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We study the competition between interference due to multiple single-particle paths and Coulomb interaction
in a simple model of an Anderson-type impurity with local-magnetic-field-induced level splitting coupled to
ferromagnetic leads. The model along with its potential experimental relevance in the field of spintronics
serves as a nontrivial benchmark system where various quantum-transport approaches can be tested and
compared. We present results for the linear conductance obtained by a spin-dependent implementation of the
density-matrix renormalization-group scheme which are compared with a mean-field solution as well as a
seemingly more advanced Hubbard-I approximation. We explain why mean field yields nearly perfect results
while the more sophisticated Hubbard-I approach fails even at a purely conceptual level since it breaks
hermiticity of the related density matrix. Furthermore, we study finite bias transport through the impurity by
the mean-field approach and recently developed higher-order density-matrix equations. We found that the
mean-field solution fails to describe the plausible results of the higher-order density-matrix approach both
quantitatively and qualitatively, as it does not capture some essential features of the current-voltage character-
istics such as negative differential conductance.
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I. INTRODUCTION

When electrons pass through a mesoscopic region, the
superposition of several different single-particle transport
paths can lead to interference, as, e.g., in an Aharonov-Bohm
geometry with quantum dots embedded in the arms.1,2 As the
size of the mesoscopic region diminishes, many-particle ef-
fects such as Coulomb blockade become increasingly
important.3 This may change the amplitudes of the compet-
ing transport paths and thereby alter the interference effect.
Eventually, for sufficiently strong many-body interaction, the
single-particle-path picture breaks down and such systems
should be treated using a true many-body formalism. This
problem of the interplay between interference of several
competing paths and many-body interaction has recently at-
tracted a lot of attention theoretically in the general quantum-
transport context4–17 as well as from more specific points of
view such as the molecular electronics,18–24 spintronics,25–29

or even full counting statistics30 and superconducting
transport.31

In the case of spintronics, the interference can be achieved
without necessity of a multiple connected orbital geometry
due to the possibility of superposition of different purely spin
amplitudes with the help of either noncollinearly magnetized
leads26,27,32 or an additional spin-level splitting noncollinear
with the lead magnetization.27,33 Since experiments with
strongly interacting quantum dots and ferromagnetic contacts
have recently been successfully performed,34–37 the spin in-
terference effects proposed in previous work33 and further
elaborated here may be within experimental reach.

Previously, some of us considered a model33 consisting of
a spin-1/2 level coupled to ferromagnetic leads with the mag-

netizations being either parallel or antiparallel. In addition, a
magnetic field noncollinear with the spin direction of the
leads was applied �see Fig. 1�.38 For this ferromagnetic
Anderson model with an applied magnetic field B �from now
on nicknamed the FAB model�, the linear conductance was
obtained in two different regimes: without interactions on the
dot, and in the cotunneling regime. For the noninteracting
case with fully polarized leads, zero temperature, bare level
on resonance, and parallel lead configuration, the linear con-
ductance can be calculated, e.g., using nonequilibrium
Green’s functions �NEGF�, and the exact result is33 �h is
Planck’s constant�

Gnonint =
e2

h
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0�R
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FIG. 1. Sketch of our model, where the magnetic field B in the
central region is tilted by an angle � with respect to the magneti-
zation of the contacts. The setup resembles the experiment of Ref.
37. The lead magnetizations must be pinned so that they are not
affected by a moderate magnetic field, which might be accom-
plished by using thin anisotropic films in the lead contacts.
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with ��
0 being the coupling to the leads with �=L ,R, B as

the magnetic field times the magnetic moment of the level,
and � as the angle between the magnetization in the leads
and the applied magnetic field. The conductance shows anti-
resonances at angles �=� /2 and �=3� /2 due to destructive
interference �see Fig. 2�.

Under the same conditions as stated above, the linear con-
ductance can be obtained in the cotunneling regime ���L

0

+�R
0� /B�1� even in the presence of an on-site Coulomb

interaction U �see Eq. �5�� by applying a scattering
formalism:33

Gcotun =
e2�L

0�R
0

h
� cos2��/2�

− B
+

sin2��/2�
B + U

�2

. �2�

In this regime, the conductance shows a crossover from the
behavior with an antiresonance at �=� /2 for the noninter-
acting case to a spin-valve effect for U→� with Gcotun

�cos4�� /2�. That is, the antiresonance around �=� /2 dis-
appear and the conductance vanishes for �=� instead �see
Fig. 2�.

A simple physical picture for the situation described
above is: in a basis where the Hamiltonian for the isolated
dot is diagonal, the bare dot level energy is split by the
magnetic field, and for noninteracting electrons the density
of states has peaks at the two single-particle energies at 	B
�see Fig. 3�. The widths of the two peaks depend on the angle
�, and for fully polarized leads they are proportional to
cos2�� /2� or sin2�� /2�, respectively. For �=0 and �=� one
of the peaks is infinitely narrow and electrons can only pass
through the other level, whereas for �=� /2 the peaks are
equally wide resulting in the sharp antiresonances due to
interference. So the angular dependence of the conductance
can be understood as interference through nondegenerate
levels, which have widths depending on the angle between
the magnetizations of the leads and the applied magnetic
field. For a large on-site Coulomb interaction, some weight
of the density of states is moved away from the single-
particle energies and away from the Fermi level, thereby
destroying the antiresonances.

