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Generic classical electron motion in a strong perpendicular magnetic field and random potential reduces to
the bond percolation on a square lattice. Here we point out that for certain smooth two-dimensional potentials
with 120° rotational symmetry this problem reduces to the site percolation on a triangular lattice. We use this
observation to develop an approximate analytical description of the integer quantum Hall transition. For this
purpose we devise a quantum generalization of the real-space renormalization group �RG� treatment of the site
percolation on the triangular lattice. In quantum case, the RG transformation describes the evolution of the
distribution of the 3�3 scattering matrices at the sites. We find the fixed point of this distribution and use it
to determine the critical exponent, �, for which we find the value ��2.3÷2.76. The RG step involves only a
single Hikami box and thus can serve as a minimal RG description of the quantum Hall transition.
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I. INTRODUCTION

Network-model formulation of the Anderson localization
problem was first introduced in Ref. 1. The key observation
made in Ref. 1 is that a complex motion of electron in dis-
order potential can be reduced to the motion along the links
of the network �in both directions� with disorder incorpo-
rated via random phases of scattering from the nodes of the
network. Since then, the network-model approach became a
powerful tool for numerical studies of disordered systems. In
these studies the randomness is incorporated into the phases
accumulated along the network links. A great advantage of
the network-model approach to localization is that it can be
conveniently applied to various universality classes2 of dis-
order. In order to capture the specifics of a given class, one
has to impose appropriate symmetry requirements on the
random phases on the links, which fixes the form of S matrix
at the nodes. This is achieved by introduction of an internal
space associated with the link of the network model, which
possesses a desired symmetry. For example,3 with two-
component links �one component for one spin projection� for
each direction of propagation the requirements of unitarity
and time-reversal symmetry allowed to reveal a delocaliza-
tion transition expected in two-dimensional �2D� systems
with spin-orbit scattering. Comprehensive review of the re-
sults obtained with the help of the network model is given in
Ref. 5. In addition to establishing the existence of localiza-
tion transitions in different classes, numerical simulations of
the network models with the help of transfer-matrix method
yield quantitative characteristics of the critical point. These
characteristics include critical exponent, critical level statis-
tics, and critical conductance distribution. Corresponding
references can be found in the review of Ref. 5. Note that,
with the exception of Ref. 4 where a particular two-channel
network model was considered for arbitrary graph, the un-
derlying network in all previous studies was a square lattice.

Especially convenient for modeling with a network is the
chiral motion of a 2D electron in a disorder potential and a
strong perpendicular magnetic field. This is because the cor-
responding network is directed. Directed character of the net-
work with chiral scattering at the nodes allowed Chalker and

Coddington6 to demonstrate conclusively that there is only a
single delocalized state per Landau level. This finding is of
great importance since it is the underlying reason for sharp
conductivity peaks at the quantum Hall transition.

On physical grounds, the seminal Chalker-Coddington
�CC� model6 of the integer quantum Hall transition can be
introduced in a natural way with the help of a two-
dimensional potential,

U�x,y� = cos��x�cos��y� . �1�

In this potential, the equipotential lines U�x ,y�=0 form a
square lattice. For any nonzero � equipotentials U�x ,y�=�
are closed. For positive � these equipotentials encircle the
maxima �x ,y�= �2m ,2n� �and also �2m+1,2n+1�� of
U�x ,y�, while for ��0 equipotentials encircle the minima
�x ,y�= �2m ,2n+1� �and �2m+1,2n�� of U�x ,y�. In a strong
perpendicular magnetic field 2D electron drifts along equi-
potentials. Then reconfiguration of equipotentials at �=0, as
illustrated in Fig. 1�a�, manifests the change in the character
of motion.

Chalker and Coddington6 captured the quantum character
of motion in U�x ,y� by assigning to the saddle points at
�xm ,yn�= �m− 1

2 ,n− 1
2 � where the potential behaves as

U�x − xm,y − yn� � �− 1�m+n�2�x − xm��y − yn�

= �− 1�m+n�2�2

2
sin 2� , �2�
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FIG. 1. �Color online� �a� Evolution of equipotentials near the
saddle point of potential �1� as the energy � crosses over from �
�0 to �	0; �b� evolution of equipotentials near the nodes of po-
tential �4� with �. Three equipotential lines touch at �=0.
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Here � and � are the polar coordinates with origin at �xm ,yn�,
and � is the dimensionless energy. For a realistic potential
with magnitude, U0, and correlation length, d, dimensionless
energy, �, is the physical energy measured in the units of the
width, 
	U0l2 /d2, where l is the magnetic length. Chalker
and Coddington6 demonstrated that, in order to account for a
smooth disorder, it is sufficient to assume that the phases,
acquired by a drifting electron between the saddle points, are
random.

