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Photoexcited states are relaxed by transferring energy to the environments. In order to study which coupling
allows fast energy transfer to lattice vibrations in correlated electron systems, we calculate the time evolutions
of the kinetic energies of different types and frequencies of lattice vibrations. The one-dimensional half-filled
Hubbard model is augmented with electron-lattice couplings that modulate transfer integrals, site energies, and
Coulomb repulsion strengths. The time-dependent Schrödinger equation is solved for exact many-electron
wave functions, and the classical equation of motion for the lattice displacements. In order to transfer energy
to classical lattice vibrations that modulate transfer integrals or site energies, the translational invariance must
be broken to give optical activity to an electronic excitation with wave number � and to these lattice vibrations.
On the other hand, a certain amount of energy is always transferred to lattice vibrations that modulate Coulomb
repulsion strengths, irrespective of the symmetry of the ground state, as long as the corresponding electron-
lattice couplings are present. In strongly correlated electron systems, these couplings can be strong, although
they are usually insignificant because their effects on the equilibrium properties can be absorbed into redefi-
nition of Coulomb repulsion strengths. We will discuss competition or collaboration between energy-transfer
pathways through different types of electron-lattice couplings.
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I. INTRODUCTION

Photoinduced phase transitions have attracted much atten-
tion as intriguing cooperative phenomena in nonequilibrium
conditions.1,2 The electronic properties caused by many elec-
trons are macroscopically changed. Especially in strongly
correlated electron systems, they are changed often on an
ultrafast time scale. The density of photons needed for such a
change is usually much lower than that of electrons involved
because the energy supplied by photoirradiation is much
higher than thermal energies.

Quasi-one-dimensional Mott-Hubbard insulators such as
halogen-bridged nickel-chain compounds3 and Sr2CuO3
�Refs. 3 and 4� have been expected as nonlinear optical ma-
terials with large nonlinear coefficients and fast response
times. Ultrafast recovery times are desirable for optical high-
speed switching devices. Then, fast energy dissipation from
the photoexcited state into the environments is required. For
Sr2CuO3, the observed photoinduced absorption is to an
even-parity two-photon state that occurs immediately above
the absorption edge, which is theoretically explained on the
basis of the one-dimensional extended Hubbard model with
alternating site energies.4 In such one-dimensional correlated
electron systems, the spin-charge separation plays a crucial
role in enhancing the nonlinear optical response.5

Halogen-bridged nickel-chain compounds are known to
exhibit a photoinduced insulator-to-metal transition and ul-
trafast decay of the photoinduced state.6 Their photoinduced
metallic properties are theoretically studied in the one-
dimensional Hubbard model.7 The difference between the
photoinduced state in the nickel-chain compounds and that in
the copper-oxide chains is experimentally clarified by com-
parisons between their optical conductivity spectra and pho-
toconductivity spectra.8

Quasi-one-dimensional Mott-Hubbard insulators are
often accompanied by the dimerization that alternates trans-
fer integrals to produce a spin-Peierls phase. Photoirradiation
of such insulators as K-tetracyanoquinodimethane �K-
TCNQ� are known to exhibit melting of the dimerization,
which is called a photoinduced inverse spin-Peierls
transition.9 Ultrafast photoinduced melting of the spin-
Peierls phase is observed with a very short decay time
of photocarriers.10 In bis�ethylenedithio�tetrathiafulvalene-
difluorotetracyanoquinodimethane �ET-F2TCNQ�, which is
regular without dimerization, photocarrier doping is concen-
trated on a Drude component and a midgap state is never
formed owing to the spin-charge separation.11 For a larger
photoexcitation, the decay time of the metallic state is sig-
nificantly shorter, suggesting that electron-electron scattering
plays an important role.