The qualitative difference between the interacting and
noninteracting regimes is important, as it shows a very cru-
cial feature in the transport through mesoscopic systems,
namely, that it is generally not the single-electron-transport
paths which determine the transport but rather many-electron
processes. Besides leading to interesting physical effects, it
also puts strong demands on the theoretical transport formal-
ism applied to such systems as it should be able to handle
both the coherence and the interactions. It also has to be
applicable for sufficiently low temperatures because other-
wise thermal fluctuations will wash out the interference ef-
fect. That makes our model an excellent benchmark for
transport formalisms. Including interactions �if they are suf-
ficiently strong� is a challenge in the standard NEGF formal-
ism where all single-particle effects including the interfer-
ence are captured exactly. On the other hand, the density-
matrix language �generalized master equation �GME��
starting from exact many-body states of the system �thus
including the interaction exactly� faces problems when the
broadening due to the leads comparable with level splitting
�leading to interference effects� is to be incorporated. Thus,
this kind of models poses significant challenges to standard
transport approaches even outside notoriously difficult
strongly correlated regimes such as the Kondo regime.

Therefore, we used this model for a detailed comparison
study of the performance of different transport formalisms in
the potentially problematic and so far not addressed regime
of broadening comparable to the level splitting B���

0 and
arbitrarily strong interaction U. In particular, we test the re-
sults of higher-order, i.e., beyond mean-field, decoupling
schemes based on NEGF �Refs. 11, 26, and 39� and/or many-
body-state-based NEGF �Hubbard operator NEGF�
approaches.40–46 We found that the Hubbard-I approximation
�HIA� in the framework of NEGF,42,47 frequently applied to
the Anderson model with or without ferromagnetic
leads,11,26,45,46 gives unphysical and even mathematically
wrong results for the model considered in this paper. This
finding raises serious questions about the very foundation of
the many-body-state-based NEGF approaches.40,41,46
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FIG. 2. The linear conductance of Eq. �2�, which shows the
antiresonances for noninteracting electrons �full line, U=0� and the
spin-valve behavior for strongly interacting electrons �dashed line,
U=100B� as a function of the angle between the magnetizations of
the leads and the applied magnetic field.
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FIG. 3. Schematic energy spectrum in the linear conductance
regime for the noninteracting case. The bare resonant level is split
due to a magnetic field, and the angle between the magnetizations
of the leads and the applied magnetic field is denoted by �. The
widths of the two resonances depend on � as cos2�� /2� and
sin2�� /2�, respectively.
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As stated above, so far only the noninteracting and the
cotunneling regime have been considered �see Fig. 4�, and
for the latter only in linear response. In this paper, we calcu-
late the linear conductance at zero temperature for arbitrary
values of the tunneling coupling, applied magnetic field, and
on-site Coulomb interaction using a density-matrix
renormalization-group �DMRG� scheme �see Sec. III�. Sur-
prisingly, in the linear-response regime the results obtained
using the DMRG scheme can, in certain situations, be repro-
duced using Green’s functions with a mean-field approxima-
tion, which is discussed in Sec. IV. The unexpected failure of
the Hubbard-I approximation in the framework of NEGF
�Refs. 42 and 47� is analyzed in Sec. V. In Sec. VI we extend
the calculations beyond linear response by applying a gener-
alized master-equation formalism48 which works in a basis of
many-particle states and takes into account higher-order tun-
neling processes. In Sec. VII the failure of the mean-field
Green’s function method for finite bias is demonstrated. Fi-
nally, we conclude on our findings in Sec. VIII. Appendix A
contains the cotunneling expression for less than full polar-
ization of the leads and off-resonant transport, and Appendix
B presents details of the mean-field Green’s function calcu-
lation.

II. MODEL SYSTEM

The model Hamiltonian of the quantum dot coupled to
magnetic leads is

H = HLR + HT + HD, �3�

where

HLR = �
�=L,R,k


��,k
c�,k

† c�,k
. �4�

Here 
= ↑ /↓ is the spin of the electrons, and � denotes the
left or right electrodes, which are assumed to be polarized
along the z axis �the spin-quantization axis�, either parallel or
antiparallel. However, in this paper we only consider parallel
magnetizations of the leads. �In some equations, we use the
numbers 
= �1 for algebraic manipulation, referring to the

spin direction ↑ /↓, respectively.� The quantum dot is sub-
jected to a magnetic field B, which is tilted by an angle �
with respect to the z axis and lies within the xz plane. Note
that we neglect the negative sign of the electron charge for
simplicity. Thus, the energetically preferred spin direction is
pointing in the direction of B throughout this paper. The dot
Hamiltonian reads �n
=d


†d
�

HD = �



�0d

†d
 + Un↑n↓ − �



�

BB · �

�d

†d
�, �5�

where �0 is the orbital quantum dot energy, B= 	BB	 repre-
sents the magnetic field splitting, � is a vector containing the
Pauli-spin matrices, and U is the on-site Coulomb interaction
for double occupancy. In a spin basis parallel to B, the dot
Hamiltonian is diagonalized as

HD = �

̃

��0 − 
̃B�d
̃
†d
̃ + Un↑̃n↓̃ , �6�

where the d
 and d
̃ operators are related by the unitary
rotation

d
 = �

̃

R

̃d
̃, R = 
 cos��/2� sin��/2�
− sin��/2� cos��/2�

� . �7�

Finally, the tunneling Hamiltonian is

HT = �
�=L,R

�
k


�t�,k
c�,k

† d
 + H.c.�

= �
�=L,R

�
k

̃

�t�,k
R

̃c�,k

† d
̃ + H.c.� . �8�

Here we allow for the tunneling matrix element t�,k
 to be
spin dependent because the states in the leads depend on the
spin direction. Note that there is no spin flip associated with
the tunneling here, i.e., there is no spin-active interface,
which would require the use of a nondiagonal tunneling ma-
trix t�,k

�. Depending on the parameters this would corre-
spond to having an angle between the lead magnetizations,
which would modify the details but not the general behavior
that we discuss.