In this paper we show that the description of the quantum
Hall transition can also be obtained based on the potential

W�x,y� = 

n,m

V�r − ne1 − me2� , �4�

which has a triangular symmetry, i.e., e1= �1,0� and e2
= �1 /2,�3 /2� are the basis unit vectors of a triangular lattice;
the function V is defined inside a “black half” of the
rhombus-shape unit cell �see Fig. 2� in the following way:

V��,�� = �� cos�� −
�

6  −
1

2�3
��� cos�� −

5�

6  −
1

2�3
�

��� cos�� −
3�

2  −
1

2�3
� . �5�

Here � and � are the polar coordinates with respect to the
origin at �e1+e2� /3. The form of potential in the “white half”
of a unit cell is given by Eq. �4� upon replacement V�� ,��
→−V�� ,�−� /3� and shifting the origin to the center of the
white triangle.

Equipotentials of Eq. �5� evolve, as � passes through 0, in
a fashion qualitatively different from the case of quadratic
symmetry. As shown in Fig. 1�a�, in the case of quadratic
symmetry, black regions �minima� get connected, while ad-
jacent white regions �maxima� get disconnected. In contrast,

the behavior of the potential W�x ,y� near the nodes at rm,n
= �m−1 /3�e1+ �n−1 /3�e2 is given by

W��,�� = − �2

q=0

�

cq sin�3�2q + 1��� , �6�

where cq= 2�3
� ��2q+1��9�2q+1�2−4��−1. Corresponding evo-

lution of equipotentials is illustrated in Fig. 1�b�. We see that,
as � crosses zero, three black regions get joined at �=0 si-
multaneously. This suggests that quantum-mechanical de-
scription of motion in the potential W�x ,y� requires, in addi-
tion to random phases on the links, introduction of a 3�3
scattering matrix at each node. Below we argue that the form
of this matrix is

S���� =�
2

3
�1 + �� −

1

3

2

3
�1 − ��

2

3
�1 − ��

2

3
�1 + �� −

1

3

−
1

3

2

3
�1 − ��

2

3
�1 + ��

� . �7�

With matrices �Eq. �7�� in the nodes, the corresponding net-
work model is shown in Fig. 3. In this network the phases on
the links are random, as in Chalker-Coddington model, while
all S matrices in the nodes �Eq. �7�� are the same. As we
demonstrate in the present paper, this model can be treated
numerically using the same MacKinnon-Kramer finite-size
scaling algorithm7 that was employed in Ref. 6 �for subse-
quent numerical studies of the Chalker-Coddington model
see Refs. 8–20 and review articles5,21�.

Chalker-Coddington model can be viewed as quantum
version of the classical bond percolation. Establishing one-
to-one correspondence between the classical bonds and the
links is possible due to directed character of the chiral CC
network. On the other hand, it was demonstrated in Ref. 22
that a simple real-space renormalization group �RG� proce-
dure, based on decimation, leads to the closed equation for
the classical bond percolation threshold. This procedure re-
produces the exact threshold value and yields a very accurate
estimate for the critical exponent. In Refs. 23–27 the classi-
cal RG procedure22 was generalized to the quantum bond
percolation. It was shown that corresponding integral RG
equation yields, in addition to the accurate value of the quan-

FIG. 2. �Color online� Equipotential lines �=0 of potential �4�
constitute a triangular lattice. Minima of W�x ,y� are in the centers
of shaded triangles. Blue lines constitute a triangular lattice of su-
persites with lattice constant, �3. Red lines: hexagonal lattice with
sites in the centers of triangles. Each site of a triangular lattice is
surrounded by a hexagon.
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FIG. 3. Network model on a triangular lattice is illustrated.
Three links enter a node, and three links exit each node; the nodes
with S matrices �Eq. �7�� are depicted as triangles.
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tum critical exponent, a very accurate distribution of the
critical conductance. A real-space RG procedure for a site
percolation was proposed in the same paper.22 This proce-
dure is simpler than for the bond percolation and yields more
accurate results. In the present paper this procedure is ex-
tended to the quantum case, where it describes the critical
behavior of the directed network �Fig. 3�. As in the classical
case, the quantum RG analysis of on the triangular lattice is
much easier than the quantum RG analysis of the Chalker-
Coddington on the square lattice. This analysis is presented
in Secs. II–V.

II. RG PROCEDURE FOR CLASSICAL PERCOLATION
ON A TRIANGULAR NETWORK

In order to develop the RG description, it is necessary to
incorporate disorder into the S matrices. The reason is that at
each RG step three S matrices, connected by the links, are
combined into one super-S matrix. Then the randomness in
phases translates into the randomness of the elements of
super-S matrix. A natural way to devise the quantum RG
description is to start from a classical problem of electron
drift along the sides of triangles �Fig. 2�.

