breaks the particle conservation symmetry. We demonstrate that the odd-
frequency state can be properly described within the functional-integral approach using nonlocal-in-time ef-
fective action. Within the saddle-point approximation, we find that this phase is thermodynamically stable,
exhibits ordinary Meissner effect, and therefore can be realized as an equilibrium homogenous state of matter.
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Odd-frequency pairing mechanism was introduced by
Berezinskii! in an attempt to describe the A phase of super-
fluid *He. Although, it was later found that in the case of
superfluid *He the pairing is odd in space (p wave) rather
than in time, the question of whether the same-spin fermions
can develop anomalous correlations that are odd in fre-
quency (“p wave” along the time direction) remained open.
The interest in this pairing mechanism was revived almost
two decades later in the context of high-temperature super-
conductors by Balatsky and Abrahams,”> who generalized it
to the case of opposite spin pairing. At the same time it has
been argued that the odd-frequency superconducting order
parameter does not correspond to a thermodynamically
stable phase,>* and thus may not be realized as a homog-
enous equilibrium state of matter.>® On the other hand, the
phase can be stabilized within path-integral approach’—no
resolution to this contradiction has been known so far. Re-
cently, odd-frequency pairing mechanism has been investi-
gated in the context of anomalous proximity effect in
superconductor-ferromagnetic junction,® where supercon-
ducting penetration length is believed to be significantly
enhanced due to the formation of the triplet component
from the standard s-wave singlet condensate at the
superconductor-ferromagnet interface.'”

In this Brief Report we demonstrate that homogeneous
odd-frequency superconductor is thermodynamically stable
in the bulk and exhibits ordinary Meissner effect. We intro-
duce the order parameter within path-integral framework and
analyze the relations between anomalous correlation func-
tions for the same-spin fermions (omitting the spin indexes
for clarity).!! To explain the origin of the contradiction out-
lined above, we will compare these relations for conven-
tional even-frequency pairing (e.g., s-wave singlet or p-wave
triplet) to those taking place in the odd-frequency pairing
case (e.g., s-wave triplet or p-wave singlet).

The argument on instability of the odd-frequency super-
conductor can be summarized as follows.>»'? Thermody-
namic stability is determined by the change in free energy in
the ordered phase, relative to the disordered one. Near the
second-order transition point it can be written as>!3
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with gap functions related to the anomalous (Matsubara)
Green’s functions F(w,q)=[d7e'“(Tc,(7)c_q(0)) and

Fr(w,q)=f dTe‘in<TTCiq(T)le(0)> through a self-consistency
relation

(1)

A(w’q): E D(w_w’7q_q’)F(w,’q’)’ (2)

ror
w',q

and an identical relation for F* and A*. Here D(w,q) is
irreducible interaction between quasiparticles with energies
fq (we assume that D is real and even in both w and q), and
B is the inverse temperature.

The sign of &0 can be determined by analyzing the rela-
tion between A(w,q) and A*(w,q). The nonzero averages
(T1cq(T)c_g(0)) and (chfq(r)c;g(O)) can only be obtained if
they are taken with respect to a state with broken U(1) sym-
metry (particle number conservation). If an appropriate
broken-symmetry mean-field Hamiltonian Hyp exists, then

1
F(r.q) = Tl PeT e hure e e ),

1
F(7,q) = ETr[e_BHMFTTeTHMFche_THMFc:;], (3)

where Z=Tr[e PHVF]. A straightforward comparison shows
that the two Green’s functions are related as

F*(T»(I) = F+(T’(I) or F*(‘U,(I) = F+(_ le) (4)

As a consequence of Eq. (2) the functions A(w,q) and
A*(w,q) obey identical relation and therefore the product
A(w,q)A*(w,q) in Eq. (1) is negative definite for the odd-
frequency functions producing 80 >0. As the result, one is
forced to conclude that the odd-frequency superconducting
phase is thermodynamically unstable.® This conclusion can
also be reached if one uses the Green’s functions obtained in
original work by Berezinskii.! As a related issue, one also
finds an unphysical Meissner effect (i.e., with the negative
Meissner kernel).!> Later it was suggested that the odd-

©2009 The American Physical Society


http://dx.doi.org/10.1103/PhysRevB.79.132502

BRIEF REPORTS

frequency state might exist as an inhomogeneous phase,
where the order parameter is modulated at the microscopic
level,*"% or might be a manifestation of some composite
(even-frequency) order parameter.'*

In what follows, we show that relation (4) holds only for
the even-frequency anomalous Green’s function. Odd-
frequency superconducting state changes this relation, and
Eq. (4) is modified to F*(7,q)=—F"(7,q). The problem with
the reasoning outlined above is that it assumed existence of a
mean-field Hamiltonian Hyz. However, to account for the
retardation effects, which are essential in the case of the
odd-frequency state, effective Hamiltonian language, e.g.,
Eq. (3), is inappropriate. In other words, Hyyp for odd-
frequency superconductivity does not exist. Instead, one
should consider an effective action that is essentially nonlo-
cal in time.