We define the energy-dependent coupling constants as

����� = 2��
k


	t�,k
	2��� − ��,k
� = �



��,
��� , �9�

and let P� denote the polarization of the tunneling from lead
� defined through ��,
���= 1

2 �1+
P�������. Notice that the
polarizations are real numbers in the interval �−1,1�, such
that P�= �1 corresponds to full spin-↑ /↓ polarization and
P�=0 corresponds to unpolarized leads. For parallel �antipar-
allel� polarization of the leads, the P�’s have the same �op-
posite� sign.

In the basis where the dot part of the Hamiltonian is di-

agonal, the coupling of the two dot states, ↑̃ and ↓̃, to the lead
� is given by a matrix in the spin index �see also Eq. �B5��

��,
̃
̃���� =
�����

2
� ��1 + 
̃P� cos �� for 
̃ = 
̃�

P� sin � for 
̃ � 
̃�
.
�10�

U/Γ0

B/Γ0

NEGF

1

1

Scattering formalism

Figs. 6,8

FIG. 4. Sketch of the different parameter regimes. For vanishing
interaction U, nonequilibrium Green’s functions provide the com-
plete solution of the transport problem �see Eq. �1��. For large level
splittings, the scattering formalism allows for a quantitative descrip-
tion of the cotunneling events �see Eqs. �2� and �A1��. In this work
we provide results for the more intricate region of moderate level
splitting and a finite on-site Coulomb interaction.
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In the calculations using the DMRG and the density-
matrix technique, we use a polarization of both leads that is
less than one for technical reasons. The minority spin only
introduces a smearing of the results discussed for fully po-
larized leads.

III. LINEAR RESPONSE: DMRG

A. Tight-binding Hamiltonian

In order to apply the DMRG method to the model, a dis-
cretized version of the leads must be formulated. The sim-
plest choice is to model the leads as one-dimensional semi-
infinite tight-binding �TB� chains that are discretized
appropriately. With this choice and denoting the hopping ma-
trix element between the resonant level and the leads by t�,

��=L ,R�, the tight-binding Hamiltonian reads HTB

=��=L,RH�
TB+HT

TB+HD, where

H�
TB = − �

n=2

�

�



D

2
�c�,n


† c�,n−1
 + c�,n−1

† c�,n
� , �11�

HT
TB = − �

�=L,R
�



�t�,
c�,1

† d
 + H.c.� , �12�

and where HD is given in Eq. �5�. That is, in the DMRG
implementation we work in the lead spin basis and do not
use the diagonalized version of the dot part of the Hamil-
tonian. In H�

TB, 2D is the bandwidth of the tight-binding
chain representation of the leads corresponding to the hop-
ping amplitude D /2 between the internal sites in the chains.

In order to link the different theoretical approaches ap-
plied to solve the model, an expression for the effective
energy-dependent coupling constants between the single-site
and the tight-binding leads, ��,


TB ���, must be established. For
the one-dimensional tight-binding model of the leads, these
are given by49

��,

TB ��� = − 2	t�,
	2Im�g�,


r �1,1,��� , �13�

where g�,

r �1,1 ,�� is the surface component of the retarded

Green’s function of the semi-infinite left or right chain at
energy �. The surface of the tight-binding chain is the first
site, and the Green’s function reads50

g�,

r �1,1,z� = 2

z − �z2 − D2

D2 , �14�

where z=�+ i� is complex, and thus the imaginary part of
the Green’s function is finite only inside the band, �D, and
is proportional to the semielliptic density of states. Thus the
coupling constants are given by

��,

TB ��� =

4	t�,
	2�D2 − �2

D2 . �15�

In Sec. III B we discuss the implementation of the polariza-
tion, and explain that half-filled leads can be used, corre-
sponding to �=0.

B. Modeling the polarization

Full polarization of the leads is avoided for several rea-
sons. Most prominently, full polarization decouples one spin

species in a lead completely in the sense that the hopping
matrix element between the lead and the resonant level is
zero for all angles. Dealing with decoupled Hilbert spaces is
undesired as it creates numerical problems such as ill-
conditioned matrices, making the numerical solution of the
resolvent equations hard.51–53

Furthermore, there are single points where the model it-
self is ill defined for full polarization. At angles �=0 and
�=�, the spin-flip process of the dot is inactive because of
the prefactor sin �. Due to the full polarization also the hop-
ping matrix element for the minority spin connecting the lead
and the dot is zero. Thus the minority-spin level is com-
pletely decoupled and hence has a constant occupation. The
occupation of the majority-spin level depends, however, on
the occupation of the minority-spin level through the on-site
Coulomb interaction term Un↑n↓. That is, the properties of
the model for these specific angles depend on the initial oc-
cupation of the minority-spin level, and no unique stationary
state exists.

It should be noted that the qualitative behavior for �large�
partial and full polarizations is similar except for the problem
for specific angles described above. It is, however, clear that
a decreased polarization in the leads tends to wash out the
spin dependence in the model, and in the limit of unpolarized
leads all spin characteristics are lost.

There is a certain freedom of choice in the modeling of
the polarization. Although the polarization is a property of
the leads, it can be modeled by spin-dependent hopping ma-
trix elements connecting the dot to the leads.33 There are
different approaches to modeling the polarization of the leads
and we have chosen the simplest one to implement in the
DMRG setup. Rather than using spin-dependent filling in the
leads, we use half-filled leads for both spin species, and
model the polarization by modifying the hopping matrix el-
ements connecting the leads and the dot. This is indicated in
Fig. 5, where we show the DMRG setup using a momentum-
space representation of the leads. This choice for the polar-
ization simplifies the DMRG setup significantly as identical
discretizations can be used for the two spin species in each
lead such that the spin species are again treated equally apart
from the polarization dependent hopping matrix elements,

t�,
 = t�
0�1

2
�1 + 
P�� . �16�

In all calculations presented, we use identical polarizations
of the two leads, PL= PR= P, such that the coupling to the
leads are identical when tL

0 = tR
0 .