A. Classical drift on triangular lattice

Assume that the potential W�x ,y� is perturbed near the
nodes as

W��,� = V0 − c0�2 sin�3�� − c1�2 sin�9�� − ¯ , �8�

where the random shift, V0, is much smaller than 1 but much
bigger than the “quantum” energy width, 
. Depending on
the shift, an electron drifting along equipotential W=� to-
ward a node turns either to the left �V0��� or to the right
�V0	�� �see Fig. 1�b��. We can conventionally call the nodes
with V0�� and V0	� as “black” and “white” lattice sites,
respectively. It is obvious that when the average, �V0�, is
zero, the percolation threshold in potential �8� is �=0. In the
language of sites, the same is to say that 50% of sites are
black at �=0. It is, in fact, well known28 that the exact
threshold for site percolation on a triangular lattice is 50%.
However, it is much less obvious that there is complete
equivalence between the electron drift in potential �8� and
the site percolation on a triangular lattice. Superficially, this
can be seen from the fact that when two neighboring sites are
black, they are connected via the black region. Still, rigorous
proof requires additional steps, in particular, introducing aux-
iliary hexagons �see Fig. 2�. This proof is given in Appendix
A.

B. Classical RG scheme

The above mapping on the percolation problem allows
one to employ the RG approach to the site percolation on
triangular lattice put forward in Ref. 22. This procedure is
much simpler than the RG for the bond percolation on the
square lattice, proposed in the same paper. Note in passing
that the bond percolation on the square lattice is the classical
limit of the Chalker-Coddington model.23

As shown in Fig. 2, at each RG step22 the lattice constant
increases by a factor of �3. A site of a rescaled lattice, a
supersite, is either black or white depending on the colors of
the three constituting sites: if either all three or only two out
of three constituting sites are black, then the supersite is
black. Otherwise, the supersite is white. Quantitatively, the
probability p� for a supersite to be black is expressed via the
corresponding probability for the original site as

p� = R�p� = p3 + 3p2�1 − p� . �9�

Fixed point, p�= p= pc, of the transformation Eq. �9� repro-
duces the exact result pc=1 /2. Critical exponent is deter-
mined by the condition that the correlation radius, �= �p
− pc�−�, on the original lattice is equal to the correlation ra-
dius �3�p�− pc�−� on the renormalized lattice; i.e.,

� =
ln��3�

ln�dp�

dp


p=pc

=
ln��3�
ln�3/2�

. �10�

Equation �10� yields �=1.354, which differs from the exact
value, �=4 /3, by only 1.6%.

The rationale behind transformation �9� is that the super-
site is located in the center of the black cell in Fig. 2. Then
the color of the supersite reflects the “percolation ability” of
this black triangular cell so that even if one of the nodes
constituting the vertices of the triangular cell is white, the
cell still percolates “over black.”

C. RG in the language of potential shifts

At this point we make an observation that the above RG
procedure can be reformulated in the language of potential
W�x ,y� with random shifts in the nodes, V0. Namely, for V0

1,
V0

2, and V0
3 being the shifts at the nodes constituting a super-

node, the shift V0� of the supernode is defined as

V0� = Mid�V0
1,V0

2,V0
3� , �11�

where Mid stands for V0 which is smaller than maximal but
larger than minimal out of the three numbers. With V0� de-
fined by Eq. �11�, RG equation �9� describes the evolution of
probability that the shift exceeds �.

The importance of the above observation is that reformu-
lation of classical RG procedure in terms of potential shifts
opens a possibility to capture the quantum-mechanical mo-
tion in the random potential. A prescription how to extend
classical description to the quantum case is:23 algorithm �11�
should be cast in the form of a scattering problem.

III. REFORMULATION IN TERMS OF CLASSICAL
TRANSMISSION

We identify the scattering object as a point where three
equipotentials come close as shown in Fig. 4. Incident elec-
tron, i1, either proceeds along the same equipotential into o1
�reflection� or switches equipotentials and proceeds along o2.
Retention of equipotential �reflection� corresponds to posi-
tive V0−� in the vertex, encircled in Fig. 4. In terms of
scattering matrix
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�o1

o2

o3
� = S�i1

i2

i3
� , �12�

the same simple notion can be reformulated as follows. For
positive V0−�, the matrix S=S+ is a unit matrix, while for
negative V0−� the matrix S=S− has the form

S− = �0 0 1

1 0 0

0 1 0
� .

Superscattering object consists of three scattering objects and
is shown in the same figure.

Now we reformulate Eqs. �9� and �11� in yet another lan-
guage of S matrices. Namely, the S matrix of a superscatter-
ing object is expressed via S matrices of constituting scatter-
ing objects upon reducing the number of legs from 12 to 6.
We emphasize that this reduction can be carried out in two
distinct ways, as illustrated in Fig. 5. The first way is to
perform contractions as o2↔ i2, o4↔ i4, and o6↔ i6. The sec-
ond variant of contractions is o2↔ i1, o4↔ i3, and o6↔ i5.
Now it is straightforward to check that RG transformation
�11� corresponds to the following rule for S matrix of the

superscattering object, S̃. If the S matrices of either all three

or only two of constituting objects are S+, then S̃=S+. In all
other realizations, when at least two of constituting objects

have the matrix S−, we have S̃=S−.