Recently, ultrafast charge dynamics in K-TCNQ, Rb-
TCNQ, and ET-F2TCNQ with different magnitudes of
electron-lattice interactions are compared.12 In K-TCNQ and
Rb-TCNQ, photocarriers are localized as polarons with
about 70 fs and recombined with a few ps. In ET-F2TCNQ,
photocarriers lead to a metallic state and decay with about
200 fs. These differences in the charge dynamics are reason-
ably interpreted as due to different magnitudes of electron-
lattice interactions. The photoinduced inverse spin-Peierls
transition is also theoretically studied in the one-dimensional
dimerized Hubbard model13 and in its extension to include
nearest-neighbor repulsion.14 To understand photoinduced
midgap states, however, electron-lattice interactions and the
rapid formation of polaronic states are required for
K-TCNQ.15

In correlated electron systems on the one-dimensional
regular lattice at half filling, the spin-charge separation holds
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in the low-energy limit and almost holds even in photoex-
cited states. Consequently, electron-lattice interactions play
an important role in the decay of photocarriers. In studying
the relaxation of photoexcited states in correlated electron
systems, it is numerically hard to observe the time evolution
of the conductivity spectrum or the Drude weight, but it is
easy to observe the time-dependent kinetic energies of
phonons. In this paper, we then focus on the energy transfers
from photoexcited electron systems to phonons.

Quite recently, enhancement of phonon effects on an ex-
citon has been reported in photoexcited states of one-
dimensional Mott insulators on the basis of a density-matrix
renormalization-group calculation for the one-dimensional
extended Hubbard-Holstein model.16 Here, quantum
phonons are incorporated and play an important role because
the holon and the doublon are dressed with quantum
phonons. For photoinduced dynamics near a quantum critical
point, where quantum phonon fluctuations are essential, co-
herence is shown to be enhanced within the quantum Blume-
Emery-Griffiths model.17 In this paper, however, we will
limit ourselves to classical phonons, which can suggest that
electron-lattice couplings that are usually ignored can lead to
ultrafast decay of the photoinduced state in correlated elec-
tron systems.

Here, we briefly summarize the relation between quantum
and classical phonons. Phonons originally behave quantum
mechanically. When the average number of phonons at each
site is much larger than the fluctuating component, they be-
have classically. If phonon energies are not negligibly small
compared with electronic kinetic energies, phonons follow
the motion of electrons to produce slowly moving polarons.
The quantum nature of phonons must be retained to produce
polarons in a translation invariant manner. With decreasing
phonon energies, the motion of phonons is more retarded
than that of electrons, and finally electrons feel as if phonons
produce a quasistatic field. Phonons barely follow the motion
of electrons to create hardly moving polarons. In the classi-
cal picture, polarons break the translational symmetry, but
quantum fluctuations restore the symmetry by the linear
combination of differently placed polarons. In reality, ther-
mal fluctuations would help the localization of polarons.

In K-TCNQ, photocarriers are regarded as converted into
polarons10,12 presumably by relaxing the displacements that
modulate transfer integrals.15 It is interpreted that photocar-
riers are localized and their recombination �i.e., the decay of
photocarriers� is slowed down by the corresponding electron-
lattice interaction.12 The fact that the materials with stronger
electron-lattice interactions have the longer decay times sug-
gests either that electron-electron interactions are mainly re-
sponsible for the decay process12 or that a new type of
electron-lattice interactions compete with those responsible
for the formation of polarons in determining the decay time.

In this paper, we will suggest the latter possibility by in-
troducing electron-lattice interactions that modulate Cou-
lomb repulsion strengths. These interactions allow energy
transfers to phonons, irrespective of the symmetry of the
ground state. As electron-lattice interactions that modulate
transfer integrals increase, the dimerization is enhanced, and
the energy transfers to phonons that modulate Coulomb re-
pulsion strengths are shown to decrease in this paper using

classical phonons. This fact will survive quantum fluctua-
tions of phonons. Numerical calculations for time evolution
with quantum phonons on a reasonably large lattice at half
filling are unfeasible and beyond the scope of this paper.

II. MODEL AND METHOD

In order to study the energy dissipation from a correlated
electron system into the environments, we take a one-
dimensional half-filled Peierls-Holstein-Hubbard model with
another type of electron-lattice couplings that modulate on-
site repulsion strengths,

H = − �
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where cj,�
† �cj,�� creates �annihilates� an electron with spin �

at site j, nj,�=cj,�
† cj,�, nj =��nj,�, t0 denotes the bare transfer

integral, and U the bare on-site repulsion strength. As for
electron-lattice couplings, we consider different types and
frequencies of lattice vibrations. The lattice displacements
uj

�m�, v j
�m�, and wj

�m� modulate the transfer integral, the site
energy, and the on-site repulsion strength, with coupling
strengths, s�

�m�, s�
�m�, and s�

�m�, respectively, at bond or site j.
Here, s�

�m���=� ,� ,�� are not smaller than zero, and the suf-
fix m denotes modes having the bare phonon frequencies,
��

�m�, ��
�m�, and ��

�m�. The quantities u̇j
�m�, v̇ j

�m�, and ẇj
�m� are

the time derivatives of uj
�m�, v j

�m�, wj
�m�, respectively. For sim-

plicity, these displacements are regarded as independent.
We define each type of electron-phonon coupling strength

by 	�	�ms�
�m�, 	�	�ms�

�m�, and 	�	�ms�
�m�. As long as the

lattice vibrations are treated classically, the ground state is
given by u̇j

�m�= v̇ j
�m�= ẇj

�m�=0. In this case, the ground state is
determined not by the distribution of 
s�

�m��, 
s�
�m��, or 
s�

�m��,
but by their sums, 	�, 	�, and 	�, as derived in a straightfor-
ward manner from the Hellmann-Feynman theorem. There-
fore, we will specify the electron-phonon coupling strengths
by 	�, 	�, and 	� in the following, although the dynamics
induced by any excitation depends on the distribution of cou-
plings.

In this paper, we consider many phonon modes of differ-
ent frequencies for each type of electron-phonon couplings
to reduce coherent oscillations of energy exchange between
the electronic and lattice systems. Therefore, we take a wide
distribution of phonon frequencies: ��

�m�=��
m /100 for �
=�, �, �, and m=1, . . . ,100 with �� being the maximum
phonon energy ��	maxm ��

�m�. Furthermore, we take a uni-
form distribution of couplings: s�

�m�=s�. The number 100 is
more than realistic values even for complex molecular mate-
rials, but it is so taken as to be large enough in that the
numerical results are almost unchanged if we take 104 in-
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stead. Although phonons are treated classically in this paper,
we employ exact many-electron wave functions for the
ground state and the photoinduced dynamics.

Photoexcitations are introduced by adding

− �
j,�

�t0 − �
m

�s�
�m��uj+1

�m� − uj
�m���


 �exp�−
iea

�

 dtE�t�� − 1�cj,�

† cj+1,� + H.c., �2�

to Eq. �1�, where e is the absolute value of the electronic
charge, a is the lattice spacing, and e, a, and � are set to be
unity. The time-dependent electric field E�t� is given by
E�t�=Eext sin �extt, with amplitude Eext and frequency �ext
for 0� t�Tirr �E�t� is zero otherwise� with Tirr
=2�Next /�ext and integer Next.

The time-dependent Schrödinger equation for the exact
many-electron wave function �
�t�� is numerically solved by

�
�t + dt�� � exp�−
i

�
dtH�t +

dt

2
���
�t�� , �3�

where the time evolution operator is expanded as
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with time slice dt=10−3 to the �n=�15th order and by check-
ing the conservation of the norm and of the total energy for
t�Tirr. This method is the same as in Refs. 18 and 19, but
here we use a much smaller value for dt to raise the preci-
sion. The classical equation of motion for the lattice dis-
placements is solved by the leapfrog method, where the force
is derived from the Hellmann-Feynman theorem.

To observe the energy dissipation into the environments,
we calculate the time evolution of the kinetic energy of each
type of phonons,
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u�� =�2�
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u̇j
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��
�m�2� , �5�
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and compare the time evolution of the total energy, Etot
= �H�. In the following, the distortion amplitudes in the initial
ground state are defined by the dimensionless quantities,

uGS 	 �uj
�m��/�s�

�m�, �8�

vGS 	 �v j
�m��/�s�

�m�, �9�

wGS 	 �wj
�m��/�s�

�m�. �10�

III. RESULTS

In this paper, we use t0=1 and U=6 for Mott insulators
and �ext=3, which is slightly above the lowest optical exci-
tation energy. We take Next=20, so that Tirr=41.9, which cor-
responds to 27.5 fs �275 fs� if t0 is 1 eV �0.1 eV�. Further-
more, we use Eext=1, which is not so large in that the
increment in the total energy ranges about 1.5 to 3 �i.e., 0.5
to 1 photon� in the present 12-site system. Although it is not
easy to obtain general results on the differences between
Mott and band insulators, we first compared the energy trans-
fer to phonons in a Mott insulator and that in a band insula-
tor, where the bare transfer integral t0 in Eq. �1� is replaced
by t0− �−1� j�t, �t is set at 0.75, and U at 0 to have a charge
gap of 3. For 	�=1 and ��=��=��=1, the ratio of the
increment in Ekin�
u�� to that in Etot, �Ekin�
u�� /�Etot, in-
creases to about 8
10−2 and �Ekin�
v�� /�Etot to about 8