In the remainder of the paper we measure all energies in
units of the sum of the coupling constants at the equilibrium
chemical potential, �=0,

�0 = �
�,


��,

TB �0� . �17�

For the tight-binding chains this corresponds to measuring
all energies in units of 4

D �	tL
0	2+ 	tR

0 	2� �see Eqs. �15� and �16��.

PEDERSEN et al. PHYSICAL REVIEW B 79, 125403 �2009�

125403-4



C. Calculation of the conductance

In order to obtain the conductance we make use of the
Meir-Wingreen formula55 rather than the Kubo formula used
in previous work.53,56 The evaluation of the spectral function
at zero bias and for proportional couplings57 can be done
within a single lead framework, effectively halving the lead
size. For parallel magnetizations of the leads, the FAB model
falls in the linear regime within this class of models, and thus
the finite-size scaling for the evaluation of the spectral func-
tion is significantly better than the evaluation of the Kubo
formula, enabling faster and more accurate calculations.54

Using DMRG we thus evaluate the two spin components of
the full spectral function in separate calculations, and there-
fore need to recombine the spin resolved spectral functions
into the total conductance,

G��0,�� =
e2

h
�



2	tL,
	2	tR,
	2

	tL,
	2 + 	tR,
	2
A
��0,�,� = 0� , �18�

where the polarization enters through the hopping matrix el-
ements t�,
, and A
 denotes the spin resolved spectral func-
tion of the dot. In this paper, we make the assumption that
the hopping matrix elements between the leads and the dot
are identical for both leads, tL

0 = tR
0 , and that the polarizations

in both leads are identical, PL= PR, such that tL,
= tR,
= t
.
In order to achieve the necessary precision in the DMRG

calculations, a momentum-space representation of the leads
is used. Although the physics takes place at the Fermi level,
also energies well away from the Fermi level need to be
represented properly, and the discretization scheme used
should support this. We use a discretization of the momen-
tum part of each lead consisting of a logarithmic discretiza-
tion that covers a large energy span, and switch to a linear
discretization on the low-energy scale close to the Fermi
level.56 All the DMRG calculations presented in this paper
were performed using 55 sites in the lead description, corre-

sponding to 35 sites scaled logarithmically and 20 sites
scaled linearly around the Fermi level.56

It should be noted that by virtue of the DMRG method all
interactions are rigorously taken into account. The approxi-
mation in the method presented lie in the use of a finite sized
lead which can be benchmarked in the noninteracting limit,
and as such the method used contains only controllable ap-
proximations.

D. Results

Using the momentum-space representation of the leads in
the DMRG setup, we have calculated the spectral function,
and using the Meir-Wingreen formula in Eq. �18�, evaluated
the conductance. For different values of the magnetic field
strength B, the bare level position �0, and the on-site Cou-
lomb interaction strength U, we have calculated the conduc-
tance versus the angle � between the magnetic field and the
polarization direction. In all examples, we keep the polariza-
tion in the two leads identical, PL= PR=0.8. As evident from
the Hamiltonian, the model is symmetric around �=� since
cos�2�−��=cos � and sin�2�−��=−sin � such that only
the spin-flip term in HD acquires an insignificant phase �see
Eq. �5��. Therefore we confine our studies to angles in the
interval �� �0,��, and the interval �� �� ,2�� is found by
reflecting the results around �=�.

In order to determine the discretization needed for the
leads, exact diagonalization calculations for the spectral
function have been performed and, using Eq. �18�, compared
to the NEGF results in the noninteracting limit, U=0 �not
shown�.54,58 By virtue of the exact diagonalization, the only
error present in this approach is the error due to the finite size
of the leads. The results show excellent agreement between
the exact diagonalization and the Green’s function results for
a range of parameter values, and we conclude that the mod-
eling of the leads is sufficient for resolving the model. For
the DMRG setup this is also confirmed by the noninteracting
results �U=0� in Figs. 6�a� and 6�b� where the Green’s func-
tion calculation �lines� is exact, thus demonstrating the accu-
racy of the discretization and confirming the capability of the
DMRG.

Having benchmarked the DMRG setup in the known limit
of U=0, we turn to the interesting regime of finite interac-
tions. In Fig. 6 we show the results of the DMRG calcula-
tions �“+” symbols� as a function of the angle � for different
parameter values of B, U, and �0, as specified in the respec-
tive plots.

For the bare level on resonance, �0=0, and the parameter
regimes considered here, the numerical zero-temperature
DMRG results confirm the simple physical picture sketched
in the introduction. That is, the linear conductance versus the
angle � shows antiresonances for �=� /2 in the noninteract-
ing limit, and a spin-valve behavior for strong on-site inter-
action �see Figs. 6�a� and 6�b��. When B /�0 decreases the
maximum conductance increases as the levels move closer to
resonance but the qualitative behavior is the same when U is
varied. Previous work showed that for fully polarized leads
and U=0, the antiresonances become sharper for decreasing
B /�0 �see the left panel of Fig. 2 in Ref. 33�. Due to the

FIG. 5. �Color online� Sketch of the DMRG setup for the FAB
model. Notice the implementation of the polarization through the
hopping matrix elements, where t�,
 and the on-site Coulomb inter-
action U are indicated in the figure. In the DMRG evaluation a
single lead mapping is used in combination with a momentum-
space representation of the single tight-binding lead �Ref. 54�. Here
tk indicates a discretization dependent hopping to all states in the
momentum space.
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finite polarization, the sharpening of the antiresonances is not
very clear in the DMRG results. Finally we note that the
cotunneling expression derived under the assumption B
��0 �see Eq. �A1�� reproduces the DMRG results fairly well
already for B=2�0 �not shown�.