It is important to note that the above rule for S̃ applies

independently of the way in which the contractions in Fig. 5
are performed. This is not the case in the quantum version to
which we now turn.

IV. QUANTUM GENERALIZATION

Quantum S matrix of the scattering object differs from S+
and S− in two respects. First, at the points of close contact
between each pair of equipotentials electron can switch equi-
potential even for positive V0−�, when it is forbidden clas-
sically. Corresponding classically forbidden transitions are
illustrated in Fig. 4 with red �dark gray� dashes. Second,
upon traveling between two subsequent points of close con-
tact, electron accumulates the Aharonov-Bohm phase, i.
For example, the phase 1 is accumulated in course of drift
between i1 and o1. These phases are irrelevant in the classical
limit when the reflection amplitudes, yi, are either 0 or 1.
However, for intermediate 0�yi�1 the amplitude for an
electron to execute a close contour around the center in Fig.
4 �following the red dashes in the clockwise direction� is
finite. As a result, i enter into quantum scattering matrix.
Explicit form of S in terms of 0�yi�1 and i can be ob-
tained by solving three pairs of linear equations, describing
quantum scattering at each of three points of the close con-
tact of equipotentials. We have

S =
− 1

1 − x1x2x3ei�

� � y1y3ei1 x1y2y3ei�1+2� x1x2ei� − x3

x2x3ei� − x1 y1y2ei2 y1x2y3ei�2+3�

y1y2x3ei�1+3� x1x3ei� − x2 y2y3ei3
� ,

�13�

where xj =�1−yj
2 stand for the transmission amplitudes, and

� = 1 + 2 + 3 �14�

is the net phase accumulated along the closed contour. It is
easy to check that matrix �13� is unitary. It is also straight-
forward to verify that in the classical limits, when all xj =0 or
xj =1, Eq. �13� correctly reproduces S+ and S−, respectively.
Detailed derivation of the form Eq. �13� of the scattering
matrix is presented in Appendix B.

A. Form of the matrix S�

From Eq. �13� we can establish the form of the scattering
matrix S���� �Eq. �7�� with the help of the following duality
argument. Due to triangular symmetry of the potential
�2 sin�3�� we have x1=x2=x3=x. Consider now the transi-
tion point, �=0. At this point the probability for electron
incident along, say, i1 �see Fig. 4� to be deflected to the left
�along o1� is equal to the probability to be deflected to the
right �along o2�. Less trivial is that the phase, �, must be zero
at �=0. This is the consequence of the fact that the scattering
problems for electron with energy � and −� are equivalent if
we change the drift direction from clockwise to anticlock-
wise; this change implies also the change in the sign of �.

2
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FIG. 4. �Color online� Left: superscattering object is shown with
a big red dot, while constituting scattering objects are shown with
small red dots. Right: detailed structure of the scattering object;
black dots show the points of the close contact of equipotentials.
Electron incident along equipotential, i, can either proceed along
the same equipotential, a, or switch equipotential with probability
�x�2. The latter processes are illustrated with red dashes.
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FIG. 5. �Color online� Two contributions to the kernel �Eq. �19��
originating from two variants of contraction of equipotentials are
illustrated; �a� corresponds to x̃a �Eq. �16��, while �b� corresponds to
x̃b �Eq. �17��.
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With �=0, the condition, �1−x2�2= �x2−x�2, of “equal de-
flection” to the left and to the right, yields a single physical
root x=−1 /2. Substituting it back in matrix �13� reduces it to
scattering matrix �7� with �=0. Then for probabilities i1
→o1 and i1→o2 we get 4/9, while the probability i1→o3 is
1/9. Including small finite � can be also performed with the
help of the duality argument, namely, that the probability of
deflection to the left with energy � is equal to the probability
of deflection to the right with energy −�. On the other hand,
the change in probability i1→o3 with � is ��2. The role of
the matrix S� is central to the transfer-matrix treatment of the
network model; see Appendix C.

B. Quantum RG equation

We now turn to the quantum RG procedure. In contrast to
evolution of probability, p, upon rescaling of the lattice con-
stant in the classical case, this procedure is formulated in
terms of evolution of the distribution function, Q�x�, of the
absolute values of the transmission amplitudes, xi. Thus the
quantum generalization of Eq. �9� at the step n is the follow-
ing recurrence relation:

Qn+1�x� = T�Qn�x�� =� ��
j=1

3

dxjQn�xj��K�x,x1,x2,x3� .