10−3 for the distortion amplitude uGS to 0.5. They are one
order of magnitude larger than �Ekin�
u�� /�Etot�3
10−3

and �Ekin�
v�� /�Etot�8
10−4 in a Mott insulator with
dimerization �i.e., a spin-Peierls insulator� even with a larger
	� and the same phonon frequencies.

We have calculated same quantities for another type of
band insulators where the site energies are alternated instead
of the transfer integrals. In such a case also, the energy trans-
fer to phonons is generally larger than that in a Mott insula-
tor. This can be understood as follows. In principle, nonin-
teracting electrons in the translation invariant system cannot
have a charge gap at half filling. In order for them to have a
gap, they must be accompanied by alternation of transfer
integrals, site energies, or other potentials, either intrinsically
by electron-phonon couplings or extrinsically by �t, for in-
stance. Then, the originally inactive �i.e., in the translation
invariant system� electronic excitation with wave number �
gets optical activity. It means that a certain amount of energy
is always transferred to phonons that are coupled with this
excitation. Meanwhile, a Mott insulator has a gap even in the
translation invariant system, where this excitation remains
optically inactive. This suggests that another type of
electron-phonon coupling is effective for a Mott insulator to
allow large energy transfer to phonons, compared to a band
insulator with a similar magnitude of gap.

From now on, we focus on Mott insulators. Although we
use a particular set of parameter values to show numerical
results, qualitative aspects are general and obtained for other
parameter values as well. As an example, Figs. 1�a� and 1�b�
show the time evolution of Ekin�
u�� and that of Ekin�
w��,
respectively. The bare phonon frequencies adopted here
range from 0.01 to 1, so that their periods range from 6.3 to
628. Thus, the rapid oscillations �of period about 2� are due
to either forced or almost resonantly induced electronic ex-
citations, which are coupled with these phonons. Some struc-
tures on larger time scales �of periods about 6 and 12 in Figs.
1�a� and 1�b�� are also visible. Their appearance is allowed
by the couplings with phonons. In the figures, the arrows
indicate the pulse duration, Tirr. After the oscillating electric
field is switched off, t�Tirr, the forced oscillation disap-
pears, but rapid oscillations due to electronic excitations sur-
vive. The energy transfer to phonons continues on a large
time scale �of the largest period 628 �not shown��. It be-
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comes conspicuous especially for low �maximum� phonon
frequencies. The dependence on the phonon frequencies is
discussed later.

For 	� values used in these figures, the ground state is in
the spin-Peierls phase that has alternating uj

�m�� �−1� j. With-
out this dimerization, the ground state is translation invariant
and Ekin�
u��=Ekin�
v��=0, which is numerically confirmed
in the present finite-size system with small 	�. It should be
noted here that this is not really the case if phonons are
treated quantum mechanically as in Ref. 16, where the holon
and the doublon are dressed with quantum phonons. As long
as phonons are treated classically, the wave function is a
direct product composed of the electronic and lattice parts
where electrons feel the averaged phonon density and
phonons feel the averaged electron density so that electron-
phonon correlation is missing. Then, the photocarriers cannot
be dressed. Nevertheless, we expect that the different char-
acters of the electron-phonon couplings considered here ba-
sically survive quantum fluctuations. Unless 	�=0, Ekin�
w��
always becomes finite because the optical excitation involves
the modulation of double occupancy �nj,↑nj,↓�, irrespective of
whether the ground state is dimerized or regular. Figure 1�a�
shows that Ekin�
u�� increases with 	�. It is because 	� in-
creases the distortion amplitude uGS, which enhances the op-
tical activity of the electronic excitation with wave number �
by deviating further from the translation invariance. Figure
1�b� shows that Ekin�
w�� decreases as 	� increases. It is
because 	� and thus uGS increase the antiferromagnetic spin

correlation on the strong bonds �with the larger transfer in-
tegrals�, which makes the modulation of double occupancy
harder. These facts will be made clearer when they are plot-
ted as a function of the distortion amplitude later.