For varying level positions �see Fig. 6�c��, we found a
pronounced conductance peak at �0=�0=B, where the lower
level crosses the Fermi level. Note that the conductance is
symmetric around �=� /2 at �0=−�0=−U /2 due to the
electron-hole symmetry.

IV. LINEAR RESPONSE: MEAN-FIELD SOLUTION

Mean-field solutions are often problematic when consid-
ering systems with only a few degrees of freedom such as,
e.g., transport through quantum dots with only a few levels
contributing to the transport. In this case, the mean-field so-
lution fails to describe Coulomb blockade59 and can lead to
unphysical bistabilities at finite bias due to a sudden switch
between different transport modes.

Surprisingly, Fig. 6 shows that the mean-field version of
the Hamiltonian from Eq. �3� actually reproduces the linear
conductance results of the previous section rather well,
which we will explain below.

The mean-field version of the Hamiltonian in Eq. �3� is
obtained by rewriting the interaction term as consisting of a
Hartree and a Fock term

HHartree = U�d↑̃
†
d↑̃�d↓̃

†
d↓̃� + d↓̃

†
d↓̃�d↑̃

†
d↑̃�� ,

HFock = − U�d↑̃
†
d↓̃�d↓̃

†
d↑̃� + d↓̃

†
d↑̃�d↑̃

†
d↓̃�� , �19�

i.e., the replacement is Un↑̃n↓̃→HHartree+HFock. Keeping
only the Hartree term gives a basis-dependent Hamiltonian,
and for the FAB model the two spins are correlated �for �
�0,�� due to the coupling to leads giving a nonvanishing
Fock term.60

From the mean-field Hamiltonian the linear conductance
can be obtained using the nonequilibrium Green’s function
formalism, and the calculation is similar to the noninteract-
ing calculation in Ref. 33. However, here the noninteracting
dot Green’s function is replaced with the Hartree-Fock dot
Green’s function

GHF
−1 ���

= 
� − ��0 − B + U�d↓̃
†
d↓̃�� + U�d↓̃

†
d↑̃�

+ U�d↑̃
†
d↓̃� � − ��0 + B + U�d↑̃

†
d↑̃��

� .

�20�

The generalized occupations have to be calculated self-
consistently through the relation

�d
̃
†d
̃�� =

− i

2�
�

−�

�

d�G
̃�
̃
� ��� , �21�

with the lesser Green’s function being
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FIG. 6. �Color online� The linear conductance vs the angle � for
different values of the magnetic field B, Coulomb interaction U, and
the bare level position �0. The + symbols are the DMRG results and
the lines are the nonequilibrium Green’s function results using the
Hartree-Fock approximation. We apply an elliptic density of states,
using Eq. �15� for the coupling constant with D=6.1�0. The polar-
izations are P= PL= PR=0.8.
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G���� = ifL���Gr����LGa��� + ifR���Gr����RGa��� ,

�22�

where the expressions for the coupling constants, ��, are
derived in Appendix B.

The zero-temperature linear conductance is obtained
as49,57

GMF =
e2

h
Tr�Ga�0��LGr�0��R� . �23�

The results are shown in Fig. 6 together with the DMRG
results.

Figures 6�a� and 6�b�, where the bare level is at reso-
nance, shows that for B=�0 the mean-field result agrees al-
most exactly with the full DMRG calculation. For B=�0 /2
deviations start to appear, especially for angles around � /2.
This rather surprising success of the mean-field solutions can
be understood by an inspection of the occupations �see Fig.
7�.

First we notice that the couplings to the levels depend on
the angle � �see Eq. �10�� and consider the noninteracting

case U=0. At �=0 the spin-↑̃ level is roughly 80% occupied

due to a large broadening but the spin-↓̃ level is almost un-
occupied due to the large B / ��L,↓̃↓̃+�R,↓̃↓̃�=5. At �=� the

spin-↑̃ level is almost decoupled and the occupation goes to

one, whereas the occupation of the spin-↓̃ level is �20%.
For the intermediate angles, there is a smooth crossover be-
tween the two regimes �see the black curves in Fig. 7�. When
calculating the occupations self-consistently for finite U, the
overall trend does not change: �n↑̃� remains almost identical,
and �n↓̃� decreases for increasing U �see Fig. 7�.

So the reason why the mean-field solutions performs rela-
tively well �at least at zero temperature� is that, when one of
the levels fluctuates the most, the other level has an occupa-
tion being either approximately zero or one, i.e., the products
of the fluctuations vanishes. For this specific model, the suc-

cess of the mean-field solution is due to the combination of
the split levels and the angle dependent couplings, which
means that the term �n↑̃− �n↑̃���n↓̃− �n↓̃��, neglected in the
mean-field Hamiltonian, remains small for all angles. The
largest deviation between the mean-field results and the
DMRG results is expected for the angles around �=� /2,
which is also observed in Figs. 6�a� and 6�b�.

For fixed Coulomb interaction and varying the bare level
position �0 �Fig. 6�c��, good agreement between the mean-
field solution and the DMRG results is found for all values of
�0 except for �0=�0=B, which corresponds to the lower level

with spin ↑̃ being on resonance. Here the largest deviation
occurs when this level is partially pinched off, i.e., at �=�.
In this case both levels are partially occupied so that corre-
lation effects beyond mean-field become relevant.

At elevated temperatures or for even smaller magnetic
fields, the mean-field solution is expected to perform worse
due to larger fluctuations of the occupations but for finite
temperatures no exact results are currently available for com-
parison. Furthermore, while we have shown here that the
mean-field solutions are somewhat fortuitously reliable to
describe linear response, we demonstrate in Sec. VII that
they fail for the FAB model for finite bias.