�15�

The kernel, K, represents the conditional probability that,
after performing the contractions, the transmission coeffi-
cient ic→o1 in Fig. 4 is equal to x, provided that the consti-
tuting transmission coefficients are x1, x2, and xc=x3, as il-
lustrated in Fig. 4. In analytical evaluation of the dependence
x�x1 ,x2 ,x3� it is important to take into account that this de-
pendence is different for two variants of contractions. For a
variant o2↔ i2, shown in Fig. 5�a�, the transmission coeffi-
cient is given by

�x̃c
a�2 = 1 − � ��1 − x1

2ei� + �1 − x2
2��1 − x3

2

�1 − x1x2x3ei��ei� + ��1 − x1
2��1 − x2

2�
�2

,

�16�

where � is the phase along the contour �o2 , i2�, which is now
closed. Correspondingly, for the second kind of closing
o2↔ i1 �Fig. 5�b��, the transmission coefficient has the form

�x̃c
b�2 = 1 − � �x1 − ei����1 − x2

2��1 − x3
2�

�1 − x1x2x3ei��ei� + x2x3ei� − x1
�2

, �17�

where � stands for the phase along �o2 , i1�. For details of
derivation of Eqs. �16� and �17� see Appendix B.

Relations �16� and �17� define also the dependencies
x̃1

a,b�x1 ,x2 ,x3� and x̃2
a,b�x1 ,x2 ,x3�. It is important that the cen-

tral phase, �, is common for all three dependencies
�x̃j

a��xi� ,� j ,��� j=1,2,3 and �x̃j
b��xi� ,� j ,��� j=1,2,3. A crucial step

in extending classical RG procedure to the quantum case is
to follow the “classical” prescription to choose a middle out
of three coefficients;

x̃a��xi�,��i�,��

= Mid�x̃1
a��xi�,�1,��, x̃2

a��xi�,�2,��, x̃3
a��xi�,�3,���

�18�

and the same for x̃b��xi� , ��i� ,��. Equation �18� is a quantum
generalization of the classical equation �11�. Note that selec-
tion of middle value in Eq. �18� is performed for given val-
ues of random phases, �1, �2, �3, and �. Within RG proce-
dure different phases are uncorrelated, and in evaluation of
the kernel we average over each of four phases indepen-
dently. Finally, taking into account that contractions a and b
are statistically equivalent, the expression for K�x , �xi�� ac-
quires the form

K�x,�xi�� =
1

2
���x − x̃a��xi�,��i�,������i,��

+
1

2
���x − x̃b��xi�,��i�,������i,��. �19�

Quantum delocalization corresponds to the fixed point of
transformation �15�. It is found in Sec. V.

V. NUMERICAL RESULTS FOR FIXED POINT AND
CRITICAL EXPONENT

A. Kernel

The examples of the kernel, K�x�, calculated using MATH-

EMATICA from Eqs. �16�–�19� are plotted in Fig. 6 for differ-
ent sets x1, x2, and x3. It is seen that the kernel supports the
attractive critical points x1=x2=x3=0 and x1=x2=x3=1. In-
deed, for values of x1=x2=x3=0.2, the kernel is centered at
even smaller value of x�0.04, while for x1=x2=x3=0.85 it
is around bigger value of x�0.95. In both cases the kernel is
narrow. This is because for classical transmission coefficients
interference does not play a role so that the phases drop out
from Eqs. �16� and �17�. However, for intermediate values
x1=0.6, x2=0.65, and x3=0.7 the kernel extends over entire
interval 0�x�1. It also exhibits peaks at x=0.03, 0.61,
0.65, 0.8, and 0.83. The origin of these peaks is the anoma-
lous contributions of phases �0=0 ,� and �0=0 ,� to the
kernel. Indeed, for these values of phases we have �x̃a,b /��
=�x̃a,b /��=0 so that

FIG. 6. �Color online� Left: kernel K�x ,x1 ,x2 ,x3� is plotted from
Eq. �19� for three sets �x1 ,x2 ,x3�. Right: approximate analytical
solution �green line� of RG equation �21�, given by Eq. �22�, is
plotted together with r.h.s. of Eq. �21�, which is T�Q�x�� �black
line�.
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x̃a,b��,�� = x̃a,b��0,�0� + � ��
2 x̃a,b

2
�

�0,�0

�� − �0�2

+ � ��
2 x̃a,b

2
�

�0,�0

�� − �0�2

+ ���
2 x̃a,b��0,�0

�� − �0��� − �0� . �20�

It is easy to check that, when the quadratic form of second
derivatives is negatively defined, the corresponding contribu-
tion to the kernel is �ln�x− x̃a,b��0 ,�0��. Therefore, the peaks
in the kernel reflect the fact that two loops corresponding to
phases  and � are insufficient for complete averaging. Still,
the phase volume of the singular contributions is small so
that the fixed point of transformation �15� is not sensitive to
these singularities.

B. Fixed point

The fixed point, Q�x�, of quantum RG equation �15�, sat-
isfies the following nonlinear integral equation:

Q�x� = T�Q�x�� =� ��
j=1

3

dxjQ�xj��K�x,x1,x2,x3� , �21�

which we have solved using MATHEMATICA. Starting from
initial distribution, Q�x�=1, and performing analytical fit at
each step of successive approximations, the following ex-
pression for the fixed point was obtained after the fourth
step:

Q�x� =
0.9

1 + 103x2 +
0.9

1 + 5 · 102�1 − x�2

+ 0.63x3 + 0.55�1 − x�3 + 0.6. �22�

This expression is plotted in Fig. 6�b� with a green line. One
can judge on the accuracy of approximate solution �22� by
substituting it into the right-hand side of Eq. �21�. The result,
black line in Fig. 6�b�, is indeed very close to Eq. �22�.