Not all the energy transfer to phonons is regarded as con-
tributing to dissipation. Some of the transferred energy will
flow back into the electronic system and forth into the lattice
system, causing oscillations of kinetic energies of phonons.
To estimate the component that contributes to dissipation, in
other words, to remove the effect of such energy oscillations,
we draw a curve, for instance for Ekin�
u��, by connecting
local minima in time �when it oscillates�, measure its value
�which is not greater than the bare Ekin�
u��� at the observa-
tion time, and regard it as the increment in Ekin�
u��,
�Ekin�
u��. Figure 2�a� shows the ratio of �Ekin�
u�� to the
increment in the total energy �Etot, as a function of the dis-
tortion amplitude uGS. In the classical picture of phonons,
unless the ground state has a finite lattice distortion, the lat-
tice remains undistorted even after the photoexcitation,
which does not break the translational symmetry. That is, for
uGS=0, no energy is transferred to u phonons. As a conse-
quence, uGS is a controlling parameter for the energy transfer
to u phonons. As noted previously, it is a monotonically in-
creasing function. This quantity increases with the coupling
	� also. The coupling 	� reduces the on-site repulsion
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FIG. 1. �Color online� Time evolutions of kinetic energies of �a�
phonons that modulate transfer integrals, Ekin�
u��, and �b� phonons
that modulate on-site repulsion strengths, Ekin�
w��, with different
coupling strengths 	�. The other parameters are t0=1, U=6, 	�

=3, 	�=2, ��=��=��=1, �ext=3, Next=20, and Eext=1. The ar-
rows indicate the pulse duration, Tirr.
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FIG. 2. �Color online� �a� Ratio of increment in Ekin�
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in Etot, as a function of the distortion amplitude uGS, with different
coupling strengths 	�. �b� Ratio of increment in Ekin�
w�� to that in
Etot, as a function of the distortion amplitude wGS, with different
coupling strengths 	�. Both are measured at t=100. The parameters
are t0=1, U=6, 	�=3, ��=��=��=1, �ext=3, Next=20, and Eext

=1.
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strengths and enhances the superexchange interactions be-
tween the spins on the strong bonds, which strengthens the
effective coupling between electrons and u phonons. Figure
2�b� shows the ratio of �Ekin�
w�� to �Etot, as a function of
the distortion amplitude wGS. It is a steeply increasing func-
tion above a threshold. The threshold is present because the
distortion amplitude wGS defined in Eq. �10� is finite in the
	�→0 limit. This quantity is suppressed by the coupling 	�,
as explained previously. Namely, the energy flow into w
phonons is suppressed if the dimerization of transfer inte-
grals is large.

We vary the distributions of phonon frequencies to see
their effect on the energy transfer to phonons. Figure 3�a�
shows that the ratio of �Ekin�
u�� to �Etot increases with
shifting the distributions of phonon frequencies to the low
side. Here, the energy ratios are observed at t=100 shortly
after the oscillating electric field is switched off. If we de-
crease the phonon frequencies further, even the lattice vibra-
tion of the highest frequency �� has the period longer than
the observation time, leading to decreasing of the energy
ratio. However, if we observe it much later so as to allow a
few cycles of the fastest lattice vibration before the observa-
tion time, the energy ratio tends to increase further. Although
we cannot reach the adiabatic limit of �→0 due to numeri-
cal limitations, the energy flow into u phonons seems to be-
come the largest in this limit. This behavior is in contrast to
that of v phonons. Figure 3�b� shows that the ratio of
�Ekin�
v�� to �Etot is almost completely suppressed if pho-
non frequencies are low. Note the difference in the scales of

the ordinate axes. This energy ratio increases with shifting
the distributions of phonon frequencies to the high side as
long as phonon energies are lower than electronic excitation
energies. If some phonon energies become comparable with
electronic excitation energies, this quantity would show a
complex behavior as a function of phonon frequencies.