V. LINEAR RESPONSE: HUBBARD-I APPROXIMATION

Another popular and widely used approximation is the
HIA which corresponds to a decoupling of equations of mo-
tion for the Green’s functions at a higher level of the hierar-
chy than the simple mean-field approximation used in the
previous section. Therefore, one could expect better perfor-
mance of this approximation compared to the mean-field ap-
proximation. This expectation is further supported by the fact
that HIA naturally arises as the lowest-order approximation
in the theories developing perturbation series around the
state of the isolated system, i.e., around the so-called atomic
limit. Despite the lack of existence of the standard Wick
theorem due to the non-Gaussian nature of the unperturbed
system with arbitrary correlations, systematic �even renor-
malized� perturbation theory reportedly exists41,61 and HIA is
in a certain sense the lowest order in that expansion. Indeed,
it turns out that HIA can rather simply and yet correctly
describe the nontrivial effects of single-level broadening in
the Coulomb blockade regime of transport studied by other
sophisticated methods48,62 and confirmed experimentally.62

Therefore HIA appears to be the solution to the problem of a
simultaneous description of interference/broadening and in-
teraction.

However, this optimistic picture breaks down as soon as
more complicated systems are addressed, namely, any sys-
tem where coherence between different transport channels is
involved. The FAB model is one such example and we will
demonstrate the breakdown of HIA for this model. A similar
situation arises for the problem of a single spin-degenerate
level with local Coulomb interaction coupled to supercon-
ducting leads in the so-called �-junction regime, where the
Josephson supercurrent is observed. The HIA is known to
fail to predict this theoretically and experimentally well-
established fact �see, e.g., Fig. 8b in Ref. 31�. The situation
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FIG. 7. �Color online� The mean-field occupations vs � for B
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and with the bare level at resonance, �0=0. The upper bunch of
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in the case of the FAB model is even more severe since the
HIA failure is not just physical, as in the superconducting
case, but the results are even mathematically inconsistent.
Fundamental analytical identities such as �Gr�†=Ga and,
consequently, the hermiticity of the density matrix, are bro-
ken within the HIA.

To demonstrate this explicitly, we use the Hamiltonian in
Eq. �3� and perform analogous derivations as in Refs. 26 and
42 for simpler models without any magnetization at all or
without the local splitting, respectively. We arrive at the
Dyson equation in matrix form,

G��� = g��� + g�������G��� , �24�

for the causal Green’s function G
̃
̃���� �in energy represen-
tation� of the central dot. Here

�
̃
̃���� = �
�k


	t�,k
	2�R†�
̃


1

� − ��,k


R

̃� �25�

is the self-energy matrix due to the coupling to the contacts,
and we introduced the auxiliary Green’s function

g��� =�
� − �↑̃ − U�1 − �d↓̃

†
d↓̃��

�� − �↑̃��� − �↑̃ − U�

− U�d↓̃
†
d↑̃�

�� − �↑̃��� − �↑̃ − U�

− U�d↑̃
†
d↓̃�

�� − �↓̃��� − �↓̃ − U�

� − �↓̃ − U�1 − �d↑̃
†
d↑̃��

�� − �↓̃��� − �↓̃ − U�
� ,

�26�

where �↑̃/↓̃=�0	B are the level energies in the basis parallel
to B as given in Eq. �6�. For vanishing splitting, B=0, these
are precisely Eqs. �15�–�21� of Ref. 26. The retarded and
advanced Green’s function are then again obtained by
Gr/a���=G��� i0+�, respectively. In addition, we define the
retarded and advanced components of the other functions in
the same way.

A general condition relating the retarded and advanced
Green’s functions is �Gr�†=Ga. As Eq. �24� implies

gr/a = ��Gr/a�−1 + �r/a�−1, �27�

and with ��r�†=�a from Eq. �25�, this requires �gr�†=ga.
This is, however, only compatible with Eq. �26� if the off-
diagonal elements are mutually complex conjugated. The
nondiagonal elements are proportional to the coherences,
�d↓̃

†
d↑̃� and �d↑̃

†
d↓̃�, and depend on the level energies in a

nonsymmetric way. Thus, for nonzero coherences �d↓̃
†
d↑̃�

= �d↑̃
†
d↓̃���0 and finite level splitting �↑̃��↓̃ pertinent to the

FAB model, this condition is not satisfied and, thus, HIA
breaks the necessary mathematical condition for the Green’s
functions. Similarly, self-consistent evaluation of the �gener-
alized� populations in the spirit of Eq. �21� in thermal equi-
librium �since we study currently the linear response only�
would yield a non-Hermitian density matrix, yet another
mathematical problem stemming from the inconsistency of
the HIA equations.

It should be stressed that the inconsistency only shows up
if both the local level splitting and the coherences between
different spin states �stemming from noncollinear magnetiza-

tion arrangement� are present. Therefore, the inconsistency
has apparently not been noticed before26,42 since previously
employed models do not contain both necessary ingredients.

Nevertheless, the FAB model is both mathematically and
physically a realistic model, and the failure of HIA reveals
problems inherent in that approximation. As mentioned be-
fore, the HIA is in some sense the lowest-order expansion in
reportedly systematic theories based on Hubbard operator
Green’s functions.41 One can show that the same problems
carry over to the many-body formalism �see Ref. 42 for a
pedagogical overview of the connection between the formu-
lation of HIA in the standard as well as the many-body for-
malism�.

VI. FINITE BIAS: SECOND-ORDER
VON NEUMANN APPROACH

So far we have only considered linear response and zero
temperature. In this section we apply a density-matrix for-
malism developed in Ref. 48, giving access to the regime of
finite bias and finite temperature. The method works in a
basis of many-particle eigenstates for the dot Hamiltonian,
thereby including all interactions on the dot exactly. Corre-
lated transitions between the lead and the dot states with up
to two different electron states are included exactly, which
suggest the notation second-order von Neumann approach
�2vN�. By solving the resulting set of equations for the
steady state, a certain class of higher-order processes is also
included. Interference effects are also included by a full
treatment of the nondiagonal density-matrix elements.