The fixed point solution rises upon approaching x=0 and
x=1. This behavior is inherited from the classical percola-
tion. Note that similar behavior was found in Refs. 23 and 25
for the fixed point of the quantum bond percolation on the
square lattice. Direct comparison with conductance distribu-
tion P�G� found in Refs. 23 and 25 can be performed using
the relation P�G�=Q��G� /2�G. This comparison indicates
that, while numerically the fixed point distributions are close,
Eq. �22� favors small values of x. Qualitatively, this reflects
the fact that at critical energy, �=0, electron incident along i1
�see Fig. 4� is more likely to proceed along a1 rather than
switch to o2. The asymmetry is seen more clearly if one

interprets Q�x� in terms of distribution and Q̃ of heights of
the effective saddle point. This height is determined by the
relation x2=1 / �ez+1� so that

Q̃�z� =
ez

2�ez + 1�3/2Q��ez + 1�−1/2� . �23�

The distribution Q̃�z� is shown in Fig. 7 with a black line. It
has an asymmetry toward large z.

C. Critical exponent

To estimate the critical exponent, �, which governs the
divergence of localization radius, �����1 /��, as a function
of energy, �, we used the reasoning from Refs. 23 and 25.
Electron with finite energy, ��
, “sees” the shifted distribu-

tion of the saddle point heights Q̃�z−z0�, where z0�1 is
proportional to �. The key step of the reasoning23,25 is that,
upon the RG transformation, the electron travels on the lat-
tice with the lattice constant �3 and sees the shifted distribu-

tion of heights, T�Q̃�z−z0��= Q̃�z−�z0�, where � is some con-
stant independent of z0. After subsequent n RG steps this

distribution evolves into Q̃�z−�nz0�. When the shift accumu-
lates to reach 	1, the electron becomes localized within the
size of a unit cell of renormalized lattice. Then from the
relations

��z0� �
1

z0
� , � = ��3�n, z0�n 	 1, �24�

we find

� =
ln�3

ln �
. �25�

This definition of � is a quantum generalization of Eq. �10�.
In Fig. 7 the result of calculation T�Q̃�z−z0�� for four z0=
−1, −0.5, 0.5, and 1 is shown. We see that for these z0 the

shape of T�Q̃� is only slightly affected by the shift. The
curves are approximately equidistant so that an estimate of �
can be obtained simply from the horizontal separation of
�0.4 between the neighboring curves. This yields ��1.25
and, correspondingly, ��2.46. For more accurate estimate
we studied the variance

���,z0� = 

zi

�T�Q̃�zi − z0�� − Q̃�zi − �z0��2 �26�

as a function of � for different values of the “energy shift” z0.
The sum �Eq. �26�� was taken over discrete set zi=−10
+0.01i for i=1,2 , .. ,220. In Fig. 7 we plot the variance for
z0=1 and z0=−1. Both curves have pronounced minima at
�=1.27 and 1.22, respectively. This translates into the values

FIG. 7. �Color online� Tz0
=T�Q̃�z−z0�� is plotted for different

z0. Inset shows the variance, ����, plotted from Eq. �26�. The
minima correspond to �=1.27 and �=1.22 for z0=1 and z0=−1,
respectively.
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of �=2.3 and �=2.76. Although these values are in good
agreement with known value of �, the accuracy of the above
estimate is limited. The limitation is due to the fact that for

z0= �1 the heights of maxima of the curves T�Q̃�z−z0��,
shown in Fig. 7, differ from the height of Q̃�z�. This devia-
tion would not be a problem for smaller z0. However for z0
= �0.5 the variance becomes small, and its dependence on �
becomes weak. Apparently, the variance �Eq. �26�� is af-

fected by the wiggles at the top of the curves T�Q̃�z−z0�� that
are much stronger for z0= �0.5 than for z0= �1, which
makes the evaluation of � for small z0 ineffective.

VI. CONCLUSION

It is interesting to point out that while the classical limit
of the Chalker-Coddington model based on potential �2� re-
duces to the bond percolation, similar form of potential �8�
leads to the site percolation. The reason is the symmetry of
corresponding potentials. As seen from Fig. 2, the hexagons
surrounding the nodes of potential �8� have common sides.
On the other hand, the squares, drawn around the nodes of
potential �2�, share the vertices.

Both the bond percolation on a square lattice and the site
percolation on triangular lattice have pc=1 /2, which is en-
sured by self-duality. The RG descriptions22 of both cases,
having fixed point, pc=1 /2, effectively preserve this self-
duality. As a result, the RG values for classical exponent
come out close to �=4 /3 in both RG schemes. In this paper
we demonstrated that quantum extension of classical RG to
the triangular lattice also yields the critical exponent close to
the known value of �=2.33.