To study the superconducting phase, we represent the par-
tition function of the system as a functional integral'?

Z= f DIDYDA DAeSHA"8) )

with

|A(x1,xz)|2

S=fdx,17/(xl)[&7+$]zp(xl)+JdxldxzD( )
X1 — Xy

+Jdxldx2[A*(x1,x2)w(x2)tﬂ(xl)+A(x1,x2)tl(x1)tl(x2)],
(6)

where ¢/(x) and ¢(x) are conjugate Grassmann variables cor-
responding to the fermionic fields 1,//T(r)=qu"q'cfl and
Y(r)=24e'%cy, with x labeling both spatial r and (Matsub-
ara) time 7 coordinates, and é is the kinetic-energy operator,
$=—V§/ (2m)— . In Egs. (5) and (6) we have introduced the
pairing field A(x,,x,) via the standard Hubbard-Stratonovich
transformation’®> by decoupling the interaction term
Jdx dxyD(x; —x) h(x;) (x2) (x,) (x;). Note that up to this
point, no approximation has been made.

As pointed out earlier, the anomalous Green’s functions
can be defined only with respect to a state with the broken
U(1) symmetry. Indeed it is easy to see that the quantity

f DYDYDA DAY(x) Pl )e 14" 7)

is identically zero: after integration over the A fields we av-
erage (x)y(x") with respect to the action containing only

products ¢y of Grassmann variables. This average is nothing
but F(x,x’) defined earlier in terms of the time-ordered av-
erage, which is indeed zero in normal phase. While in the
normal phase the partition function Z of Eq. (5) is dominated
by the vicinity of A=0, below certain temperature the situa-
tion changes: the primary contribution to Z comes from
|A(x;,x,)| #0, which signals spontaneous U(1) symmetry
breaking. In addition, for spinless electrons, the supercon-
ducting state breaks either spatial parity (e.g., p-wave super-
conductor) or time-reversal symmetry (odd-frequency super-
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conductor). In the ordered state, one can expand the action in
the vicinity of the nonzero saddle-point value of the order
parameter Aygp(x;—x,), with mean-field approximation cor-
responding to further neglecting the fluctuations around the
saddle point. At the mean-field level, the anomalous correla-
tion functions (F and F*) can be expressed as

Fulr=1'r=1') =Zyy f DYDY, (e, 1) (x', 7 )N,

(8)

F(r=7:r-r')= Zg}}:j DYD i, (x,7)ih,(x', 7 )e M,
)

where
SMF=fdxll?f(x1)[¢9T+é]'J/(xl)
+Jdxldx2Alt/lF(xl_x2)¢(x2)¢(x1)

+fdxldeAMF(xl_xz)‘Z(xl)'Z(xz)’ (10)

and Ayp(x; —x,) is again defined by the self-consistency con-
dition [Eq. (2)].

Now we are ready to determine the relation between F
and F*. Due to the long history of the problem, and since we
believe that this relation is the root of the divergent claims
about the fate of the odd-frequency superconductivity, we
present here all technical details. First, let us take the com-
plex conjugate of F:

F(r=—7ir-r1')= Zih:f DYDY(x’ 7 ) (r, e~ Snr,

(11)
where
Sur= f dx{ 0 0x) Plx) + EPx) ()}
+ f dxydx,[ App(xy = x7) ',_b(xl) 1,_0()62)
+ Ay = x0) Y)Yy ) . (12)

Integrating the first two terms in Eq. (12) by parts we obtain
[dxyf(x)[—0.+ g (x). Then defining the new variables ac-

cording to 7(r,D=y(r,-7) and z5(r,D=y(r,-7), and
changing 7— —7 in every integral in Eq. (12), we obtain

F'(r=7;r-1r) =ZK,[]FJ DyDyH(r’ ,— ) 7(r,— 1) SMF,

(13)

with
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Swr= J dx7(x)[9,+ €] m(x)

+ f dxydxy[ Ayp( 7y — 71,11 = 1) 7(x) 7(x)