The dot part of the Hamiltonian, HD, has four many-

particle eigenstates �	0� , 	↑̃� , 	↓̃� , 	2��, where 	2�= d̃↓
†d̃↑

†	0�, and
the energies are 0 ,E↑̃=�0−B ,E↓̃=�0+B and E2=E↑̃+E↓̃+U,
respectively. Inserting a complete set of dot states in the
tunneling Hamiltonian from Eq. �8� gives

HT = �
k
�,ab

�Tba�k
��	b��a	c�,k
 + c�,k

† 	a��b	Tba

� �k
��� ,

�28�

where a ,b denotes the dot many-particle eigenstates and
Tba�k
��=�t�,k


� R
�b	d
† 	a� are the couplings between

these states and the lead states.
Inserting these coupling matrix elements and eigenener-

gies in Eqs. �10� and �11� in Ref. 48 gives a closed set of
equations for the elements of the reduced density matrix,
which can be solved numerically. As for the DMRG calcula-
tion we assume the leads to be 80% polarized. Significantly
larger polarizations ��1� are difficult to handle numerically,
especially in the linear conductance regime. This also limits
the values for the bias voltages and temperatures which can
be used.

For the finite bias calculations presented here, we use a
constant density of states so that effects due to the change in
the chemical potentials are not superimposed by changes in
the contact couplings. For numerical purposes, we imple-
ment a finite bandwidth with elliptically shaped edges at
0.95D� 	�	�D, where D surpasses all other relevant energy
scales. In all plots, the bias voltage V is applied symmetri-
cally, L=−R=eV /2.
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Before considering finite bias, we have carefully in-
spected the results for low bias �eV /�0=0.05−0.1� and low
temperature �kBT /�0=0.05−0.1� for B /�0=0.5,1 ,2 for all
angles � �not shown�. For the noninteracting case, the exact
NEGF results are reproduced for all parameters tested. From
the low-bias results we have extracted a numerical value for
the linear conductance, and the results show almost quanti-
tative agreement with the exact DMRG results for all tested
values of U and all angles. The discrepancies can be attrib-
uted to the �small but� finite bias and the finite temperature
used in the density-matrix calculation. We conclude that the
2vN approach is capable of describing the effect of the in-
teractions and the coherence in the low-bias regime for the
model system considered.

Figure 8�a� shows the current versus bias voltage for dif-
ferent angles, where the bare level is on resonance, �0=0,
B=2�0, and an on-site Coulomb interaction U=8�0. Shoul-
ders in the current are expected if half the bias matches
the single-electron transition energies in the dot. This hap-

pens at eV /�0=4 for the transitions 	0�→ 	↑̃� and 	0�→ 	↓̃�, at

eV /�0=12 for 	↓̃�→ 	2�, and finally at eV /�0=20 for 	↑̃�
→ 	2�. In the low-bias regime, eV /�0�4, the current is sup-
pressed when the angle � is increased from zero to � due to
the spin-valve effect �see also, e.g., Fig. 6 for large U /�0�.

In the intermediate regime 12�eV /�0�20, the current
shows a very pronounced angular dependence, with a signifi-
cant current drop between �=0 and �=�. For ��� one
even detects negative differential conductance around eV

=12�0. In this region, the lower spin level ↑̃ can be filled not

only by the process 	0�→ 	↑̃� but also by 	↓̃�→ 	2�. It is thus
more likely to be filled compared to lower biases eV

�12�0. In the case �=0, ↑̃ is aligned with the lead polar-
ization and therefore exhibits high tunneling rates. Thus its
increased occupation probability goes along with an increase

in current around eV=12�0. In contrast, for �=�, ↑̃ is point-
ing against the lead polarization and therefore has a low tun-
neling rate, explaining the drop of current around eV=12�0.
For intermediate angles there is a smooth crossover between
the two limits. Here the nondiagonal elements of the density
matrix are nonvanishing and quantum coherence plays a role
as the two dot states are superpositions of the lead spins.
Off-diagonal elements are also important to include in trans-
port through dots coupled to noncollinear ferromagnetic
leads, even in the absence of an applied magnetic field.63,64

VII. FINITE BIAS: MEAN-FIELD NEGF
AND MASTER EQUATION

Figure 8�b� shows the current versus applied bias calcu-
lated using the Hartree-Fock mean-field version of the
Hamiltonian �see Eqs. �19�–�22� and Appendix B� within the
NEGF formalism using a self-consistent calculation of the
occupations �see, e.g., Ref. 49�. The parameters are identical
to Fig. 8�a� in order to allow for a direct comparison.

In the low-bias regime �eV�4�0�, where the average oc-
cupations �n↑̃� and �n↓̃� are close to one and zero, respec-
tively, the results agree with the 2vN formalism of Sec. VI.
This goes well with the observation from Sec. IV, in which

the conductance is well reproduced within the mean-field
model.

In the region 4�eV /�0�12, we find �n↑̃��0.5 as the

lower energy state ↑̃ is in the window between the Fermi
levels with symmetric coupling to both contacts. Thus the

higher energy state ↓̃ has the energy B+U /2=6�0 which is

above the emitter Fermi level and �n↓̃��0. If ↑̃ is aligned
with the lead polarization �i.e., �=0�, the current is larger
while it is low for �=� as seen in Fig. 8�b�. Finally, at

eV /�0�12, the upper level ↓̃ enters the window between the
Fermi levels, takes an average occupation �n↓̃��0.5, and
also contributes to the current. The repulsion of the levels by
U /2 is an artifact of the mean-field model, and correspond-
ingly neither the current values nor the shoulders agree with
the more detailed 2vN results shown in Fig. 8�a�.