The fact that the simple RG scheme, considered in the
present paper, describes the quantum Hall transition so accu-
rately has a deep underlying reason. Delocalized state in the
quantum Hall transition emerges as a result of competition of
two trends: �i� quantum interference processes that survive in
the presence of magnetic field �Hikami boxes, Ref. 29� tend
to localize electron, while �ii� classical Lorentz force, by
causing electron drift, prevents it from repeating closed dif-
fusive trajectories. Both trends are incorporated into our RG
scheme. Obviously, chiral motion is the consequence of the
Lorentz force. Hikami boxes, on the other hand, are repre-
sented in the RG step in the form of figure-eight trajectories,
as illustrated in Fig. 5. Note finally that simplicity of the RG
description proposed here suggests possibility to extend it to
different from quantum Hall universality classes �see, e.g.,
Refs. 30–33�.
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APPENDIX A

Here we elaborate on the mapping of the problem of per-
colation over equipotential lines in the random potential �Eq.
�8�� and the conventional site-percolation problem. The easi-

est way to establish this mapping is to surround all sites of
triangular lattice with hexagons, as shown in Fig. 2. If the
site is occupied, then the hexagon is, say, black; if the site is
vacant, it is white. The distinctive property of the triangular
lattice is that, when two hexagons touch, they automatically
have a common side. Note in passing that this is not the case
for a square lattice, where two squares, drawn around the
sites, may touch by sharing a vertex but not share a side. In
the site-percolation problem, the bond between two neigh-
boring sites conducts if both of them are occupied. The same
is to say that conduction is possible between two touching
hexagons if they are both black. Percolation threshold corre-
sponds to the portion of black hexagons when conduction
over entire sample becomes possible. The fact that pc=1 /2 is
a direct consequence of geometrical arrangement of hexa-
gons due to which percolation over black hexagons rules out
the percolation over white hexagons. Also, due to this ar-
rangement, one of the colors always percolates.

Consider now potential �8�. Black sites are now those in
which V0��. Configuration of equipotentials around this site
is the rightmost of three shown in Fig. 1�b�. Accordingly,
configuration of equipotentials around the site with V0	� is
the leftmost of three shown in Fig. 1�b�. Consider now two
neighboring sites with V0��. Figure 2 makes it apparent that
any two black points inside hexagons surrounding these sites
are connected via black color. Thus, it terms of connectivity
over black, two neighboring sites with V0�� are completely
similar to two neighboring black hexagons. Similarly, as can
be seen from Fig. 2, for two neighboring sites with V0��
and V0	�, the centers of surrounding hexagons are discon-
nected. The same is true for two neighboring hexagons of
opposite colors in the percolation problem. To complete the
mapping, we note that, in percolation problem, the connec-
tivity of two neighboring hexagons depends entirely on their
colors; i.e., it does not depend on the color of the other
neighbors. In the same way, in the problem of equipotentials,
whether or not two neighboring sites are connected is deter-
mined exclusively by the signs of V0−� in these sites.

APPENDIX B

The form of the S matrix �Eq. �13�� can be established
with the help of Fig. 4. Matrix S relates the incident �i1, i2,
and ic� and outgoing �o1, o2, and oc� amplitudes via transmis-
sion coefficients, x1, x2, and xc. Form �13� follows from the
system of six equations, which include also the amplitudes
a1, a2, and ac between the points of close contact of corre-
sponding equipotentials. As seen from Fig. 4 the amplitudes
a1 and a2 are related via x1 as

a1 = x1a2ei2 + y1i1,

o2 = − y1a2ei2 + x1i1. �B1�

Amplitudes ac and a1 are related via xc,

ac = xca1ei1 + ycic,

o1 = − yca1ei1 + xcic. �B2�

Finally, amplitudes a2 and ac are related via x2,
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a2 = x2ace
ic + y2i2,

oc = − y2ace
ic + x2i2. �B3�

In Eqs. �B1�–�B3�, phases 1, 2, and c are the Aharonov-
Bohm phases accumulated, respectively, by waves a1, a2,
and ac between the points of closed contact. Excluding a1,
a2, and ac from Eqs. �B1�–�B3� we recover S matrix �13� in
which x3 stands for xc and 3 for c.

In order to derive Eq. �16� we set in Eqs. �B1�–�B3� i2
=o2ei�2, as enforced by a contraction in Fig. 5�a�. Upon set-
ting i1=0, we find the proportionality coefficient between o1
and ic. This recovers Eq. �16� in which �=�2+2. Similarly,
Eq. �17� is recovered upon setting i1=o2ei�, as shown in Fig.
5�b�, and relating the amplitudes o1 and ic.