+ App(my = 71,1 = 1) 7)) 7)) | (14)
For even-in-7 A(7,r) (e.g., p wave for a single spin spe-
cies case), we have SMF:SMF and therefore comparing Eqgs.
(13) and (14) with Egs. (9) and (10) we recover Eq. (4).
For odd-in-7 A(7,r) (e.g., s wave with a single spin spe-
cies), we see that by changing 7— —7 a minus sign is gener-
ated in the last two terms in the right-hand side of Eq. (14) as
compared to Eq. (12). This difference can be removed by
another change of variables #7(r,7)—in(r,7), 7(r,7)—
—i7(r,7), which is a simple gauge transformation. We obtain

again Syp=Syr. However, an additional factor (-1) now
appears before the entire path integrals owning to the fact
that the quantity %7 transforms into (—77) as a result of the
last gauge transformation. Therefore comparing Eqs. (13)
and (14) with Egs. (9) and (10), we finally obtain that in the
odd-frequency case we have the relation

F(r—7,r-r)=—F(r—=7,r' —1) (15)
or
F(0,q) = F(0,q). (16)

Obviously Eq. (16) holds for the even-frequency case as
well—in which case F*(-w,q) in Eq. (4) can be replaced by
F*(w,q) for even-frequency F. As a result, contrary to the
conclusion of Refs. 3-6, the product A(w,q)A*(w,q) in Eq.
(1) is positive definite both for odd- and even-frequency pair-
ings and therefore 8()<<0. The same conclusion can be
reached by directly analyzing the mean-field free energy,
given by Egs. (5) and (6), as the system undergoes the phase
transition. Thus we conclude that the odd-frequency super-
conducting phase has free energy lower than that of the nor-
mal phase.

The magnitude of the order parameter has to be deter-
mined from the self-consistency condition [Egs. (2), (8), and
(9)], and is nonzero below the superconducting transition
temperature and above certain critical coupling (as can be
easily verified numerically for various model interactions us-
ing well-established numerical procedure; see, e.g., Ref. 16).
Some analysis of self-consistency equation for odd-
frequency anomalous correlation function has been already
done in the literature.'” The detailed analysis of the solution
as well as the properties of such superconducting state re-
quires separate investigation. Below we briefly discuss one
of these properties—the Meissner effect.

It can be verified that due to relation (16) odd-frequency
superconducting phase has a positive Meissner kernel and
therefore a physically meaningful Meissner effect. The su-
percurrent and the vector potential are related as j(k)=
-K(k)A(K), where the (Meissner) kernel /C is expressed'? as
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_N_e2 2_82 p_,
K(k) = - +m2ﬁ§f 2mP [G(w,p,)G(w,p_)
+ F(o,p,)F(o,pJ)]. (17)

Here p.=p =k/2. The Green’s functions can be easily ob-
tained from Egs. (8)—(10). We have

_ 2’AMF(O‘)’ ‘I)
Flo.g)= o+ fﬁ +[2Ayr( . @) 18

+ _ 2AK/[F(0)’ (I)
Flo.a)= w2+§é+|2AMF(w’q)2’ (19
G, q) = —— b (20)

o + & + [28p(0, @)

Note that the form of Egs. (18) and (19) is consistent with
Eq. (16), not with Eq. (4). Had we used Eq. (4), we would
have obtained Ayp(-w,q) in Eq. (19) as well as
—|Ayp(w,q)[? in the denominators of Eqs. (18)—(20).

As usual Eq. (17) is divergent and we regularize it by
subtracting K(k) for Ayp(w,q)=0 [obviously K(k)=0 in
normal phase].’® In the long-wavelength limit and for
Ayip(w, q) independent of q (i.e., for pairing in s-wave chan-
nel), we obtain

mNe? 2App(w)[?
Kooy Pl

mB < [ +[2Ayp(w)]
This equation obviously is positive definite. Note that if
we had used Eq. (4) (which is invalid as we argue
above), we would have obtained Ajp(w,q)Ayp(w,q)
=Ay(—®,q)Ayr(w,q) in the numerator in the right-hand
side of Eq. (21) and thus negative Meissner kernel for the
odd-frequency case.

While possessing similar electromagnetic properties (i.e.,
the Meissner effect) to its familiar even-frequency counter-
part, the odd-frequency superconductor is expected to differ
from the even-frequency one in several important aspects.
Here we mention just some of them qualitatively. The equal
spin pairing considered above, leads to a gapless supercon-
ductor, with an isotropic (s-wave) electronic spectral func-
tion. The only other known example where this can happen
is the s-wave superconductor with a relatively high concen-
tration of magnetic impurities; however, for odd-frequency
superconductor this would occur even in the clean case.
The odd-frequency anisotropic s-wave superconductor can
readily exceed the Pauli paramagnetic limit, and can exhibit
very little change in magnetic susceptibility (Knight shift)
across the superconducting transition. These and other prop-
erties, in particular the manifestations of the time-reversal
symmetry breaking in such superconductors, are attractive
directions for future detailed theoretical investigations.
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with E. Abrahams, P. Coleman, and A. Balatsky. This work is
supported by the U.S. DOE.
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