Figure 8�c� shows the corresponding result from the
master-equation approach59,65,66 where the occupations of the
many-particle states are determined by electron hopping pro-
cesses to and from the leads. While this approach does not
provide any current for low biases, where cotunneling domi-
nates the transport, it provides reliable results for the current
plateaus. In particular, the occurrence of negative differential
conductance for ��� for biases around 12�0 /e is con-
firmed. Note that the presence of pronounced steps of width
kBT is due to the entire neglect of broadening in this ap-
proach. Similar results are obtained by taking into account
nondiagonal density matrices within the first-order von Neu-
mann approach67 �not shown�.

VIII. CONCLUSION

In this paper, we provided a full description of the ferro-
magnetic Anderson model with applied magnetic field B
�FAB�. We have successfully implemented the density-
matrix renormalization-group �DMRG� method, which pro-
vides the linear conductance for arbitrary strength of the on-
site Coulomb interaction and arbitrary level splitting. The
data interpolate between the known results of nonequilibrium
Green’s functions �NEGF� for zero interaction and the cotun-
neling results for large level splitting. A key result is the
strong suppression of conductance with increasing on-site
Coulomb interaction if the magnetic field on the dot is op-
posite to the lead polarization.

The DMRG results can serve as a benchmark for different
approaches, where we found that both the 2vN and the
NEGF approaches with mean-field interaction give reliable
results for the conductance. While the 2vN approach also
provides plausible results for finite bias, the mean-field
NEGF fails due to the wrong treatment of partially occupied
states.

For finite bias the 2vN approach predicts a strong depen-
dence of the current on the direction of the magnetic field in
the intermediate bias region. Here negative differential con-
ductance is predicted if the magnetic field on the dot is op-
posite to the lead polarization. This feature can also be quali-
tatively obtained from the simpler master-equation approach.

Finally we have shown that the Hubbard-I approximation
leads to unphysical results for this particular model. This
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shows that the FAB model constitutes a sensitive test case for
different approaches due to its involved interplay between
interference, broadening, and interaction.
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APPENDIX A: COTUNNELING EXPRESSION

The expression for the cotunneling current in Eq. �2� can
easily be generalized to arbitrary polarization and off-
resonant transport, �0�0. For identical polarizations of the
leads, PL= PR= P, it reads

Gcotun =
e2�L

0�L
0

2��
�
1 + P

2
�2
 cos2��/2�

�0 − B
+

sin2��/2�
�0 + B + U

�2

+ 2
�1 + P��1 − P�

4

− sin��/2�cos��/2�

�0 − B

+
sin��/2�cos��/2�

�0 + B + U
�2

+ 
1 − P

2
�2
 sin2��/2�

�0 − B

+
cos2��/2�
�0 + B + U

�2� . �A1�

APPENDIX B: EQUATIONS FOR THE NEGF
SOLUTION

For completeness we present here the equations for the
nonequilibrium Green’s function calculations within the
Hartree-Fock approximation. Using the equation-of-motion
technique, the Green’s functions in the diagonal basis are33

Gr,a��� = �GHF
−1 − �L

r,a��� − �R
r,a����−1, �B1a�

���
r,a����
̃
̃� = �

k


�R†�
̃
	t�,k
	2g�,k

r,a ���R

̃�, �B1b�

where g�,k

r,a ���= ��−��,k
� i0+�−1 and ��=−i���

r −��
a�. The

Green’s function GHF
−1 ��� is stated in Eq. �20�.

For the tight-binding chain of Sec. III with elliptic bands,
we find
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FIG. 8. �Color online� The current versus bias voltage for five
different angles � obtained using �a� the 2vN density-matrix for-
malism, �b� the mean-field Hartree-Fock approach, and �c� the
master-equation approach. The parameters are �0=0, B=2�0, U
=8�0, kBT=0.1�0, and PL= PR=0.8, and the bias is applied sym-
metrically. For the 2vN method we used a constant density of states
with a half bandwidth D=20�0 �see the main text� while for the
Hartree-Fock calculation the wide-band limit is applied, i.e., the
real part of the self-energy was neglected.

PEDERSEN et al. PHYSICAL REVIEW B 79, 125403 �2009�

125403-10



����� � 2��
k


	t�,k
	2��� − ��,k
� = �



��,

TB ���

=
4	t�

0 	2�D2 − �2

D2 , �B2�

where Eqs. �15� and �16� have been used. The ↑̃↑̃ component
of the self-energy becomes

���
r,a����↑̃ ↑̃ = �

k


�R†�↑̃
	t�,k
	2R
↑̃

� − ��,k
 � i0+

=
1

2
�1 + P� cos ��� d��

2�

������
� − �� � i0+ ,

�B3�

where we used the definition of the polarization �see below
Eq. �9��.

The principal part of the integral can be found analytically
for the elliptic density of states

P�
−D

D d��

2�

������
� − ��

=
���0��

2D
for 	�	 � D , �B4�

where it has been used that ���0�=4	t�
0 	2 /D.

The other components are calculated similarly, and the
full expression for the self-energy becomes

��
r,a��� =

1

2

1 + P� cos � P� sin �

P� sin � 1 − P� cos �
�

� �����0�
2D

	
i�����

2
� . �B5�

After a self-consistent evaluation of the Green’s functions,
the current can within the mean-field approximation be
evaluated as49,57

JMF =
1

2��
�

−�

�

d�Tr�Ga����L���Gr����R����

� �fL��� − fR���� , �B6�

with f����=1 / �e��−��/kBT+1�, �=L ,R, being the Fermi func-
tion.
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