APPENDIX C

In this Appendix we illustrate the transfer-matrix method
in application to the network model on triangular lattice.
Consider, by analogy to Ref. 6, a slice of length, N, shown in
Fig. 8. It contains M =8 incident links, Zi

�0�, and 8 outgoing
links, Zi

�N�. In general, the number of links must be M =4m,
where m is integer. The slice shown in Fig. 8 can be obtained
from the general network �Fig. 3� by two vertical cuts
through the centers of triangles. The bottom links Z8

�0� and
Z8

�N� in Fig. 8 are connected to the corresponding top links by
dashed lines, reflecting the fact that these links must be iden-
tified with each other in order to impose a periodic boundary
condition �Ref. 6�. Scattering of waves at each node is de-
scribed by the matrix S=S� �Eq. �7��, which relates the am-
plitudes �o1 ,o2 ,o3� to �i1 , i2 , i3�. To adapt S=S� to the
transfer-matrix algorithm, one has to recast Eq. �12� into the
form

�o2

i2

o3
� = X� i1

o1

i3
� , �C1�

which connects the amplitudes to the left and to the right
from the node. Direct calculation yields the following form
of matrix X in terms of elements, sij of S�.

X =��
s21 −

s11s22

s12
� s22

s12
�s23 −

s22s13

s12
�

−
s11

s12

1

s12
−

s13

s12

�s31 −
s11s32

s12
� s32

s12
�s33 −

s32s13

s12
�� . �C2�

For energies close to the critical �=0, the S matrix is given
by Eq. �7�; S=S�. Making use of Eq. �7�, it is straightforward
to find the energy dependence of X:

X = �2�1 + �� − 2�1 + �� 1

2�1 + �� − 3 2�1 − ��
1 − 2�1 − �� 2�1 − ��

� . �C3�

Operators L1 and L2 act in white and “blue” stripes, re-
spectively. Operator L1 performs the transformation of the

vector of amplitudes �Zi
�n�� into �Z̃i

�n+1��, while L2 performs

the transformation of �Z̃i
�n�� into �Zi

�n��. Matrix forms of L1
and L2 in terms of elements of matrix, X, are the following:

L1 =�
x11 x12 x13 0 · · · ·

x21 x22 x23 0 · · · ·

x31 x32 x33 0 · · · ·

0 0 0 1 · · · ·

· · · · x11 x12 x13 0

· · · · x21 x22 x23 0

· · · · x31 x32 x33 0

· · · · 0 0 0 1

� , �C4�

L2 =�
x33 0 · · · · x31 x32

0 1 · · · · 0 0

· · x11 x12 x13 0 · ·

· · x21 x22 x23 0 · ·

· · x31 x32 x33 0 · ·

· · 0 0 0 1 · ·

x13 0 · · · · x11 x12

x23 0 · · · · x21 x22

� , �C5�

with dots standing for zeroes. Specific form of L2 accounts
for the cyclic boundary conditions in the vertical direction.

In addition to the scattering at the nodes �green dots in
Fig. 8�, propagation along the network links accumulates
random phases. If we denote the phases on the links crossing
vertical lines 2n by �i

�n� and those crossing lines 2n+1 by
�i

�n�, then all the random phases at the links can be taken into
account by introducing diagonal phase matrices

(1)~
Z2

(1)~
Z3

(1)~
Z5

(1)~
Z6

(1)~
Z1

(1)~
Z8

(1)Z4

(1)Z2

(1)Z3

(1)Z5

(1)Z6

(1)Z7

(1)Z8

(1)Z

(1)~
Z4

1

(0)
5Z

(0)
4Z

(0)
3Z

(0)
2Z

(0)
1Z

(1)~
Z7

(0)
6Z

Z7
(0)

(0)
8Z

1 20 3 4

4Z

(N)Z1

(N)

(N)
8Z

(N)
7Z

(N)
6Z

(N)
5Z

(N)
2Z

(N)
3Z

L2L2L1L 1

2N2N−12N−2

FIG. 8. �Color online� A slice of a network �Fig. 3� of width
M =8 is shown. Three amplitudes on the links to left of green dot
are related to three amplitudes to the right of green dot via matrix
X. The upper and the lower boundaries of the slice are connected by
dashed-dotted lines manifesting that the amplitudes on these bound-
aries are the same by virtue of cyclic boundary conditions. Upon
passing the white stripe, the vector of the amplitudes �Zi� is multi-

plied by the matrix L1. Upon passing the blue stripe the vector �Z̃i�
is multiplied by L2.
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P1
�n� = diag�ei�1

�n�
, ¯ ,ei�8

�n�
� �C6�

and

P2
�n� = diag�ei�1

�n�
, ¯ ,ei�8

�n�
� . �C7�

Finally, the transfer matrix, T, of the slice Fig. 8 is given by
the product

T = �
n=N−1

0

L2P2
�n�L1P1

�n�, �C8�

which runs in the reverse order. This product is completely
analogous to the transfer matrix of the slice in the Chalker-
Coddington model.
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