These contrastive behaviors of u and v phonons are un-
derstood in the following way. The dimerization uj

�m�� �−1� j

breaks the translation invariance, giving the optical activity
to an electronic excitation with wave number �. This elec-
tronic mode is photoexcited almost resonantly here and
transfers energy directly to u phonons. However, the energy
transfer to v phonons is indirect. This electronic excitation
makes the charge densities at even and odd sites different,
which applies a force to v phonons. It then induces oscilla-
tions of charge densities and those of v phonons. The energy
flow into thus indirectly coupled v phonons is facilitated by
making different excitations closer in energy. Consequently,
the energy flow into v phonons seems to become largest
when their energies are comparable with those of electronic
excitations.

IV. SUMMARY

The energy flow from a correlated electron system into
the environments after photoexcitation is theoretically stud-
ied in a one-dimensional half-filled Peierls-Holstein-Hubbard
model augmented with another type of electron-lattice cou-
plings that modulate Coulomb repulsion strengths. We con-
sider different types and frequencies of lattice vibrations,
which are treated classically. The time-dependent
Schrödinger equation is numerically solved for the exact
many-electron wave functions. The time evolutions of the
kinetic energies of different types of phonons are observed
and compared with the increment in the total energy. When
Mott and band insulators with a similar magnitude of gap are
compared in the present half-filled model, the energy transfer
to phonons is generally larger in a band insulator than in a
Mott insulator. Because the translational symmetry is broken
to have a finite gap in the band insulator at half filling, the
optical activity is given to an electronic excitation with wave
number � and phonons coupled with it.

In the spin-Peierls phase, the dimerization that alternates
transfer integrals gives the optical activity to the electronic
excitation with wave number �, which allows the energy
transfers to phonons that modulate transfer integrals and to
phonons that modulate site energies. These energy transfers
increase with dimerization amplitude, but their dependences
on phonon frequencies are quite different. The transfer to
phonons that modulate transfer integrals increases with de-
creasing phonon frequencies, while that to phonons that
modulate site energies increases with increasing phonon fre-
quencies as long as these phonon energies are lower than the
electronic excitation energies. This difference originates
from the fact that the coupling with the optically active elec-
tronic excitation is direct for the former phonons and indirect
for the latter phonons. Nevertheless, these energy transfers
are generally smaller than those in band insulators.

The above facts suggest that another type of electron-
phonon couplings that modulate Coulomb repulsion
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FIG. 3. �Color online� Ratios of �a� increment in Ekin�
u�� to that
in Etot, and �b� increment in Ekin�
v�� to that in Etot, as a function of
the distortion amplitude uGS, with different maximum phonon fre-
quencies �=��=��=��. Both are measured at t=100. The param-
eters are t0=1, U=6, 	�=3, 	�=2, �ext=3, Next=20, and Eext=1.
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strengths are effective in transferring energy to phonons. It
should be noted that Coulomb repulsion strengths are gener-
ally much larger than the charge gap. Therefore, this type of
electron-phonon couplings can be quite strong in principle.
They are not usually regarded as substantial because they do
not change the symmetry of the electronic state. Their effects
can be absorbed into redefinition of Coulomb repulsion
strengths as long as the equilibrium properties are concerned.
Their effects can be significant in such nonequilibrium con-
ditions as in the photoinduced dynamics. The energy transfer
to these phonons always takes place irrespective of whether
the ground state is dimerized or regular. They are relatively
important when the dimerization is weak.

In view of the energy transfer to phonons, those which
modulate transfer integrals compete with those which modu-
late on-site repulsion strengths. With increasing dimerization
amplitude, the antiferromagnetic spin correlation is strength-
ened on the strong bonds, making the modulation of double
occupancy harder. It is interesting that the electron-phonon
couplings that modulate on-site repulsion strengths enhance
the energy transfer to phonons that modulate transfer inte-
grals by reducing the on-site repulsion and thus by increasing

the superexchange interaction. Above all, electron-phonon
couplings that modulate Coulomb repulsion strengths can
generally be important when the energy dissipation from the
photoexcited state is considered. Although we do not study
here, the nearest-neighbor repulsion would also be modu-
lated by relevant phonons and can be quantitatively impor-
tant. For instance, in transition-metal oxides, the repulsion
between an electron in a d orbital and another in an O p
orbital would be strongly modulated by the displacement of
the oxygen ion. Because the oxygen ion is light and it can
oscillate with high frequency, it would allow quite a rapid
decay of the photoexcited state.
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